Explanation
Given:
10x+y+2x−y=410x+y+2x−y=4
15x+y+5x−y=−215x+y+5x−y=−2
let 1x+y=a and 1x−y=b1x+y=a and 1x−y=b
10a+2b=4.......eq110a+2b=4.......eq115a−5b=−2........eq215a−5b=−2........eq2
Multiply eq1 with 3 and eq2 with 2 we get30a+6b=12......eq330a+6b=12......eq330a−10b=−4......eq430a−10b=−4......eq4
subtracting eq3 and eq4 we get16b=1616b=16b=1b=1
Substituting b=1b=1 in eq1 we get10a+2×1=410a+2×1=410a=210a=2a=15a=15
As 1x+y=a=151x+y=a=15
x+y=5............eq5x+y=5............eq5
and 1x−y=b=11x−y=b=1
x−y=1...........eq6x−y=1...........eq6
subtracting eq5 and eq6 we get2x=62x=6x=3x=3
putting x=3x=3 in eq 5 we get3+y=53+y=5y=2y=2
hence x=3x=3 and y=2y=2
6x+3y=6xy6x+3y=6xy .........Given
Multiply by 1xy1xy we get
6xxy+3yxy=6xyxy6xxy+3yxy=6xyxy
6y+3x=6............eq16y+3x=6............eq1
2x+4y=5xy2x+4y=5xy ...........Given
Multiply with 1xy1xywe get
2xxy+4yxy=5xyxy2xxy+4yxy=5xyxy
2y+4x=5........eq22y+4x=5........eq2
Let 1x=a and 1y=b1x=a and 1y=b
a+2b=2.......eq3a+2b=2.......eq34a+2b=5.....eq44a+2b=5.....eq4
Subtracting eq3 and eq4 we get−3a=−3−3a=−3a=1a=1
Substituting a=1 in eq3 we get 1+2b=21+2b=22b=12b=1b=12b=12
Thus if a=1x=1⇒x=1a=1x=1⇒x=1
If b=1y=12⇒y=2b=1y=12⇒y=2
Hence x=1x=1 and y=2y=2
The given pair of equations are:3x+y=1...(1)3x+y=1...(1)(2k−1)x+(k−1)y=2k+1..(2)(2k−1)x+(k−1)y=2k+1..(2)Now rearranging eq1 and eq2 will get3x+y−1=0...(3)3x+y−1=0...(3)(2k−1)x+(k−1)y−(2k+1)=0..(4)(2k−1)x+(k−1)y−(2k+1)=0..(4)Now compare witha1=3,b1=1,c1=−1a1=3,b1=1,c1=−1a2=2k−1,b2=k−1,c2=−(2k+1)a2=2k−1,b2=k−1,c2=−(2k+1)Now we geta1a2=32k−1,b1b2=1k−1,c1c2=−1−(2k+1)a1a2=32k−1,b1b2=1k−1,c1c2=−1−(2k+1)Now will takea1a2=b1b2a1a2=b1b2⇒32k−1=1k−1⇒32k−1=1k−1⇒3k−3=2k−1⇒3k−3=2k−1⇒3k−2k=−1+3⇒3k−2k=−1+3⇒k=2⇒k=2Hence k=2k=2 is the value.
Step -1: Framing equationsStep -1: Framing equations
Without loss of generality, suppose,Without loss of generality, suppose, xx andand yy be two numbers and x>y.be two numbers and x>y.
Given that, sum of two numbers is 35.Given that, sum oftwo numbers is 35.
⇒x+y=35⇒x+y=35 …(1)…(1)
Difference between these two numbers is 13.Difference betweenthese two numbers is 13.
⇒x−y=13⇒x−y=13 …(2)…(2)
Step -2: Adding equation (1)Step -2: Adding equation (1) and equation (2).and equation (2).
⇒x+y+(x−y)=35+13⇒x+y+(x−y)=35+13
⇒2x=48⇒2x=48
⇒x=24⇒x=24
Substituting the value ofSubstituting thevalue of xx in equation (1)in equation (1) we get,we get,
⇒24+y=35⇒24+y=35
⇒y=35−24⇒y=35−24
⇒y=11⇒y=11
Hence, these two numbers are 24 and 11.Hence, these twonumbers are 24 and 11.
Hence, option (C) is correct answer. Hence, option (C) is correct answer.
1(3x+y)+1(3x−y)=34,12(3x+y)+12(3x−y)=−181(3x+y)+1(3x−y)=34,12(3x+y)+12(3x−y)=−18
let13x+y=aand13x−y=blet13x+y=aand13x−y=b
Thena+b=34⇒4a+4b=3........eq1a+b=34⇒4a+4b=3........eq1
a2−b2=−18a2−b2=−18
a−b2=−18a−b2=−18
a−b=−28⇒a−b=−14a−b=−28⇒a−b=−14
4a−4b=−1..............eq24a−4b=−1..............eq2
Adding eq1 and eq2 we get
8a=28a=2
a=28⇒14a=28⇒14
Substituting the value of a in eq1 we get
4×14+4b=34×14+4b=3
4b=24b=2
b=24⇒12b=24⇒12
Then 13x+y=1413x+y=14
3x+y=4................eq33x+y=4................eq3
13x−y=1213x−y=12
3x−y=2...............eq43x−y=2...............eq4
Adding eq3 and eq4 we get6x=66x=6x=1x=1
Substituting x=1x=1 in eq3 we get3×1+y=43×1+y=4y=1y=1
Thus x=1x=1 and y=1y=1
Please disable the adBlock and continue. Thank you.