CBSE Questions for Class 10 Maths Introduction To Trigonometry Quiz 9 - MCQExams.com

If $$\displaystyle25\sin ^{2}\theta +10\cos ^{2}\theta =15 $$ then find $$\displaystyle\cot  ^{2}\theta $$
  • $$1$$
  • $$2$$
  • $$3$$
  • $$4$$
In a right angled $$\triangle ABD,   \angle B=60^o$$ and $$\angle A=30^o$$.
Then, $$\cot { 60^o } =$$

453655.png
  • $$\sqrt { 3 } $$
  • $$\dfrac { 1 }{ \sqrt { 3 } } $$
  • $$\dfrac { \sqrt { 3 } }{ 2 } $$
  • $$\dfrac { 2 }{ \sqrt { 3 } } $$
In a right angle $$\triangle ABD,  \angle B=60^o$$ and $$\angle A=30^o$$. 
Then $$\sec { 60 }$$ is equal to:

453651_31ba2c5a0eda43c4a75485c69b82db1e.png
  • $$2$$
  • $$\dfrac { 1 }{ 2 } $$
  • $$\sqrt { 3 } $$
  • $$\dfrac { 1 }{ \sqrt { 3 } } $$
In right angle $$\triangle ABC,   \angle B=90^o,   \angle A=45^o$$, then $$\sin { 45^o } =$$
  • $$1$$
  • $$\sqrt{2}$$
  • $$\dfrac{1}{\sqrt{2}}$$
  • None of above
In a right angled $$\triangle ABD,   \angle B=60^o$$ and $$\angle A=30^o$$. 
Then $$\cos { 30^o }$$ is equal to:

453661_aa786ca0d93f4d769d9b3a0a810e0a70.PNG
  • $$\dfrac { \sqrt { 3 } }{ 2 } $$
  • $$\dfrac { 1 }{ \sqrt { 3 } } $$
  • $$\dfrac { 2 }{ \sqrt { 3 } } $$
  • $$\sqrt { 3 } $$
In a right angled $$\triangle ABD,   \angle B=60^o,   \angle A=30^o$$. 
Then $$\sin { 30^o }$$ is equal to

453658_6e9a519a8cc741dd9cb6d2632202dce8.PNG
  • $$2$$
  • $$\dfrac { 1 }{ 2 } $$
  • $$3$$
  • $$\dfrac { 1 }{ 3 } $$
In right angled $$\triangle ABD,   \angle B=60^o,   \angle A=30^o$$.
Then $$\sec { 30^o}$$ is equal to

453704_cc6933e8fd2c43368aca0e4a35dc4b23.PNG
  • $$\dfrac { 1 }{ \sqrt { 3 } } $$
  • $$\dfrac { 2 }{ \sqrt { 3 } } $$
  • $$\dfrac { 3 }{ \sqrt { 3 } } $$
  • $$\dfrac { 4 }{ \sqrt { 3 } } $$
In a right angled $$\triangle ABD$$, in which $$\angle B=60^o$$ and $$\angle A=30^o$$. 
Then $$\csc { 30 }^o$$ is equal to

453667.png
  • $$1$$
  • $$2$$
  • $$3$$
  • $$4$$
In right angle $$\triangle ABD,   \angle B={ 60 }^{ o  },   \angle A={ 30 }^{ o  }$$, then $$\cot { { 60 }^{ o  } } =$$

453705_14033bb578ee4a97a73579a2849ca000.png
  • $$\sqrt { 3 } $$
  • $$\dfrac { 1 }{ \sqrt { 3 } } $$
  • $$\dfrac { 2 }{ \sqrt { 3 } } $$
  • $$\dfrac{1}{3}$$
In right angle $$\triangle ABC,   \angle B=90^o,   \angle A=45^o$$, then $$\cos { 45^o } =$$
  • $$1$$
  • $$\sqrt{2}$$
  • $$\dfrac{1}{\sqrt{2}}$$
  • None of above
Value of $$\left(\sin{60^o}\cos{30^o}-\cos{60^o}\sin{30^o}\right)$$ is 
  • $$0$$
  • $$1$$
  • $$\dfrac{1}{2}$$
  • $$\dfrac{\sqrt{3}}{2}$$
In right angle $$\triangle ABC,   \angle B=90^o,   \angle A=45^o=\angle C$$, then $$cosec { 45^o } =$$
453711_84a0d0a02c014a7cbe802212f23d6d54.png
  • $$1$$
  • $$\sqrt{2}$$
  • $$\dfrac{1}{\sqrt{2}}$$
  • None of above
In right angle $$\triangle ABC,   \angle B=90^o,   \angle A=45^o=\angle C$$, then $$\cot { 45^o } =$$
453713_28ab27657fe74f43a4eaca824fff64a1.png
  • $$1$$
  • $$\sqrt{2}$$
  • $$\dfrac{1}{\sqrt{2}}$$
  • None of above
In right angle $$\triangle ABC,   \angle B=90^o,   \angle A=45^o$$, then $$\tan { 45^o } =$$
  • $$1$$
  • $$\sqrt{2}$$
  • $$\dfrac{1}{\sqrt{2}}$$
  • None of above
In right angle $$\triangle ABC,   \angle B=90^o,   \angle A=45^o=\angle C$$, then $$\sec { 45^o} =$$
453712_5188779fbdb148b0bd9f43f55028570b.png
  • $$1$$
  • $$\sqrt{2}$$
  • $$\dfrac{1}{\sqrt{2}}$$
  • None of above
If $${\tan}^{2}{45^o}- {\cos}^{2}{30^o} = x \sin{45^o} \cos{45^o}$$, then $$x =$$
  • $$2$$
  • $$-2$$
  • $$\dfrac{1}{2}$$
  • $$-\dfrac{1}{2}$$
Value of $$\left(\cos{60^o}\cos{30^o}-\sin{60^o}\sin{30^o}\right)$$ is 
  • $$0$$
  • $$\dfrac{\sqrt{3}}{2}$$
  • $$\dfrac{1}{2}$$
  • $$1$$
In $$\triangle ABC,   \angle B=90^o,   AB=3\   cm,   AC=6\   cm,   \angle A=$$
453729_80ea3d08fcec4b0cb390d346c86ce3dc.png
  • $$30^o$$
  • $$45^o$$
  • $$60^o$$
  • None of these
In $$\triangle ABC,   \angle B=90^o,   \angle A=30^o,   AB =9  cm\ $$, then $$BC =$$
  • $$3 cm$$
  • $$2\sqrt{3} cm$$
  • $$3\sqrt{3} cm$$
  • $$6 cm$$
$$\sec (90 - \theta) = $$
454073.png
  • $$cosec \theta$$
  • $$\sin \theta$$
  • $$\cos \theta$$
  • None of these
$$(\cos 0^{\circ} + \sin 45^{\circ} + \sin 30^{\circ}) (\sin 90^{\circ} - \cos 45^{\circ} + \cos 60^{\circ}) = $$
  • $$\dfrac {5}{4}$$
  • $$\dfrac {9}{4}$$
  • $$\dfrac {7}{4}$$
  • None of these
$$\cot (90 - \theta) = $$
454074_97edadf872a3408ca08854f84e328478.png
  • $$\sin \theta$$
  • $$\cos \theta$$
  • $$\tan \theta$$
  • None of these
If $$A$$ and $$B$$ are acute angle such that $$\sin A = \cos B$$, then $$(A + B) = .....$$
  • $$45^{\circ}$$
  • $$60^{\circ}$$
  • $$90^{\circ}$$
  • $$180^{\circ}$$
$$4\left( \sin ^{ 4 }{ 30^0} +\cos ^{ 4 }{ 60^0 }  \right) -\dfrac { 2 }{ 3 } \left( \sin ^{ 2 }{ 60^0 } -\cos ^{ 2 }{ 45^0 }  \right) +\dfrac { 1 }{ 2 } \tan ^{ 2 }{ 60^0 } =$$
  • $$\dfrac { 8 }{ 3 } $$
  • $$\dfrac { 11 }{ 6 } $$
  • $$\dfrac { 13 }{ 6 } $$
  • $$\dfrac { 13 }{ 8 } $$
$$2\sin 30˚ + 2\tan 45˚ - 3\cos 60˚ - 2\cos^{2} 30˚ =$$
  • $$0$$
  • $$1$$
  • $$-1$$
  • None of these
$$\sin 30^{\circ} \cos 60^{\circ} + \sin 60^{\circ} \cos 30^{\circ}  $$ is equal to
  • $$\dfrac {1}{2}$$
  • $$\dfrac {\sqrt {3}}{2}$$
  • $$1$$
  • $$\dfrac {1}{4}$$
$$\dfrac { 1 }{ 4 } \left[ \cot ^{ 4 }{ 30^0 } -\csc ^{ 4 }{ 60^0 }  \right] +\dfrac { 3 }{ 2 } \left[ \sec ^{ 2 }{ 45^0 } -\tan ^{ 2 }{ 30^0 }  \right] -5\cos ^{ 2 }{ 60^0 } =$$
  • $$\dfrac { 35 }{ 9 } $$
  • $$\dfrac { 45 }{ 8 } $$
  • $$\dfrac { 55 }{ 18 } $$
  • $$\dfrac { 49 }{ 36 } $$
$$\tan (90 - \theta) $$ is equivalent to 
  • $$\cos \theta$$
  • $$\sin \theta$$
  • $$(\sin \theta + \cos \theta)$$
  • $$\cot \theta$$
In $$\triangle ABC$$, if $$AD\perp BC$$ and $$BD = 10\ cm; \angle B = 60^{\circ}$$ and $$\angle C = 30^{\circ}$$, then $$CD = .........$$
  • $$10\ cm$$
  • $$20\ cm$$
  • $$40\ cm$$
  • $$30\ cm$$
$$\cos^{2}45^0 + \sin^{2}60^0 + \sin^{2} 30^0 = $$
  • $$\dfrac {1}{2}$$
  • $$\dfrac {3}{2}$$
  • $$\dfrac {5}{2}$$
  • $$\dfrac {7}{2}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 10 Maths Quiz Questions and Answers