Explanation
$$\dfrac { 2 }{ x } +\dfrac { 6 }{ y } = 13$$
$$ \dfrac { 3 }{ x } +\dfrac { 4 }{ y } = 12$$
Lets assume, $$\dfrac { 1 }{ x } = a, \dfrac { 1 }{ y } = b$$, then the above equations reduces to
$$ 2a + 6b = 13$$ ...(1)
$$ 3a + 4b = 12 $$ ...(2)
Multiplying (1) by $$3$$ and (2) by $$2$$, we get
$$6a +18b = 39 $$ ...(3)
$$6a + 8b = 24 $$ ...(4)
Subtracting (3) and (4), we get
$$10b = 15\Rightarrow b = \dfrac { 3 }{ 2 } $$
Now, $$ 2a = 13 - 6\times \dfrac { 3 }{ 2 }= 13 - 9 = 4$$
$$\Rightarrow a = 2$$
So, $$x = \dfrac { 1 }{ 2 } ; y = \dfrac { 2 }{ 3 } $$
Hence, option D is the correct answer.
Please disable the adBlock and continue. Thank you.