CBSE Questions for Class 10 Maths Quadratic Equations Quiz 2 - MCQExams.com

The mentioned equation is in which form?
$$\dfrac{q^{2}- 4}{q^{2}}\, =\, -3$$
  • Linear
  • Quadratic
  • Cubic
  • none
Is the following equation quadratic?
$$\displaystyle -\frac{5}{3}\, x^{2}\, =\, 2x\, +\, 9$$
  • Yes
  • No
  • Ambiguous
  • Data insufficient
Is the following equation quadratic?
$$13\, =\, -5y^{2}\, -\, y^{3}$$
  • Yes
  • No
  • Ambiguous
  • Data insufficient
The condition for a general quadratic equation such that its both roots are equal, is
  • $$ b^{2}+4ac= 0$$
  • $$ b^{2}-4ac= 0$$
  • $$ b^{2}+ac= 0$$
  • $$ b^{2}+2ac= 0$$
Find discriminant of $$5x^2+2x+1=0$$
  • $$-13$$
  • $$12$$
  • $$-16$$
  • $$14$$
Choose the best possible option.
$$\displaystyle { x }^{ 2 }+\frac { 1 }{ 4{ x }^{ 2 } } -8=0$$ is a quadratic equation.
  • Yes
  • No
  • Can't predict
  • None
The discriminant of $$x^2 - 3x + k = 0$$ is $$1$$ then the value of $$k = .............$$
  • $$-2$$
  • $$4$$
  • $$-4$$
  • $$2$$
Find a quadratic equation, from the equations given below, having same discriminant as $$5x^2+2x+1=0$$
  • $$-x^2+4x-8$$
  • $$x^2+3x-7$$
  • $$4x^2-5$$
  • $$-2x^2-3x+6$$
State true or false:
If $$(x\, -\, 3)^{2}\, =\, 25$$, then $$x$$ is $$8$$ or $$-2$$.
  • True
  • False
Find the roots of the quadratic equation by applying the quadratic formula$$\displaystyle 2x^2 - 7x + 3 = 0$$
  • $$3,\displaystyle -\frac{1}{2}$$
  • $$-3,\displaystyle \frac{1}{2}$$
  • $$3,\displaystyle \frac{1}{2}$$
  • None of these
Is the following equation a quadratic equation?
$$\displaystyle 3x + \frac{1}{x} - 8 = 0$$
  • Yes
  • No
  • Ambiguous
  • Data insufficient
If $$\cfrac{1}{x}+\cfrac{1}{y}=a$$ and $$xy=\cfrac{1}{b}$$ and $$\cfrac{1}{{x}^{2}}+\cfrac{1}{{y}^{2}}$$
  • $${a}^{2}-2b$$
  • $$\cfrac{1}{{a}^{2}}-2b$$
  • $${a}^{2}-\cfrac{2}{b}$$
  • $$\cfrac{1}{{a}^{2}}-\cfrac{2}{b}$$
Is the following equation a quadratic equation?
$$(x + 2)^3 = x^3 - 4$$
  • Yes
  • No
  • Ambiguous
  • Data insufficient
Check whether the following is a quadratic equation.
$$(x - 3) (2x + 1) = x (x + 5)$$
  • Yes
  • No
  • Ambiguous
  • Data insufficient
Is the following equation a quadratic equation?
$$\displaystyle \frac{3x}{4} - \frac{5x^2}{8} = \frac{7}{8}$$
  • Yes
  • No
  • Ambiguous
  • Data insufficient
Is the following equation a quadratic equation?
$$16x^2 - 3 = (2x + 5) (5x - 3)$$
  • Yes
  • No
  • Ambiguous
  • Data insufficient
$$\displaystyle a^2x^2 - 3abx + 2b^2 $$= 0 then $$x = \cfrac{a}{b}\ and\ x = \cfrac{b}{a}$$ are the roots of the equation.
  • True
  • False
  • Ambiguos
  • Can't say
Discriminant of the equation $$ -3x^2 + 2x -8 = 0$$ is 
  • $$- 92$$
  • $$- 29$$
  • $$39$$
  • $$49$$
Choose the best possible option.
$$\displaystyle { x }^{ 3 }-5x+2{ x }^{ 2 }+1=0$$ is quadratic equation.
  • Yes
  • No
  • Can't predict
  • None
Determine whether the equation $$\displaystyle 5{ x }^{ 2 }=5x$$ is quadratic or not.
  • Yes
  • No
  • Complex equation
  • None
Solve $$(b -c)x^2 + (c -a)x + (a -b) =0$$
  • $$\dfrac {a+b}{b-c}, 1$$
  • $$\dfrac {a-b}{b+c}, 1$$
  • $$\dfrac {a-b}{b-c}, -1$$
  • $$\dfrac {a-b}{b-c}, 1$$
Choose best possible option.
$$\displaystyle \left( x+\frac { 1 }{ 2 }  \right) \left( \frac { 3x }{ 2 } +1 \right) =\frac { 6 }{ 2 } \left( x-1 \right) \left( x-2 \right) $$ is quadratic.
  • Yes
  • No
  • Complex equation
  • None
Choose the best possible answer
$$\displaystyle 32{ x }^{ 2 }-6=\left( 4x+10 \right) \left( 10x-6 \right) $$ is quadratic equation 
  • Yes
  • No
  • Complex
  • None
Calculate the zeroes of the quadratic equation $$(x+3)^2=49$$.
  • $$x=-10, x=4$$
  • $$x=-10, x=10$$
  • $$x=-4, x=10$$
  • $$x=3\pm 2\sqrt{3}$$
Which of the following is not a quadratic equation?
  • $$x^{2}+ 6y + 2$$
  • $$(x - 2) + (x + 2)^{2} + 3$$
  • $$(3x - 2)^{3} + \dfrac{1}{2}x - 4$$
  • $$3x^{2} - 6x + \dfrac{1}{2}$$
Discriminant of a quadratic equation $$\displaystyle p{ x }^{ 2 }+qx+r=0$$ is given by.
  • $$\displaystyle { \left( { { q }^{ 2 }-4pr } \right) }$$
  • $$\displaystyle \sqrt { { q }^{ 2 }+4qr } $$
  • $$\displaystyle \sqrt { { q }^{ 2 }-4pr } $$
  • $$\displaystyle { q }^{ 2 }+4{ q }^{ 2 }$$
If $$x^{2} + 10 x = 24,$$ where $$x>0$$, then the value of $$x + 5$$ is
  • $$7$$
  • $$5$$
  • $$-12$$
  • $$2$$
Identify the standard format of quadratic equation.
  • $$ax^{2}+bx + c = 0$$
  • $$ax^{3}+ bx^{2} + 2$$
  • $$ax^{3}+ bx^{3}+13$$
  • $$a(x - 1)^{2}+ bx^{3}+ c$$
The roots of the quadratic equations 
$$(x-1)^2 = \frac{9}{4}$$, are
  • $$x=-\frac{5}{3}, x=\frac{5}{3}$$
  • $$x=-\frac{1}{2}, x=\frac{5}{2}$$
  • $$x=\frac{5}{9}, x=\frac{13}{9}$$
  • $$x=1\pm \sqrt{\frac{2}{3}}$$
Choose the best possible option.
$$\displaystyle (x+5)(x-8)=0$$ is quadratic equation.
  • Yes
  • No
  • Complex equation
  • None
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 10 Maths Quiz Questions and Answers