CBSE Questions for Class 10 Maths Quadratic Equations Quiz 10 - MCQExams.com

Which one of the following is the quadratic equation?
  • $$\dfrac{5}{x} - 3 = x^2$$
  • $$x(x + 5) = 4$$
  • $$n - 1 = 2n$$
  • $$\dfrac{1}{x^2} (x + 2) = x$$
The integral values of $$ m $$ for which the roots of the equation $$ m x^{2}+(2 m-1) x+(m-2)=0 $$ are rational are given by the expression [where $$ n$$ is integer ] 
  • $${n}^{2}$$
  • $$n(n+2)$$
  • $$n(n+1)$$
  • none of these
Which among the below are quadratic equations?

  • $$\frac{5} {x} - 3 = x^{2}$$
  • $$x \left(x + 5\right) = 2$$
  • $$n - 1 = 2n$$
  • $$\dfrac{1} {x^{2}} \left(x + 2\right) = 2$$
If $$ax^2 + bx + c = 0$$ then quadratic formula is
  • $$x=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}$$
  • $$x=\dfrac{-b\pm\sqrt{b^2+4ac}}{2a}$$
  • $$x=\dfrac{-b+ \sqrt{b^2-4ac}}{2a}$$
  • $$x=\dfrac{b- \sqrt{b^2-4ac}}{2a}$$
Discriminant of quadratic equation $$3\sqrt 3x^2+10x+\sqrt 3=0$$
  • $$10$$
  • $$64$$
  • $$46$$
  • $$30$$
Let $$a, b, c$$ be the lengths of sides of a scalene triangle. If the roots of the equation $$\displaystyle x^{2}+2(a+b+c)x+3\lambda (ab+bc+ca)=0$$ $$(\lambda \in R)$$ are real then
  • $$\displaystyle \lambda <\dfrac{4}{3}$$
  • $$\displaystyle \lambda >\frac{5}{3}$$
  • $$\displaystyle \lambda \in \left ( \frac{1}{3}, \frac{5}{3} \right )$$
  • $$\displaystyle \lambda \in \left ( \frac{4}{3}, \frac{5}{3} \right )$$
The equation $$\sqrt {2x-2x^2-5}=x^2-2x-3$$, where $$x$$ is real has 
  • No real solution
  • Exactly one real solution
  • Exactly two real solutions
  • Exactly four real solutions
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion.
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion.
  • Assertion is correct but Reason is incorrect.
  • Assertion is incorrect but Reason is correct.
All solutions of the equation $$\displaystyle 4x^2 - 40x + 51  = 0$$ lie in the interval 
  • $$\displaystyle \left(\frac {23}{10}, \frac {83}{10}\right)$$
  • $$\displaystyle \left(\frac {23}{10}, \frac {15}{2}\right)$$
  • $$\displaystyle \left(7, \frac {83}{10}\right)$$
  • none of these
The values of $$a$$ for which both the roots of the equation $$(a-6)x^2=a(x-3)$$  are positive and are given by
  • $$(0,6)$$
  • $$\displaystyle \left( 0,\frac { 72 }{ 11 }  \right) $$
  • $$\displaystyle \left( 6,\frac { 72 }{ 11 }  \right) $$
  • $$\displaystyle \left( \frac { 72 }{ 13 } ,6 \right) $$
The roots of $$(x-a)(x-c)+k(x-b)(x-d)=0$$ are real and distinct for all real $$k$$ if 
  • $$a < b < c < d$$
  • $$a > b < c < d$$
  • $$a < b > c < d$$
  • $$a < b = c < d$$
The quadratic equation $$\displaystyle x^{2}-2x-\lambda=0,\lambda\neq 0,$$
  • cannot have a real root if $$\lambda < -1$$
  • can have a rational root if $$\lambda$$ is a perfect square
  • cannot have an integral root if $$n^{2}-1< \lambda< n^{2}+2n$$ where $$n=0,1,2,3,.....$$
  • none of these
If $$1$$ is a root of the equations $$ay^2$$ + $$ay + 3 = 0$$ and $$y^2$$+ $$y + b = 0$$, then find the value of $$ab$$
  • $$3$$
  • $$4$$
  • $$5$$
  • $$6$$
If $${ x }^{ 2 }-\left( a+b+c \right) x+\left( ab+bc+ca \right) =0$$ has non real roots, where $$a,b,c\in { R }^{ + }$$, then $$\sqrt { a } ,\sqrt { b } ,\sqrt { c } $$
  • Can be the sides of a triangle
  • Cannot be the sides of triangle
  • Nothing can be said
  • None of these
The value of $$x^2-6x+13$$ can never be less than
  • $$4$$
  • $$5$$
  • $$4.5$$
  • $$7$$
The number of values of $$\displaystyle k$$ for which $$\displaystyle \left ( x^{2} - \left ( k - 2 \right )x + k^{2} \right ) \left ( x^{2} + kx + \left ( 2k - 1 \right ) \right )$$ is a perfect square
  • $$\displaystyle 1$$
  • $$\displaystyle 2$$
  • $$\displaystyle 3$$
  • $$\displaystyle 0$$
Find the root(s) of the equation $$y+\sqrt{y+5}=7$$
  • 11
  • 4
  • 4 and 11
  • $$\pm 4$$
  • none of these
If $$\alpha, \beta$$ are the roots of $$\displaystyle ax^{2}+2bx+c=0$$ and that of $$\displaystyle Ax^{2}+2Bx+C=0$$ be $$\displaystyle \alpha+\delta, \beta +\delta $$ then the value of $$\displaystyle \frac{b^{2}-ac}{B^{2}-AC} $$ is
  • $$\displaystyle \left ( \frac{a}{A} \right )^{2}$$
  • $$\displaystyle \left ( \frac{A}{a} \right )^{2}$$
  • $$0$$
  • $$1$$
The roots of the equation $$\displaystyle \left ( x-a \right )\left ( x-b \right )+\left ( x-b \right )\left ( x-c \right )+\left ( x-c \right )\left ( x-a \right )=0$$ are
  • positive
  • negative
  • real
  • imaginary
If the quadratic equation $$\displaystyle x^{2}-mx-4x+1=0$$ has real and distinct roots, then the values of $$m$$ are
A.  $$\displaystyle (-\infty , -6)$$
B.  $$\displaystyle (-\infty,-3)$$   
C.  $$(-2,\infty )$$  
D.  $$\displaystyle \left ( 2,\infty  \right )$$
  • A or C
  • A or D
  • B or C
  • B or D
Let $$\displaystyle f(x)= x^{2}-3x+4 $$, then the value of $$x$$ which satisfies $$\displaystyle f(1)+f(x)= f(1)f(x) $$ is
  • $$1$$
  • $$2$$
  • $$1 \ or\  2$$
  • $$1\  and\  0$$
The equation $$\displaystyle 9y^{2}(m+3)+6(m-3)y+(m+3)=0 $$, where $$m$$ is real has real roots then 
  • $$\displaystyle m< 0$$
  • $$\displaystyle m> 0$$
  • $$\displaystyle m\leq 0$$
  • $$\displaystyle m\geq 0$$
If $$\displaystyle x^{2}+(a-b)x+(1-a-b)= 0, $$ where $$\displaystyle a,b \in  R,$$ the value of $$a$$ such that the equation has distinct real roots for all value of $$b$$ are
  • $$\displaystyle a> 1 $$
  • $$\displaystyle a< 1 $$
  • $$\displaystyle a> 2 $$
  • $$\displaystyle a< 2 $$
A ray emanating from (6,2) is incident on ellipse $$\displaystyle \frac{(x-1)^{2}}{45}+\frac{(y-2)^{2}}{20}=1$$ at (4.6) The equation of reflected ray (after 1st reflection ) is  
  • x - 2y + 8 =0
  • x + 2y + 8 =0
  • x + 2y - 8 = 0
  • x - 2y - 8 =0
 The number of real roots of the equation $$(x - 1)^2 + (x - 2)^2 + (x- 3)^2 = 0$$ is :
  • $$1$$
  • $$2$$
  • $$3$$
  • None of these
Given that $$r$$ and $$s$$ are constants , the solution of the quadratic equation, $$r{x}^{2}=\dfrac{1}{s}x+3$$ , is:

  • $$x=\dfrac { 1 }{ 2sr } \pm \dfrac { \sqrt { \dfrac { 1 }{ { s }^{ 2 } } +12r } }{ 2r } $$
  • $$x=\dfrac { 1 }{ 2sr } \pm \dfrac { \sqrt { -\dfrac { 1 }{ { s }^{ 2 } } -12r } }{ 2sr } $$
  • $$x=\dfrac { s }{ 2r } \pm \dfrac { \sqrt { \dfrac { 1 }{ { s }^{ 2 } } -12r } }{ 2r } $$
  • $$x=\dfrac { s }{ 2r } \pm \dfrac { \sqrt { { s }^{ 2 }-12sr } }{ 2sr } $$
If the expression $$x^2+2(a+b+c)x+3(bc+ca+ab)$$ is a perfect square, then
  • $$a=b=c$$
  • $$a=\pm b=\pm c$$
  • $$a=b\neq c$$
  • None of the above
Number of possible value(s) of integer '$$a$$' for which the quadratic equation $$x^2+ax+16=0$$ has equal roots, is
  • $$4$$
  • $$6$$
  • $$2$$
  • none of these
If, for a positive integer n, the quadratic equation, $$ x ( x + 1 ) + ( x + 1 ) ( x + 2 ) + \ldots + \left( x + \frac { 1 } { n - 1 } \right) ( x + n ) = 10 n $$ has two consecutive integral solutions, then n is equal to
  • 11
  • 12
  • 9
  • 10
If the root of the equation $$x^{2}+px+q=0$$ differ from the roots of the equation $$x^{2}+qx+p=0$$ by the same quantity then 
  • $$p+q+1=0$$
  • $$p+q+2=0$$
  • $$p+q+4=0$$
  • None of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 10 Maths Quiz Questions and Answers