Explanation
The roots of $$(x-a)(x-c)+k(x-b)(x-d)=0$$ are real and distinct for all real $$k$$
$$f(x)=(1+k){ x }^{ 2 }-(a+c+k(b+d))x+ac+kbd$$
As $$D>0$$ for real roots.
So ,
$$\Rightarrow$$ $${(a+c+k(b+d)) }^{ 2}-4(1+k)(ac+kbd)>0$$
$$\Rightarrow$$ $$(b+d)^{ 2 }{ k }^{ 2}+2(a+c)(b+d)k+(a+c)^{ 2 }-4(bd{ k }^{ 2 }+(ac+bd)k+ac)>0$$
$$\Rightarrow$$ $$(b-d)^{ 2 }{ k }^{ 2}+(2(a+c)(b+d)-4(ac+bd))k+(a-c)^{ 2 }>0 $$
This true for all $$k$$
$$D<0$$
$$(2(a+c)(b+d)-4(ac+bd))^{ 2 }-4((a-c)(b-d))^{ 2 }<0$$
$$((a+c)(b+d)-2(ac+bd))^{ 2 }-((a-c)(b-d))^{ 2 }<0$$
Applying $${a }^{ 2 }-b^{ 2 }=(a-b)(a+b)$$ we get,
$$\Rightarrow$$ $$((a+c)(b+d)-2(ac+bd)+(a-c)(b-d))((a+c)(b+d)-2(ac+bd)-(a-c)(b-d))<0$$
$$\Rightarrow$$ $$(ab+ad+bc+cd-2ac-2bd+ab-ad-bc+cd)(ab+ad+bc+cd-2ac-2bd-ab+ad+bc-cd)<0$$
$$\Rightarrow$$ $$(ab+cd-ac-bd)(ad+bc-ac-bd)<0$$
$$\Rightarrow$$ $$(a-d)(b-c)(a-b)(d-c)<0$$
$$\Rightarrow$$ $$a<b<c<d$$
Given, $$rx^{2}=\dfrac{1}{s}x+3$$
$$\Rightarrow rx^{2}-\dfrac{1}{s}x-3=0$$
WE know that in equation $$ax^{2}+bx+c=0$$
The roots of equation
$$x=\dfrac{-b\pm \sqrt{b^{2}-4ac}}{2a}$$
In given equation $$ rx^{2}-\dfrac{1}{s}x-3=0$$
compare with above equation we get $$a=r$$, $$b=-\dfrac{1}{s}$$ and $$c=-3$$
Then $$x=\dfrac{-\dfrac{-1}{s}\pm \sqrt{\left (- \dfrac{1}{s} \right )^{2}-4\times r\times -3}}{2r}$$
$$x=\dfrac{\dfrac{1}{s}\pm \sqrt{\dfrac{1}{s^{2}+12r}}}{2r}$$
$$\Rightarrow x=\dfrac{1}{2sr}\pm\dfrac{\sqrt{\dfrac{1}{s^{2}}+12r}}{2r}$$
We have,
$$ {{x}^{2}}+px+q=0\,......\,\left( 1 \right) $$
$$ {{x}^{2}}+qx+p=0\,.......\,\left( 2 \right) $$
By equation (1)
Let $$a$$ and $$b$$ be the roots of equation (1)
Then,
Sum of roots $$a+b=\dfrac{-p}{1}=-p$$
Product $$a.b=\dfrac{q}{1}=q$$
According to given question,
Difference of roots
$$ a-b=\sqrt{{{\left( a+b \right)}^{2}}-4ab} $$
$$ a-b=\sqrt{{{\left( -p \right)}^{2}}-4q} $$
$$ a-b=\sqrt{{{p}^{2}}-4q} $$
Now, by equation (2)
Let $$c$$ and $$d$$ be the roots of equation (2)
Sum of roots $$c+d=\dfrac{-q}{1}=-q$$
Product $$a.b=\dfrac{p}{1}=p$$
$$ c-d=\sqrt{{{\left( c+d \right)}^{2}}-4cd} $$
$$ c-d=\sqrt{{{\left( -p \right)}^{2}}-4q} $$
$$ c-d=\sqrt{{{p}^{2}}-4q} $$
Again, according to given question,
Difference of roots of both equations are equal
Therefore,
$$ a-b=c-d $$
$$ \sqrt{{{q}^{2}}-4p}=\sqrt{{{p}^{2}}-4q} $$
$$ {{q}^{2}}-4p={{p}^{2}}-4q $$
$$ {{q}^{2}}-{{p}^{2}}=4p-4q $$
$$ \left( q-p \right)\left( q+p \right)=4\left( p-q \right) $$
$$ \left( q-p \right)\left( p+q \right)=-4 $$
$$ \left( q-p \right)\left( p+q+4 \right)=0 $$
$$ q=p\,and\,p+q+4=0 $$
Please disable the adBlock and continue. Thank you.