Processing math: 100%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 10 Maths Introduction To Trigonometry Quiz 9 - MCQExams.com
CBSE
Class 10 Maths
Introduction To Trigonometry
Quiz 9
If
25
sin
2
θ
+
10
cos
2
θ
=
15
then find
cot
2
θ
Report Question
0%
1
0%
2
0%
3
0%
4
Explanation
25
sin
2
θ
+
10
cos
2
θ
=
15
⇒
15
sin
2
θ
+
10
sin
2
θ
+
10
cos
2
θ
=
15
⇒
15
sin
2
θ
+
10
(
sin
2
θ
+
cos
2
θ
)
=
15
⇒
15
sin
2
θ
+
10
=
15
(Since,
sin
2
θ
+
cos
2
θ
=
1
)
⇒
15
sin
2
θ
=
5
⇒
sin
2
θ
=
5
15
=
1
3
And,
cosec
2
θ
=
1
sin
2
θ
=
3
Also,
cot
2
θ
=
cosec
2
θ
−
1
=
3
−
1
=
2
In a right angled
△
A
B
D
,
∠
B
=
60
o
and
∠
A
=
30
o
.
Then,
cot
60
o
=
Report Question
0%
√
3
0%
1
√
3
0%
√
3
2
0%
2
√
3
Explanation
Consider an equilateral
△
A
B
C
, with each side
=
2
a
.
So each angle of
△
A
B
D
is
60
o
.
From
A
, draw
A
D
⊥
B
C
, so
B
D
=
D
C
=
a
.
Also,
∠
B
A
D
=
30
o
and
∠
A
D
B
=
90
o
.
From right angled
△
A
D
B
,
A
D
=
√
A
B
2
−
B
D
2
=
√
(
2
a
)
2
−
a
2
=
√
4
a
2
−
a
2
=
√
3
a
2
=
√
3
a
.
cot
60
o
=
b
a
s
e
p
e
r
p
e
n
d
i
c
u
l
a
r
=
B
D
A
D
=
a
√
3
a
=
1
√
3
.
So
1
√
3
is correct.
In a right angle
△
A
B
D
,
∠
B
=
60
o
and
∠
A
=
30
o
.
Then
sec
60
is equal to:
Report Question
0%
2
0%
1
2
0%
√
3
0%
1
√
3
Explanation
Consider an equilateral
△
A
B
C
, where each side
=
2
a
.
From
A
, draw
A
D
⊥
B
C
,
so
B
D
=
D
C
=
a
, and
∠
A
D
B
=
90
o
,
∠
B
A
D
=
30
o
.
From right angle
△
A
D
B
, we have
A
D
=
√
A
B
2
−
B
D
2
=
√
(
2
a
)
2
−
a
2
=
√
4
a
2
−
a
2
=
√
3
a
2
=
√
3
a
.
sec
60
o
=
h
y
p
o
t
e
n
u
s
e
b
a
s
e
=
A
B
B
D
=
2
a
a
=
2
.
So, option A that is
2
is correct.
In right angle
△
A
B
C
,
∠
B
=
90
o
,
∠
A
=
45
o
, then
sin
45
o
=
Report Question
0%
1
0%
√
2
0%
1
√
2
0%
None of above
Explanation
Given
∠
A
=
45
o
,
∠
B
=
90
o
∴
∠
C
=
90
o
∠
A
=
∠
C
⇒
A
B
=
B
C
=
a
A
C
=
√
A
B
2
+
B
C
2
=
√
a
2
+
a
2
=
√
2
a
2
=
√
2
a
sin
45
o
=
B
C
A
C
=
a
√
2
a
=
1
√
2
So,
1
√
2
is correct.
In a right angled
△
A
B
D
,
∠
B
=
60
o
and
∠
A
=
30
o
.
Then
cos
30
o
is equal to:
Report Question
0%
√
3
2
0%
1
√
3
0%
2
√
3
0%
√
3
Explanation
Consider an equilateral
△
A
B
C
with each side
=
2
a
.
So, each angle of
△
A
B
C
=
60
o
.
From
A
draw
A
D
⊥
B
C
, so
B
D
=
D
C
=
a
,
∠
A
D
B
=
90
o
,
∠
B
A
D
=
30
o
.
From right angled
△
A
D
B
, we have
A
D
=
√
A
B
2
−
B
D
2
=
√
(
2
a
)
2
−
a
2
=
√
4
a
2
−
a
2
=
√
3
a
2
=
√
3
a
.
cos
30
o
=
A
D
A
B
=
√
3
a
2
a
=
√
3
2
.
So,
√
3
2
is correct.
In a right angled
△
A
B
D
,
∠
B
=
60
o
,
∠
A
=
30
o
.
Then
sin
30
o
is equal to
Report Question
0%
2
0%
1
2
0%
3
0%
1
3
Explanation
Consider an equilateral
△
A
B
C
, with each side
=
2
a
.
So, each angle of
△
A
B
C
=
60
o
.
From
A
draw
A
D
⊥
B
C
. So
B
D
=
D
C
=
a
,
∠
A
D
B
=
90
o
,
∠
B
A
D
=
30
o
.
From right angled
△
A
D
B
, we have
A
D
=
√
A
B
2
−
B
D
2
=
√
(
2
a
)
2
−
a
2
=
√
4
a
2
−
a
2
=
√
3
a
2
=
√
3
a
.
sin
30
o
=
B
D
A
B
=
a
2
a
=
1
2
.
So,
1
2
is correct.
In right angled
△
A
B
D
,
∠
B
=
60
o
,
∠
A
=
30
o
.
Then
sec
30
o
is equal to
Report Question
0%
1
√
3
0%
2
√
3
0%
3
√
3
0%
4
√
3
Explanation
Consider an equilateral
△
A
B
C
, with each side
=
2
a
.
So, each angle is
60
o
.
From
A
, draw
A
D
⊥
B
C
.
So,
B
D
=
D
C
=
a
,
∠
B
A
D
=
30
o
and
∠
A
D
B
=
90
o
.
So, for right angled
△
A
D
B
, we have
A
D
=
√
A
B
2
−
B
D
2
=
√
(
2
a
)
2
−
a
2
=
√
4
a
2
−
a
2
=
√
3
a
2
=
√
3
a
.
sec
30
o
=
1
cos
30
o
=
1
√
3
2
=
A
B
A
D
=
2
√
3
.
So
2
√
3
is correct.
In a right angled
△
A
B
D
, in which
∠
B
=
60
o
and
∠
A
=
30
o
.
Then
csc
30
o
is equal to
Report Question
0%
1
0%
2
0%
3
0%
4
Explanation
Consider an equilateral
△
A
B
C
, with each side
=
2
a
.
So, each angle is
60
o
.
From
A
, draw
A
D
⊥
B
C
.
So,
B
D
=
D
C
=
a
,
∠
A
D
B
=
90
o
,
∠
B
A
D
=
30
o
.
So, for right angled
△
A
D
B
, we have
A
D
=
√
A
B
2
−
B
D
2
=
√
(
2
a
)
2
−
a
2
=
√
4
a
2
−
a
2
=
√
3
a
2
=
√
3
a
.
Now
csc
30
=
A
B
B
D
=
2
a
a
=
2
.
In right angle
△
A
B
D
,
∠
B
=
60
o
,
∠
A
=
30
o
, then
cot
60
o
=
Report Question
0%
√
3
0%
1
√
3
0%
2
√
3
0%
1
3
Explanation
in
△
A
B
D
cot
60
o
=
cot
B
=
b
a
s
e
p
e
r
p
e
n
d
i
c
u
l
a
r
=
a
√
3
a
=
1
√
3
Therefore, Answer is
1
√
3
In right angle
△
A
B
C
,
∠
B
=
90
o
,
∠
A
=
45
o
, then
cos
45
o
=
Report Question
0%
1
0%
√
2
0%
1
√
2
0%
None of above
Explanation
Given
∠
A
=
45
o
,
∠
B
=
90
o
∴
∠
C
=
45
o
∠
A
=
∠
C
⇒
A
B
=
B
C
Let
A
B
=
B
C
=
a
A
C
=
√
A
B
2
+
B
C
2
=
√
a
2
+
a
2
=
√
2
a
2
=
√
2
a
cos
45
=
A
B
A
C
=
a
√
2
a
=
1
√
2
So
1
√
2
is correct.
Value of
(
sin
60
o
cos
30
o
−
cos
60
o
sin
30
o
)
is
Report Question
0%
0
0%
1
0%
1
2
0%
√
3
2
Explanation
Given that:
(
sin
60
o
cos
30
o
−
cos
60
o
sin
30
o
)
=
(
√
3
2
×
√
3
2
−
1
2
×
1
2
)
=
(
3
4
−
1
4
)
=
2
4
=
1
2
In right angle
△
A
B
C
,
∠
B
=
90
o
,
∠
A
=
45
o
=
∠
C
, then
c
o
s
e
c
45
o
=
Report Question
0%
1
0%
√
2
0%
1
√
2
0%
None of above
Explanation
∠
A
=
∠
C
⇒
A
B
=
B
C
=
a
A
C
=
√
A
B
2
+
B
C
2
=
√
a
2
+
a
2
=
√
2
a
2
=
√
2
a
csc
45
o
=
h
y
p
o
t
e
n
u
s
e
b
a
s
e
=
A
C
A
B
=
√
2
a
a
=
√
2
So,
√
2
is correct.
In right angle
△
A
B
C
,
∠
B
=
90
o
,
∠
A
=
45
o
=
∠
C
, then
cot
45
o
=
Report Question
0%
1
0%
√
2
0%
1
√
2
0%
None of above
Explanation
∠
A
=
∠
C
⇒
A
B
=
B
C
=
a
A
C
=
√
A
B
2
+
B
C
2
=
√
a
2
+
a
2
=
√
2
a
2
=
√
2
a
cos
45
o
=
b
a
s
e
p
e
r
p
e
n
d
i
c
u
l
a
r
=
A
B
B
C
=
1
1
=
1
So
1
is correct.
In right angle
△
A
B
C
,
∠
B
=
90
o
,
∠
A
=
45
o
, then
tan
45
o
=
Report Question
0%
1
0%
√
2
0%
1
√
2
0%
None of above
Explanation
∠
A
=
∠
C
⇒
A
B
=
B
C
=
a
So
A
C
=
√
A
B
2
+
B
C
2
=
√
a
2
+
a
2
=
√
2
a
2
=
√
2
a
tan
45
=
B
C
A
B
=
a
a
=
1
So
1
is correct.
In right angle
△
A
B
C
,
∠
B
=
90
o
,
∠
A
=
45
o
=
∠
C
, then
sec
45
o
=
Report Question
0%
1
0%
√
2
0%
1
√
2
0%
None of above
Explanation
∠
A
=
∠
C
⇒
A
B
=
B
C
=
a
A
C
=
√
A
B
2
+
B
C
2
=
√
a
2
+
a
2
=
√
2
a
2
=
√
2
a
sec
45
o
=
h
y
p
o
t
e
n
u
s
e
b
a
s
e
=
A
C
A
B
=
√
2
a
a
=
√
2
So,
√
2
is correct.
If
tan
2
45
o
−
cos
2
30
o
=
x
sin
45
o
cos
45
o
, then
x
=
Report Question
0%
2
0%
−
2
0%
1
2
0%
−
1
2
Explanation
Given that:
tan
2
45
o
−
cos
2
30
o
=
x
sin
45
o
cos
45
o
x
=
tan
2
45
o
−
cos
2
30
o
sin
45
o
cos
45
o
x
=
1
−
(
√
3
2
)
2
1
√
2
×
1
√
2
=
1
−
3
4
1
2
=
1
4
1
2
=
1
4
×
2
1
=
1
2
Value of
(
cos
60
o
cos
30
o
−
sin
60
o
sin
30
o
)
is
Report Question
0%
0
0%
√
3
2
0%
1
2
0%
1
Explanation
(
cos
60
0
cos
30
0
−
sin
60
0
sin
30
0
)
=
1
2
×
√
3
2
−
√
3
2
×
1
2
=
√
3
4
−
√
3
4
=
0
In
△
A
B
C
,
∠
B
=
90
o
,
A
B
=
3
c
m
,
A
C
=
6
c
m
,
∠
A
=
Report Question
0%
30
o
0%
45
o
0%
60
o
0%
None of these
Explanation
sin
C
=
A
B
A
C
=
3
6
=
1
2
But
sin
30
o
=
1
2
, so,
∠
C
=
30
o
∠
A
=
(
90
−
∠
C
)
o
=
(
90
−
30
)
o
=
60
o
.
So
60
o
is correct.
In
△
A
B
C
,
∠
B
=
90
o
,
∠
A
=
30
o
,
A
B
=
9
c
m
, then
B
C
=
Report Question
0%
3
c
m
0%
2
√
3
c
m
0%
3
√
3
c
m
0%
6
c
m
Explanation
tan
30
0
=
B
C
A
B
and
tan
30
0
=
1
√
3
∴
B
C
9
=
1
√
3
, so
B
C
=
9
√
3
=
3
√
3
.
So,
3
√
3
is correct.
sec
(
90
−
θ
)
=
Report Question
0%
c
o
s
e
c
θ
0%
sin
θ
0%
cos
θ
0%
None of these
Explanation
In the figure,
sec
(
90
−
θ
)
=
r
y
=
csc
θ
So,
sec
(
90
−
θ
)
=
csc
θ
So,
csc
θ
is correct.
(
cos
0
∘
+
sin
45
∘
+
sin
30
∘
)
(
sin
90
∘
−
cos
45
∘
+
cos
60
∘
)
=
Report Question
0%
5
4
0%
9
4
0%
7
4
0%
None of these
Explanation
(
cos
0
o
+
sin
45
o
+
sin
30
o
)
(
sin
90
o
−
cos
45
o
+
cos
60
o
)
=
(
1
+
1
√
2
+
1
2
)
(
1
−
1
√
2
+
1
2
)
=
(
1
+
1
2
+
1
√
2
)
(
1
+
1
2
−
1
√
2
)
=
(
3
2
+
1
√
2
)
(
3
2
−
1
√
2
)
=
(
3
2
)
2
−
(
1
√
2
)
2
=
9
4
−
1
2
=
7
4
cot
(
90
−
θ
)
=
Report Question
0%
sin
θ
0%
cos
θ
0%
tan
θ
0%
None of these
Explanation
cot
(
90
−
θ
)
=
y
x
=
tan
θ
So,
cot
(
90
−
θ
)
=
tan
θ
So,
tan
θ
is correct.
If
A
and
B
are acute angle such that
sin
A
=
cos
B
, then
(
A
+
B
)
=
.
.
.
.
.
Report Question
0%
45
∘
0%
60
∘
0%
90
∘
0%
180
∘
Explanation
sin
A
=
cos
B
⇒
sin
A
=
sin
(
90
o
−
B
)
⇒
A
=
90
o
−
B
⇒
A
+
B
=
90
o
Therefore, Answer is
90
o
4
(
sin
4
30
0
+
cos
4
60
0
)
−
2
3
(
sin
2
60
0
−
cos
2
45
0
)
+
1
2
tan
2
60
0
=
Report Question
0%
8
3
0%
11
6
0%
13
6
0%
13
8
Explanation
4
(
sin
4
30
0
+
cos
4
60
0
)
−
2
3
(
sin
2
60
0
−
cos
2
45
0
)
+
1
2
tan
2
60
0
=
4
[
(
1
2
)
4
+
(
1
2
)
4
]
−
2
3
[
(
√
3
2
)
2
−
(
1
√
2
)
2
]
+
1
2
×
(
√
3
)
2
=
4
(
1
16
+
1
16
)
+
2
3
(
3
4
−
1
2
)
+
3
2
=
4
×
1
8
−
2
3
×
1
4
+
3
2
=
1
2
−
1
6
+
3
2
=
11
6
2
sin
30
˚
+
2
tan
45
˚
−
3
cos
60
˚
−
2
cos
2
30
˚
=
Report Question
0%
0
0%
1
0%
−
1
0%
None of these
Explanation
2
sin
30
˚
+
2
tan
45
˚
−
3
cos
60
˚
−
2
cos
2
30
˚
=
2
×
1
2
+
2
×
1
−
3
×
1
2
−
2
(
√
3
2
)
2
=
1
+
2
−
3
2
−
3
2
=
0
sin
30
∘
cos
60
∘
+
sin
60
∘
cos
30
∘
is equal to
Report Question
0%
1
2
0%
√
3
2
0%
1
0%
1
4
Explanation
Given:
sin
30
o
cos
60
o
+
sin
60
o
cos
30
o
(Putting the values as per trigonometry table)
=
1
2
×
1
2
+
√
3
2
×
√
3
2
=
1
4
+
3
4
=
4
4
=
1
1
4
[
cot
4
30
0
−
csc
4
60
0
]
+
3
2
[
sec
2
45
0
−
tan
2
30
0
]
−
5
cos
2
60
0
=
Report Question
0%
35
9
0%
45
8
0%
55
18
0%
49
36
Explanation
1
4
[
cot
4
30
0
−
csc
4
60
0
]
+
3
2
[
sec
2
45
0
−
tan
2
30
0
]
−
5
cos
2
60
0
=
=
1
4
[
(
√
3
)
4
−
(
2
√
3
)
4
]
+
3
2
[
(
√
2
)
2
−
(
1
√
3
)
2
]
−
5
×
(
1
2
)
2
, substitute the values from the table
=
1
4
(
9
−
16
9
)
+
3
2
(
2
−
1
3
)
−
5
4
=
65
36
+
5
2
−
5
4
=
110
36
=
55
18
tan
(
90
−
θ
)
is equivalent to
Report Question
0%
cos
θ
0%
sin
θ
0%
(
sin
θ
+
cos
θ
)
0%
cot
θ
Explanation
In the figure,
tan
(
90
∘
−
θ
)
=
x
y
and
cot
θ
=
x
y
So
tan
(
90
−
θ
)
=
cot
θ
So
cot
θ
is correct.
In
△
A
B
C
, if
A
D
⊥
B
C
and
B
D
=
10
c
m
;
∠
B
=
60
∘
and
∠
C
=
30
∘
, then
C
D
=
.
.
.
.
.
.
.
.
.
Report Question
0%
10
c
m
0%
20
c
m
0%
40
c
m
0%
30
c
m
Explanation
In right angled
△
A
B
D
,
tan
B
=
A
D
B
D
=
A
D
10
⇒
tan
60
∘
=
A
D
10
⇒
√
3
=
A
D
10
⇒
A
D
=
10
√
3
Also, in
△
A
C
D
,
tan
30
∘
=
A
D
D
C
=
1
√
3
⇒
10
√
3
D
C
=
1
√
3
⇒
D
C
=
30
c
m
.
cos
2
45
0
+
sin
2
60
0
+
sin
2
30
0
=
Report Question
0%
1
2
0%
3
2
0%
5
2
0%
7
2
Explanation
Taking
cos
2
45
0
+
sin
2
60
0
+
sin
2
30
0
Substituting the values of sin
30
0
, sin
60
0
, cos
45
0
=
(
1
√
2
)
2
+
(
√
3
2
)
2
+
(
1
2
)
2
=
1
2
+
3
4
+
1
4
=
6
4
=
3
2
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 10 Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page