Explanation
The given equations are$$\Rightarrow \dfrac{16}{x+3}+\dfrac{3}{y-2}=5....eq\left ( 1 \right )$$$$\Rightarrow \dfrac{8}{x+3}-\dfrac{1}{y-2}=0....eq\left ( 2\right )$$$$Put \dfrac{1}{x+3}=u \ and \ \ \dfrac{1}{y-2}=v \ in \ eq\left (1 \right ) and \left ( 2\right )$$$$\Rightarrow 16u+3v=5....eq\left ( 3 \right )$$$$\Rightarrow 8u-v=0 ....eq\left ( 4\right )$$$$multiply \ eq\left (4 \right ) \ by \ 3 \ and \ subtract\ eq \left (3 \right ) and \ eq\left ( 4 \right ) $$$$\Rightarrow \left (16u+3v=5 \right )-\left ( 24u-v=0 \right )$$$$\Rightarrow 40u=5\Rightarrow u=\dfrac{1}{8}$$$$Put u=\dfrac{1}{8} \ in \ eq\left ( 3\right )$$$$\Rightarrow 16\left (\dfrac{1}{8} \right )+3v=5\Rightarrow 3v=3\Rightarrow v=1 $$$$Hence ,\dfrac{1}{x+3}= u=\dfrac{1}{8}\Rightarrow x+3=8\Rightarrow x=5$$$$ \dfrac{1}{y-2}= v=1\Rightarrow y-2=1\Rightarrow y=3$$
The given equations are$$\Rightarrow \dfrac{24}{2x+y}-\dfrac{13}{3x+2y}=2...eq\left ( 1 \right )$$$$\Rightarrow \dfrac{26}{3x+2y}+\dfrac{8}{2x+y}=3...eq\left ( 1 \right )$$$$Put \dfrac{1}{2x+y}=u \ and \ \dfrac{1}{3x+y}=v \ in \ eq\left (1 \right ) and \left ( 2 \right )$$$$\Rightarrow 24u-13v=2.....\left ( 3 \right )$$$$\Rightarrow 8u+26v=3......\left ( 4 \right )$$$$Multiply \ eq\left ( 3\right ) \ by\ 26 \ and \ eq\left (4 \right ) \ by\ 13 \ and\ subtract \ both$$$$\Rightarrow \left (624u-338v=52 \right )-\left ( 104u+338v=39 \right )$$$$\Rightarrow 728u=91\Rightarrow u=\dfrac{1}{8}$$$$Put u=\dfrac{1}{8} \ in \ eq\left ( 4 \right )$$$$\Rightarrow 8\times\dfrac{1}{8}+26v=3\Rightarrow 26v=2\Rightarrow v=\dfrac{1}{13}$$$$Hence, u=\dfrac{1}{2x+y}=\dfrac{1}{8} \Rightarrow 2x+y=8.....eq\left ( 5 \right )$$$$ v=\dfrac{1}{3x+2y}=\dfrac{1}{13}\Rightarrow 3x+2y=13...eq\left ( 6 \right ) $$$$Multiply \ eq\left (5 \right ) \ by \ 2 \ and \ subtract \ from \ eq\left ( 6 \right )$$$$\Rightarrow \left ( 4x+2y=16 \right )-\left ( 3x+3y=13 \right )$$$$\Rightarrow x=3$$$$put \ x=3 \ in \ eq\left (5 \right )$$$$\Rightarrow 2\times 3+y=8 \Rightarrow y=2$$
Please disable the adBlock and continue. Thank you.