CBSE Questions for Class 10 Maths Quadratic Equations Quiz 5 - MCQExams.com

Find all values of parameter $$a$$ for which the quadratic equation $$  \left( a+1 \right) { x }^{ 2 }+2\left( a+1 \right) x+a-2=0 $$ has two distinct roots.

  • $$a \in (-1,\infty)$$
  • $$a \in (-\infty,-1)$$
  • $$a \in (-1,1)$$
  • $$a \in (-\infty,\infty)$$
Find the discriminant for the given quadratic equation:
$$x^2\,+\,x\,+\,1\,=\,0$$
  • $$-3$$
  • $$-5$$
  • $$-7$$
  • $$-9$$
If $$D$$ is the discriminant of $$x^2\,+\,4x\,+\,1\,=\,0$$, then the value of $$D^2$$, is
  • $$100$$
  • $$12$$
  • $$144$$
  • $$10$$
Find $$m$$, if the quadratic equation $$(m\, -\, 1)\, x^{2}\, -\, 2\, (m\, -\, 1)\, x\, +\, 1\, =\, 0$$ has real equal roots.
  • $$1$$
  • $$2$$
  • $$3$$
  • $$4$$
Find c, if the quadratic equation $$x^{2}\, -\, 2\, (c\, +\, 1)\, x\, +\,  c^{2}\, =\, 0 $$ has real and equal roots. 
  • $$c=\cfrac{1}{2}$$
  • $$c=-\cfrac{1}{2}$$
  • $$c=2$$
  • $$c=-2$$
Find the value of discriminant for the following equation.
$$4x^{2}\, -\, kx\, +\, 2\, =\, 0$$
  •  $$\Delta\, =\, k^{2}\, -16$$
  •  $$\Delta\, =\, k^{2}\, + 32$$
  •  $$\Delta\, =\, k^{2}\, -32$$
  •  $$\Delta\, =\, k^{2}\,+16$$
Solve the equation using formula.
$$2x^{2}\, +\, \displaystyle \frac{x\, -\, 1}{5}\, =\, 0$$
  • $$x\, =\, \displaystyle \frac{-1\, \pm\, \sqrt{10}}{4}$$
  • $$x\, =\, \displaystyle \frac{-1\, \pm\, \sqrt{41}}{20}$$
  • $$x\, =\, \displaystyle \frac{1\, \pm\, \sqrt{41}}{20}$$
  • $$x\, =\, \displaystyle \frac{1\, \pm\, \sqrt{10}}{4}$$
Which constant should be added and subtracted to solve the quadratic equation $$4{ x }^{ 2 }-\sqrt { 3 } x-5=0$$ by the method of completing the square?
  • $$\displaystyle\frac{9}{10}$$
  • $$\displaystyle\frac{3}{16}$$
  • $$\displaystyle\frac{3}{4}$$
  • $$\displaystyle\frac{\sqrt{3}}{4}$$
If $${b}^{2} -4ac\ge 0$$ then the roots of quadratic equation $$a{x}^{2} + bx + c =0$$ is-
  • $$\displaystyle\frac{b}{2a}\pm \frac{\sqrt{{b}^{2}-4ac}}{2a}$$
  • $$\displaystyle -\frac{b}{2a}\pm \frac{\sqrt{{b}^{2}+4ac}}{2a}$$
  • $$\displaystyle\frac{b}{2a}\pm \frac{\sqrt{{b}^{2}+4ac}}{2a}$$
  • $$\displaystyle -\frac{b}{2a}\pm \frac{\sqrt{{b}^{2}-4ac}}{2a}$$
State true or false:
If $$5m^{2}\, +\, m\, =\, 3$$, then $$m\, =\, \displaystyle \frac{-1\, \pm\, \sqrt{61}}{10}$$. 
  • True
  • False
The value of $$p$$ for which the equation $$x^2+4=(P+2)x $$ has equal roots?
  • $$2,-6$$
  • $$-2, 6$$
  • $$-2,-6$$
  • $$2,6$$
Solve the following quadratic equation by completing square method.
$$3p^{2}\, +\, 4\, =\, -7p$$.
  • $$-1$$
  • $$\displaystyle -\dfrac{4}{3}$$
  • $$2$$
  • $$3$$
Solve the following quadratic equation by completing square.
$$2y^{2}\, +\, 5y\, +\, 1\, =\, 0$$, then $$y\, =\, \displaystyle \frac{-5\, \pm\, \sqrt{23}}{2}$$. State true or false.
  • True
  • False
Consider the quadratic equations $$\displaystyle ax^{2}+2bx+c=0$$ and $$\displaystyle \left ( a+c \right )\left ( ax^{2}+2bx+c \right )-2\left ( ac-b^{2} \right )\left ( x^{2}+1 \right )=0$$ If the roots of one are real (complex) then the roots of the other are complex (real.)
  • True
  • False
The ratio of the roots of the equation $$a{ x }^{ 2 }+bx+c=0$$ is same as the ratio of the roots of the equation $$p{ x }^{ 2 }+qx+r=0$$. If $${ D }_{ 1 }$$ and $${ D }_{ 2 }$$ are the discriminants of $$a{ x }^{ 2 }+bx+c=0$$ and $$p{ x }^{ 2 }+qx+r=0$$ respectively, then $${ D }_{ 1 }:{ D }_{ 2 }$$ is equal to
  • $$\displaystyle \frac { { a }^{ 2 } }{ { p }^{ 2 } } $$
  • $$\displaystyle \frac { { b }^{ 2 } }{ { q }^{ 2 } } $$
  • $$\displaystyle \frac { { c }^{ 2 } }{ { r }^{ 2 } } $$
  • None of these
The equations to a pair of opposite sides of a parallelogram are $$\displaystyle x^{2}-5x+6=0 \ and \ y^{2}-6y+5=0$$  the equation of a diagonal can be
  • $$\displaystyle x+4y=13$$
  • $$\displaystyle 4x+y=13$$
  • $$\displaystyle y=4x-7 $$
  • $$\displaystyle y=4x+7 $$
Find the roots of each of the following quadratic equations by the method of completing the squares
$$2x^2 - 5x + 3 = 0$$
  • $$x=2,\,\,x=-7$$
  • $$x=-1,\,\,x=3$$
  • $$x=\displaystyle 1,x= \frac{3}{2}$$
  • $$x=\displaystyle 1, x=\frac{1}{2}$$
Find the solutions of $$3x^2 - 2\sqrt 6x + 2 = 0$$ by the method of completing the squares when $$x$$ is an irrational number.
  • $$x=\pm\sqrt{\dfrac{7}{2}}$$
  • $$x=\pm\sqrt{\dfrac{2}{3}}$$
  • $$x=\sqrt{\dfrac{2}{3}}$$
  • $$x=\sqrt{\dfrac{7}{2}}$$
Find $$x$$ by solving the given equation:
$$\displaystyle \frac{x + 3}{x + 2} = \frac{3x - 7}{2x - 3}$$
  • $$5,-1$$
  • $$-5,-1$$
  • $$5,1$$
  • $$-5,1$$
Solve for $$y$$: $$ \sqrt 7 y^2 - 6y - 13 \sqrt 7 = 0$$
  • $$\sqrt 7, 2 \sqrt 7$$
  • $$\displaystyle 3, \frac{2}{\sqrt 7}$$
  • $$\displaystyle \frac{13}{\sqrt 7}, -\sqrt 7$$
  • None of these
Find the roots of each of the following quadratic equations by the method of completing the sqaures:
$$x^2 - 6x + 4 = 0$$
  • $$ 9\pm \sqrt 8$$
  • $$6 \pm \sqrt 7$$
  • $$3 \pm \sqrt 5$$
  • $$ 1\pm \sqrt 11$$
Find the roots of the following quadratic equation by using the quadratic formula
$$2x^2 - 2\sqrt 2x + 1 = 0$$
  • $$\displaystyle -\frac{1}{\sqrt 2}, \frac{1}{\sqrt{2}}$$
  • $$\displaystyle \frac{1}{\sqrt 2}, \frac{1}{\sqrt{2}}$$.
  • $$\displaystyle -\frac{1}{ 2}, \frac{1}{{2}}$$
  • None of these
Determine the value of $$k$$ for which the quadratic equation $$4x^2 - 3kx + 1 = 0$$ has equal roots.
  • $$\displaystyle \pm \frac{2}{3} $$
  • $$\displaystyle \pm \frac{4}{3} $$
  • $$\displaystyle \pm 4$$
  • $$\displaystyle \pm 6$$
Find the roots of the following quadratic equation by using the quadratic formula 
$$x^2 - 16x + 64 = 0$$
  • $$-8,-8$$
  • $$8,8$$
  • $$16,16$$
  • $$-16,-16$$
Find the solutions of $$3x^2 - 2\sqrt 6x + 2 = 0$$ by the method of completing the squares when $$x$$ is a real number.
  • $$x=\displaystyle- \sqrt{\frac{2}{3}}$$
  • $$x=\displaystyle \pm \sqrt{\frac{2}{3}}$$
  • Cannot be determined
  • None of these
Determine k such that the quadratic equation $$x^2 + 7(3 + 2k)+(1 + 3k)x = 0$$ has equal roots
  • $$2, 7$$
  • $$7, 5$$
  • $$2, $$ $$\displaystyle - \frac{10}{9}$$
  • None of these
Find the roots of the following quadratic equations by using the quadratic formula
$$\displaystyle \frac{x}{x - 1} + \frac{x - 1}{x} = 4, x \neq 0, 1$$
  • $$\displaystyle \frac{2 \pm \sqrt 3}{4}$$
  • $$\displaystyle \frac{-1 \pm \sqrt 3}{2}$$
  • $$\displaystyle \frac{1 \pm \sqrt 3}{1}$$
  • $$\displaystyle \frac{-2 \pm \sqrt 3}{4}$$
Find the roots of the following quadratic equations by using the quadratic formula
$$(x^2 - 2x)^2 - 4(x^2 - 2x) + 3= 0$$
  • $$-1, 3, 1\pm \sqrt{2}$$
  • $$1, 3, -1\pm \sqrt{2}$$
  • $$1, 3, 1\pm \sqrt{2}$$
  • None of these
Find the roots of the following quadratic equation by using the quadratic formula
$$\displaystyle x + \frac{1}{x} = 3, x \neq 0$$
  • $$\displaystyle \frac{3 \pm \sqrt {13}}{2}$$
  • $$\displaystyle \frac{3 \pm \sqrt 5}{2}$$
  • $$\displaystyle \frac{-3 + \sqrt 5}{2}$$
  • $$\displaystyle \frac{-3 \pm \sqrt {13}}{2}$$
Find the roots of the following quadratic equations by using the quadratic formula
$$\displaystyle \frac{x - 3}{x + 3} - \frac{x + 3}{x - 3} = 6\frac{6}{7}, x \neq - 3, 3$$
  • $$4,\displaystyle \frac{9}{4}$$
  • $$-4,\displaystyle \frac{4}{9}$$
  • $$-4,-\displaystyle \frac{4}{9}$$
  • $$-4,\displaystyle \frac{9}{4}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 10 Maths Quiz Questions and Answers