CBSE Questions for Class 10 Maths Quadratic Equations Quiz 4 - MCQExams.com

Which of the following is non-quadratic polynomial.
  • $$x ^ { 2 } + 2$$
  • $$x ^ { 2 } + 3 x$$
  • $$4 x ^ { 4 } + 3 y$$
  • $$x ^ { 2 }$$
The discriminent of graph is
1398547_d5e8e51b4cef43ada9eb8d1e13ab1c06.png
  • $$b ^ { 2 } - 4 a c = 0$$
  • $$b ^ { 2 } - 4 a c > 0$$
  • $$b ^ { 2 } - 4 a c < 0$$
  • $$b ^ { 2 } +4 a c < 0$$
Which of the following must be added to $$x^2-6x+5$$ to make it a perfect square ?
  • $$3$$
  • $$4$$
  • $$5$$
  • $$6$$
The discriminant of the quadratic equation $$ ax^2+bx+c= 0$$ is
  • $$\Delta = b^2 + 4ac$$
  • $$\Delta = b^2 - 4ac$$
  • $$\Delta =4abc$$
  • $$\Delta = b^2 \times 4ac$$
Values of $$k$$ for which the quadratic equation $$2x^2+ kx + k = 0$$ has equal roots.
  • $$4, 8$$
  • $$0, 4$$
  • $$4,-8$$
  • $$0,8$$
Which of the following is a quadratic equation?
  • $$x^3 + 2x + 1 = x^2 + 3$$
  • $$-2x^2=(5-x)\left ( 2x-\cfrac{2}{5}\right )$$
  • $$(k+1)x^2+\cfrac{3}{2}x=7,$$where $$k=-1$$
  • $$x^3 x^2 = (x)^3$$
Which constant must be added and subtracted to solve the quadratic equation $$\displaystyle 9x^2 +\frac{3}{4}x+ 2 = 0$$ by the method of completing the square?
  • $$\displaystyle \frac{1}{64}$$
  • $$\displaystyle \frac{1}{576}$$
  • $$\displaystyle \frac{1}{144}$$
  • $$\displaystyle \frac{127}{64}$$
Which of the following is not a quadratic equation :
  • $$(x-2)^{2}+1=2x-3$$
  • $$x(x+1)+8=(x+2)(x-2)$$
  • $$x(2x+3)=x^{2}+1$$
  • $$(x+2)^{3}=x^{3}-4$$
If the expression $$(a-2)x^{2}+2(2a-3)x+(5a-6)$$ is positive for all real values of $$x$$, then
  • $$a$$ can be any real number
  • $$a>1$$
  • $$a>3$$
  • $$a=3$$
lf the roots of $${p}{x}^{2}+2{q}{x}+{r}=0$$ and $$qx^{2}-2\sqrt{pr}x+q=0$$ are simultaneously real, then
  • $$ p=q$$ ; $$r\neq 0$$
  • $$ 2q=\sqrt{pr}$$
  • $$ pr=q^{2}$$
  • $$ {p}{r}={q}$$
If $$a > 0$$, then the expression $$ax^{2}+bx+c$$ is positive for all values of $$x$$ provided
  • $$b^{2}-4ac> 0$$
  • $$b^{2}-4ac< 0$$
  • $$b^{2}-4ac= 0$$
  • $$b^{2}-ac< 0$$
If $$a=0$$, then the equation $$\displaystyle \frac{x-a-1}{x-a}=a +1-\displaystyle \frac{1}{x-a}$$ has
  • one root.
  • two roots.
  • many roots.
  • no roots.
Which of the following is not a quadratic equation? 
  • $$2(x + 1)^2 = 4x^2 + 2x + 1$$
  • $$2x + x^2 = 2x^2 + 5$$
  • $$( \sqrt{2} \times \sqrt{3}x)^2+ x^2 = 3x^2 + 5x$$
  • $$(x^2 + 2x)^2 = x^5 + 3 + 4x^3$$
The equation $$(a+2){x}^{2}+(a-3)x=2a-1,a\neq -2$$ has rational roots for 
  • all rational values of $$a$$ except $$a=-2$$
  • all real values of $$a$$ except $$a=-2$$
  • rational values of $$a> \displaystyle \frac{1}{2}$$
  • none of these
If $$14$$ is the maximum of $$-\lambda x^{2} +  \lambda x + 8$$, then the value of $$\lambda$$ is
  • $$24$$
  • $$\sqrt[6]{3}$$
  • $$\sqrt[-6]{3}$$
  • $$- 12$$
If equation $$x^2-(2+m) x+1(m^2-4m+4)=0 $$ has coincident roots, then :
  • $$m=0$$
  • $$m = 6$$
  • $$m=2$$
  • $$m \displaystyle = \frac{2}{3}$$
If the roots of the equation $$x^{2} + a^{2} = 8x + 6a$$ are real, then:
  • $$a \epsilon \left [ 2,8 \right ]$$
  • $$ a \epsilon \left [ -2,8 \right ]$$
  • $$a \epsilon (2,8)$$
  • $$ a \epsilon (-2,8)$$
Which of the following is not a quadratic equation?
  • $$2(x-1)^2=4x^2-2x+1$$
  • $$(x^2+1)^2=x^2+3x+9$$
  • $$(x^2+2x)^2=x^4+3+4x^3$$
  • $$x^2+9=3x^2-5x$$
Find the roots of the following quadratic equation
$$z^2\,+\,6z\,-\,8\,=\,0$$
  • $$z\,=\,-3\,\pm\,\sqrt{19}$$
  • $$z\,=\,-3\,\pm\,\sqrt{17}$$
  • $$z\,=\,-2\,\pm\,\sqrt{17}$$
  • $$z\,=\,-3\,\pm\,\sqrt{15}$$
Find the discriminant for the given quadratic equation:
$$4x^2\,-\,kx\,+\,2\,=\,0$$
  • $$k^2\,-\,21$$
  • $$k^2\,-\,24$$
  • $$k^2\,-\,28$$
  • $$k^2\,-\,32$$
If both 'a' and 'b' belong to the set $$\left \{ 1, 2, 3, 4 \right \}$$, then the number of equations of the form $$ax^{2}+bx+1=0$$ having real roots is:
  • $$10$$
  • $$7$$
  • $$6$$
  • $$12$$
If the equation $$4x^{2} + x(p + 1) + 1 = 0$$ has exactly two equal roots, then one of the values of $$p$$ is
  • $$5$$
  • $$-3$$
  • $$0$$
  • $$3$$
The value of $$x^{2} - 6x + 13$$ can never be less than
  • $$4$$
  • $$5$$
  • $$4.5$$
  • $$7$$
If $$\displaystyle ax^{2}+bx+1= 0, a \in R, b\in R,$$ does not have distinct real roots, then the maximum value of $$b^2$$ is
  • $$-4a$$
  • $$4a$$
  • $$2a$$
  • $$-2a$$
If $$\displaystyle x^{2}-bx+c=0$$ has equal integral roots, then
  • $$b$$ and $$c$$ are integers
  • $$b$$ and $$c$$ are even integers
  • $$b$$ is an even integer and $$ c$$ is $$a$$ perfect square of $$a$$ positive integer
  • none of these
If $$\displaystyle ax^{2}+bx+6=0$$ does not have two distinct real roots, where $$a\in R,b\in R$$, then the least value of $$3a+b$$ is
  • $$4$$
  • $$-1$$
  • $$1$$
  • $$-2$$
The number of values of $$k$$ for which $$\displaystyle \left \{x^{2}-(k-2)x+k^{2}\right\}+ \left \{x^{2}+kx+(2k-1)\right \}$$ is a perfect square is/are 
  • $$1$$
  • $$2$$
  • $$0$$
  • none of these
If at least one of the equations $$ { x^{ 2 } }+px+q=0$$ , $$ { x^{ 2 } }+rx+s=0 $$ has real roots, then
  • $$qs =(p+r)$$
  • $$pr =(q+s)$$
  • $$pr =2(q+s)$$
  • None of these.
If $$x$$ is real, the expression $$\displaystyle \frac { \left( x-a \right) \left( x-c \right)  }{ \left( x-b \right)  } $$ is  capable of assuming all values if 
  • $$a > b > c$$
  • $$a < b < c$$
  • $$a < b > c$$
  • Cannot say
For the quadratic equation $$\displaystyle 2x^{2}+6\sqrt{2}x+1=0$$
  • roots are rational
  • if one root is $$p+\sqrt{q}$$, then the other is $$-p+\sqrt{q}$$
  • roots are irrational
  • if one root is $$p+\sqrt{q}$$, then the other is $$p-\sqrt{q}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 10 Maths Quiz Questions and Answers