Explanation
Given equation is $$2\left ( \dfrac{x}{x+1} \right )^{2}-5\left ( \dfrac{x}{x+1} \right )+2=0$$
Let $$\dfrac{x}{x+1}=a$$
Then $$2a^{2}-5a+2=0$$
$$\Rightarrow 2a^{2}-4a-a+2=0$$
$$\Rightarrow 2a(a-2)-1(a-2)=0$$
$$\Rightarrow (2a-1)(a-2)=0$$
$$\therefore a-2=0\Rightarrow a=2$$, put the value $$a=\dfrac{x}{x+1}$$
If $$2a-1=0\Rightarrow a=\dfrac{1}{2}$$, put $$a=\dfrac{x}{x+1}$$
$$\dfrac{x}{x+1}=\dfrac{1}{2}\Rightarrow x+1=2x\Rightarrow x=1$$
$$\therefore \dfrac{x}{x+1}=2\Rightarrow x=2x+2\Rightarrow x=-2$$
Please disable the adBlock and continue. Thank you.