Explanation
The given equations are⇒6x+5y=8xy....eq(1)
⇒8x+3y=7xy....eq(2)
Divide both equations by xy
⇒6y+5x=8....eq(3)
⇒8y+31x=7....eq(4)
Put 1x=u and 1y=v in eq(3)and(4)
⇒6v+5u=8....eq(5)
⇒8v+3u=7....eq(6)
Multiply eq (5) by 3 and eq(6) by 5 and subtract both
⇒(18v+15u=24)−(40v+15u=35)
⇒−22v=−11⇒v=12
Put v=12 in eq(5)
⇒6(12)+5u=8⇒u=1
Hence,1x=u=1⇒x=1
1y=v=12⇒y=2
Given systems of equations are:9+25xy=53x27−4xy=xNow using reducible method will getLet convert this equation in 1x and 1y formWill take xy as L.C.M as xy is commonFrom eq will get ⇒9xy+25=53y ...327xy−4=1y ...4Now let 1xy=vand1y=uNow will get 9v+25=53u and 27v−4=uNow Rearranging both the equation53u−9v=25...(5)u−27v=−4....(6)Now multiplying eq5 by 3 ⇒159u−27v=75...(7)Now subtracting eq 7 and eq6⇒159u−27v=75⇒−u+27v=4⇒158u=79⇒u=12Now putting u=12 in eq 6⇒12−27(2)v=−4(2)⇒1−54v=−8⇒54v=9⇒v=954⇒v=16Now putting u and v values1y=u⇒1y=12⇒y=21xy=v⇒1xy=16⇒12x=16⇒x=62⇒x=3⇒x=3,y=2
The given equations are⇒112x−92y=−232....eq(1)
⇒34x+715y=−236....eq(2)
Put u=1x and v=1y in eq(1) and (2)
⇒112u−92v=−232⇒11u−9v=−23....eq(3)
⇒34u+715v=236⇒45u+28v=230....eq(4)
Multiply eq(3) by 28 and eq(4) by 9 and subtract both
⇒(308u−252v=−644)−(405u+252v=2070)
⇒713u=1426⇒u=2
Put u=2 in eq(3)
⇒11×2−9v=−23⇒v=5
Hence,1x=u=2⇒x=12 1y=v=5⇒y=15
The given equations are⇒2x−1+y−24=2......eq(1)⇒32(x−1)2(y−2)4=4720......eq(2)Put1x−1=u and y−2=v in eq(1) and eq(2)⇒2u+v4=2⇒8u+v=8....eq(3)⇒3u2+2v5=4720⇒30u+8v=47.....eq(4)Multiply eq(3) by 8⇒64u+8v=64.....eq(5)Subtract eq(4) and eq(5)⇒(64u+8v=64)−(30u+8v+47)⇒34u=17⇒u=12put u=12 in eq(3)⇒8×12+v=8⇒v=4Hence,u=1x−1=12⇒x−1=2⇒x=3v=y−2=4⇒y=6
The given equations are⇒x−yxy=9⇒x−y=9xy....eq(1)⇒x+yxy=5⇒x+y=5xy....eq(2)Divide both eq by xy⇒1y−1x=9....eq(3)⇒1y+1x=5....eq(4)Put 1x=u and 1y=v in eq (3) and (4)⇒v−u=9....eq(5)⇒v+u=5....eq(6)Subtract eq (5) and eq(6)⇒(v−u=9)−(v+u=5)⇒2v=−14⇒v=7Put v=7 in eq(5)⇒7+u=5⇒u=−2Hence, 1x=u=−2⇒x=−121y=v=7⇒y=17
Suppose the cost of 1 table =x and cost of 1 chair =yThen according to the question⇒4x+3y=2250...........(1)⇒3x+4y=1950.............(2)
Multiply (1) by 4 and (2) by 3 and Subtract both⇒(16x+12y=9000)−(9x+12y=5850)
⇒7x=3150⇒x=450
Put x=450 in eq2
⇒450×4+3y=2250⇒3y=2250−1800⇒3y=450
⇒y=150
Cost of 1 table =450Cost of 1 chair =150∴ Cost of 1 table and 2 chair =450+150×2=750
Let no of 20p coins =xNo of 25p coins =yAccording to the questionx+y=50⇒x=50−y.....eq1And 20x+25y=1125⇒4x+5y=225....eq2Put the value of x from eq1⇒4(50−y)+5y=225......eq3⇒200−4y+5y=225⇒y=25Put y=25 in eq1⇒x+25=50⇒x=25
No of 20p coins =25
No of 25p coins =25
Let the first number be x and second number y.
According to questionx+y=8…(i)
4(x−y)=8
⇒x−y=2…(ii)
Add equations (i) and (ii),(x+y)+(x−y)=8+22x=10x=5
Substitute x=5 in (i),(5)+y=8y=8−5y=3
So, the numbers are 5 and 3.
Please disable the adBlock and continue. Thank you.