Processing math: 11%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 10 Maths Quadratic Equations Quiz 7 - MCQExams.com
CBSE
Class 10 Maths
Quadratic Equations
Quiz 7
Value(s) of
x
which satisfies the equation
x
2
+
2
k
x
=
j
3
, where
j
and
k
are constants, is/are
Report Question
0%
x
=
−
k
±
√
3
(
3
k
2
+
j
)
3
0%
x
=
−
6
k
±
√
3
(
3
k
2
+
j
)
3
0%
x
=
−
k
±
√
3
(
3
k
2
+
j
)
6
0%
x
=
−
6
k
±
(
k
+
√
3
j
3
)
Explanation
We know the quadratic equation formula,
−
b
±
√
b
2
−
4
a
c
2
a
x
2
+
2
k
x
=
j
3
On cross multiplying, we get
3
x
2
+
6
k
x
−
j
=
0
Here
a
=
3
,
b
=
6
k
,
c
=
−
j
On substituting the values, we get
=
−
6
k
±
√
(
6
k
)
2
−
4
×
3
×
−
j
2
×
3
=
−
6
k
±
√
36
k
2
+
12
j
6
=
−
6
k
±
√
12
(
3
k
2
+
j
)
6
=
−
6
k
±
4
√
3
(
3
k
2
+
j
)
6
Take
2
as common, we get
=
−
3
k
±
√
3
(
3
k
2
+
j
)
3
Therefore,
x
=
−
k
±
√
3
(
3
k
2
+
j
)
3
What are the real factors of
x
2
+
4
?
Report Question
0%
(
x
2
+
2
)
and
(
x
2
−
2
)
0%
(
x
+
2
)
and
(
x
−
2
)
n
0%
Does not exist
0%
(
x
2
+
2
)
and
(
x
+
2
)
Explanation
Real factors of the equation does not exist as it doesn't have real roots
x
2
=
−
4
⇒
x
=
+
2
i
or
−
2
i
Which of the following is an approximate of a zero of the equation
x
2
−
3
x
=
7
?
Report Question
0%
-4.54
0%
-1.54
0%
1.54
0%
3.54
0%
5.54
Explanation
x
2
−
3
x
−
7
=
0
x
=
3
±
√
9
+
28
2
(using
x
=
−
b
±
√
b
2
−
4
a
c
2
a
for,
a
x
2
+
b
x
+
c
=
0
)
=
3
±
6.08
2
x
=
4.54
&
x
=
−
1.54
x
=
4.54
not in options
∴
(Approximate zero).
If A and B are whole numbers such that
9A^{2} = 12A + 96
and
B^{2} = 2B + 3
, find the value of
5A + 7B
.
Report Question
0%
31
0%
37
0%
41
0%
43
Explanation
A,B are whole numbers
9{ A }^{ 2 }=12A+96
&
{ B }^{ 2 }=2B+3
9{ A }^{ 2 }-12A-96=0
&
{ B }^{ 2 }-2B-3=0
3{ A }^{ 2 }-4A-32=0
3{ A }^{ 2 }-12A+8A-32=0
&
{ B }^{ 2 }-3B+B-3=0
(3A+8)(A-4)=0
&
(B-3)(B+1)=0
\therefore A=4,B=3
(
\because A,B
are whole numbers
\because (A\neq \cfrac { -8 }{ 3 })
&
(B\neq -1
)
5A+7B=5(4)+7(3)
=41
Given that '
x
' is real then the solution set of the equation
\sqrt { x-1 } +\sqrt { x+1 } =1
.
Report Question
0%
No solution
0%
Unique solution
0%
2
solutions
0%
None of these
Explanation
\sqrt{x-1}+\sqrt{x+1}=1
As
x > 1
\because x-1
can't be negative.
\Rightarrow \sqrt{x+1} > 1
0\sqrt{x-1}
is possitve
\therefore
there sum is
> 1
always . hence no solution.
Let
a
be the solution of the equation
4x^2-12x+9=16
, then the value of
10a-15
is
Report Question
0%
20
0%
25
0%
30
0%
35
Explanation
4x^2 - 12x + 9 = 16
\Rightarrow 4x^2 - 12x - 7 = 0
\Rightarrow x = \cfrac{12 \pm \sqrt{144 + 112}}{8}
\Rightarrow x = \cfrac{12 \pm 16}{8}
\Rightarrow x = -0.5, 3.5
Substituting the value of a in
10a - 15
, we get
35 - 15 = 20
and
5 - 15 = -10
If
x = 7 + 4\sqrt {3}
and
xy = 1
, what is the value of
\dfrac {1}{x^{2}} + \dfrac {1}{y^{2}}
?
Report Question
0%
64
0%
134
0%
194
0%
\dfrac {1}{49}
Explanation
x=7+4\sqrt{3}
&
xy=1
\Rightarrow y=\dfrac{1}{7+4\sqrt{3}}=\dfrac{7-4\sqrt{3}}{49-48}=7-4\sqrt{3}
\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}=(\dfrac{1}{x}+\dfrac{1}{y})^{2}-2 \Rightarrow \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}=(\dfrac{1}{7+4\sqrt{3}}+\dfrac{1}{7-4\sqrt{3}})^{2}-2
=(\dfrac{14}{49-48})^{2}-2=196-2
=\boxed{194}
The discriminant (D) of
\sqrt {x^{2} + x + 1} = 2
is
Report Question
0%
-3
0%
13
0%
11
0%
12
Explanation
Discrimant (D) is applied only to quadratic equations, but the equation
\sqrt{x^{2}+x+1} = 2
is not an quadratic equation,
Hence, first convert the equation into
quadratic by squaring it on both sides,
\sqrt{x^{2}+x+1} = 2
\Rightarrow x^{2}+x+1 = 4
\Rightarrow x^{2}+x-3 = 0
\therefore D = b^{2}-4ac
D = 1-4\times 1\times (-3)
\boxed{D = 13}
If
f(x)=x^2+4x+a
is a perfect square function then calculate the value of
a
.
Report Question
0%
3
0%
4
0%
2
0%
6
Explanation
Since f(x) is perfect square, then both the roots are equal.
\therefore
D=0
16-4a=0
a=4
Identify which of the following is/are a quadratic polynomial function:
Report Question
0%
f(x)=(x+1)^3-(x+2)^3
0%
g(x)=\dfrac{x^4}{x^2}
0%
h(x)=(x+1)^2-(x+2)^2
0%
All of these
Explanation
Option 1)
f(x) =(x+1)^3-(x+2)^3
=x^3+1+3x(x+1)-{x^3+8+6x(x+2)}
=x^3+1+3x^2+3x-x^3-8-6x^2-12x
The power of
x^3
cancels out and results in to quadratic equation.
Option 2) g(x) =
x^2
Option 3)
x^2+1+2x-x^2-4-8x
The power of
x^2
cancels out which doesn't result in to quadratic equation.
The roots of the quadratic equation
(a+b-2c)x^2-(2a-b-c)x+(a-2b+c)=0
are-
Report Question
0%
(a+b+c)
and
(a-b-c)
0%
\dfrac 12
and
a-2b+c
0%
a-2b+c
and
\dfrac 1{(a+b-2c)}
0%
None of the above.
Explanation
Clearly we see that x=1 satisfies the equation
\Rightarrow
x=1 is a root of the that equation
Let
\alpha
be other root
Product of roots =
1×\alpha =\dfrac{a-2b+c}{a+b-2c}
other root
=\alpha =\dfrac {a-2b+c}{a+b-2c}
Sum of the roots of the equation
(x+3)^2-4|x+3|+3=0
is-
Report Question
0%
4
0%
12
0%
-12
0%
-4
Explanation
{ (x+3) }^{ 2 }-4|x+3|+3=0\\ let\quad |x+3|=t\\ \therefore t\ge 0\\ { t }^{ 2 }-4t+3=0\\ (t-1)(t-3)=0\\ \therefore t=1\ or\ 3\\ when\quad t=1\\ |x+3|=1\\ x+3=1\quad or\quad x+3=-1\\ x=-2\quad or\quad x=-4\\ when\quad t=3\\ |x+3|=3\quad or\quad x+3=-3\\ x=0\quad or\quad x=-6\\ sum\quad of\quad all\quad roots\quad =\quad (-2)+(-4)+(0)+(-6)\\ =-12
The roots of the equation ,
(x^2+1)^2=x(3x^2+4x+3)
, are given by-
Report Question
0%
2-\sqrt 3
0%
\dfrac {-1+i\sqrt 3}2
0%
2+\sqrt 3
0%
\dfrac {-1-i\sqrt 3}2
Explanation
{ ({ x }^{ 2 }+1) }^{ 2 }=x(3{ x }^{ 2 }+4x+3)\\ { x }^{ 4 }+2{ x }^{ 2 }+1=3{ x }^{ 3 }+4{ x }^{ 2 }+3x\\ { x }^{ 4 }-{ 3x }^{ 3 }-2{ x }^{ 2 }-3x+1=0\\ \therefore ({ x }^{ 2 }-4x+1=0)({ x }^{ 2 }+x+1)=0\\ { x }^{ 2 }-4x+1=0\quad or\quad { x }^{ 2 }+x+1=0\\ \therefore x=\cfrac { 4\pm \sqrt { 16-4 } }{ 2 } \quad \\ x=\cfrac { 4\pm \sqrt [ 2 ]{ 3 } }{ 2 } \\ x=2\pm \sqrt { 3 } \\ \therefore x=(2+\sqrt { 3 } )\ or\ (2-\sqrt { 3 } )\\ x=\cfrac { -1\pm \sqrt { 1-4 } }{ 2 } \\ x=\cfrac { -1\pm i\sqrt { 3 } }{ 2 } \\ x=\cfrac { -1+i\sqrt { 3 } }{ 2 }\ or\ \cfrac { -1-i\sqrt { 3 } }{ 2 }
If
\alpha,\beta
are roots of the equation
2x^2-35x+2=0
then the value of
(2\alpha-35)^3(2\beta-35)^3
is:
Report Question
0%
1
0%
8
0%
4
0%
64
Explanation
We will substitute
\alpha, \beta
in the above equation
\Rightarrow 2\alpha - 35+\dfrac {2}{\alpha} =0
\Rightarrow 2\alpha - 35=\dfrac {-2}{\alpha}
Similarly for beta
\Rightarrow (2\alpha - 35)^{3}(2\beta - 35)^{3}=\dfrac {-8}{\alpha ^{3}}×\dfrac {-8}{\beta^{3}}=\dfrac {64}{1}=64
A
and
B
solve an equation
x^2+px+q=0
. In solving
A
commits a mistake in reading
p
and finds the root
2
and
6
and
B
commits a mistake in reading
q
and finds the roots
2
and
-9
. Find the correct roots.
Report Question
0%
2
0%
-3
0%
-4
0%
-2
Explanation
{ x }^{ 2 }+px+q=0
As A copied q correct so he will get product of roots correct
As B copied P correct so he will get sum of roots correct
sum\quad =\quad 2-9=-7\\ product\quad =\quad 2\times6=12\\ \therefore equation\\ { x }^{ 2 }+7x+12=0\\ (x+4)(x+3)=0\\ \therefore x=-3\quad or\quad -4
The minimum value of the expression
4x^2+2x+1
is-
Report Question
0%
1
0%
\dfrac{1}{3}
0%
\dfrac{1}{2}
0%
\dfrac{3}{4}
Explanation
For a general quadratic equation
{ ax }^{ 2 }+bx+c=0,\quad where\quad a>0\quad the\quad minimum\quad value\quad of\quad expression\quad occurs\quad at\quad \cfrac { -D }{ 4a } \\ \therefore { 4x }^{ 2 }+2x+1\\ minimum\quad value\quad =\quad \cfrac { -({ 2 }^{ 2 }-4.4.1) }{ 4.4 } \\ =\cfrac { 12 }{ 16 } =\cfrac { 3 }{ 4 }
The number of values of
a
for which
(a^2-3a+2)x^2+(a^2-5a+6)x+a^2-4=0
is an identity in
x
is-
Report Question
0%
0
0%
2
0%
1
0%
3
Explanation
Equation is a identity if all its coefficients are equal to zero simultaneously
\Rightarrow a^{2}-3a+2=0
\Rightarrow a=2,1
\Rightarrow a^{2}-5a+6=0
\Rightarrow a^{2}-4=0
\Rightarrow a=\pm 2
\Rightarrow
coefficients are equal to zero simultaneously when
a=2
Therefore only one value of 'a' the equation is identity in
x
If
b\in F'
then the roots of the equation
\left( 2+b \right) { x }^{ 2 }+(3+b)x+(4+b)=0\quad
is
Report Question
0%
real and imaginary
0%
real and equal
0%
imagenary
0%
cannot predicted
Explanation
(2+b)x^{2}+(3+b)x+(4+b)=0
D=(3+b)^{2}-4(2+b)(4+b)=b^{2}+6{b}+9-4{b^{2}}-24{b}-32=-3{b^{2}}-18{b}-23=-3(b^{2}+6{b}+9)+4
=-3(b+3)^{2}+9<0
So roots are imaginary
The number of integral value of k such that the given quadratic equation has imaginary roots are?
Report Question
0%
0
0%
\sqrt{2/3}
0%
2
0%
3
If
a, b,c
are distinct and the roots of
(b-c)x^{2} +(c-a)x +(a-b)=0
are equal, then
a,b,c
are in:
Report Question
0%
Arithmetic Progression
0%
Geometric progression
0%
Harmonic progression
0%
Arithmetico-Geometric progression
Explanation
f\left(x\right)=\left(b-c\right)x^{2}+\left(c-a\right)x+\left(a-b\right)=0
Given that the roots are equal.
\Rightarrow\Delta=0
Now,
\Delta=b^{2}-4ac=0
\Rightarrow\left(c-a\right)^{2}-4\left(b-c\right)\left(a-b\right)=0
\Rightarrow{c}^{2}-2ac+a^{2}+4b^{2}+4ac-4bc-4ab=0
\Rightarrow\left(a-2b+c\right)^{2}=0
\Rightarrow\left(a-2b+c\right)=0
\Rightarrow2b=a+c
\Rightarrow{a},b, c
are in A.P.
The discriminant value of equation
5{x}^{2}-6x+1=0
is ...............
Report Question
0%
16
0%
\sqrt { 56 }
0%
4
0%
56
Explanation
The given equation is
5{x}^{2}-6x+1=0
...........
(i)
General form of quadratic equation is given by
ax^2+bx+c=0
.......
(ii)
Comparing equation
(i)
with
(ii)
we have,
a=5,b=-6,c=1
The discriminant
D
is given by
D={b}^{2}-4ac={(-6)}^{2}-4(5)(1)=36-20=16
\therefore
Discriminant value is
D=16
............... is true for discriminate of quadratic equation
x^2 + x + 1 = 0
.
Report Question
0%
D = 0
0%
D < 0
0%
D > 0
0%
D is a perfect square
Explanation
The polynomial is
x^2 + x + 1 = 0
.
Comparing with
ax^2 + bx + c = 0
, we get
a = 1, b = 1, c = 1
D = b^2 - 4ac = 1 - 4(1) (1) = -3 < 0
Solve the following quadratic equation by completing the square:
\dfrac{5x+7}{x-1}=3x+2
Report Question
0%
\left \{ -1, 3 \right \}
0%
\left \{ 1, 3 \right \}
0%
\left \{ -1, -3 \right \}
0%
None of these
Explanation
Given
\dfrac{5x+7}{x-1}=3x+2
\Rightarrow
5x+7=(3x+2)(x-1)
\Rightarrow
5x+7=3x^2-3x+2x-2
\Rightarrow
3x^2-6x-9=0
\Rightarrow
x^2-2x-3=0
\Rightarrow
Here,
a=1,\,b=-2,\,c=-3
\Rightarrow
x^2-2x=3
Now,
\left(\dfrac{b}{2}\right)^2=\left (\dfrac{-2}{2} \right )^2=1
Adding
1
on both sides,
\Rightarrow
x^2-2x+1=3+1
\Rightarrow
(x-1)^2=4
Taking square root on both sides
\Rightarrow
x-1=\pm2
\Rightarrow
x-1=2
and
x-1=-2
\therefore
x=3
and
x=-1
Let
\alpha
be the root of the equation
25\cos^{2}\theta + 5\cos \theta - 12 = C
, where
\dfrac {\pi}{2} < \alpha < \pi
.
What is
\tan \alpha
equal to?
Report Question
0%
-\dfrac {3}{4}
0%
\dfrac {3}{4}
0%
-\dfrac {4}{3}
0%
-\dfrac {4}{5}
Explanation
Given equation is
25\cos^2\theta+5\cos\theta-12=0
\Rightarrow 25\cos^2\theta+20\cos\theta-15\cos\theta-12=0
\Rightarrow 5\cos\theta(5\cos\theta+4)-3(5\cos\theta+4)=0
\Rightarrow (5\cos\theta-3)(5\cos\theta+4)=0
So,
\cos\theta=\dfrac{3}{5}
or
\cos\theta=\dfrac{-4}{5}
Since
\alpha
is the root of the equation and it lies between
\dfrac{\pi}{2}<\alpha<\pi\Rightarrow \cos \alpha\
is '-ve'.
Thus
\alpha=\cos^{-1}\left (\dfrac{-4}{5}\right)
Since it lies in the range
\dfrac{\pi}{2}<\alpha<\pi
, so
\tan \alpha
is '-ve'
\tan\alpha=\tan\left [\cos^{-1}\left (\dfrac{-4}{5}\right)\right]
=\tan \left [\tan^{-1}\left (-\dfrac{3}{4}\right)\right]
=-\dfrac{3}{4}
If the roots of the equation
x^{2} + px + c = 0
are
(2, -2)
and the roots of the equation
x^{2} + bx + q = 0
are
(-1, -2)
, then the roots of the equation
x^{2} + bx + c = 0
are
Report Question
0%
-3, -2
0%
-3, 2
0%
1, -4
0%
-5, 1
Explanation
Given, roots of the equation
x^{2} + px + c = 0
are
2
and
-2
.
\therefore -p = 2 - 2 \Rightarrow p = 0
and
(2)\cdot (-2) = c\Rightarrow c = -4
Again, roots of the equation
x^{2} + bx + q = 0
are
-1
and
-2
.
\therefore -b = -1 -1 \Rightarrow b = 3
and
(1-) \cdot (-2) = q\Rightarrow q = 2
\therefore x^{2} + bc + c \equiv x^{3} + 3x - 4 =0
\Rightarrow (x - 1)(x + 4) = 0
So, the required roots are
1
and
-4
.
Sum of the roots of the equation
{ \left| x-3 \right| }^{ 2 }+\left| x-3 \right| -2=0
is
Report Question
0%
2
0%
4
0%
6
0%
16
0%
-2
Explanation
Given equation is
{ \left| x-3 \right| }^{ 2 }+\left| x-3 \right| -2=0
\Rightarrow { \left| x-3 \right| }^{ 2 }+2\left| x-3 \right| -\left| x-3 \right| -2=0
\Rightarrow \left| x-3 \right| \left( \left| x-3 \right| +2 \right) -1\left( \left| x-3 \right| +2 \right) =0
\Rightarrow \left( \left| x-3 \right| +2 \right) \left( \left| x-3 \right| -1 \right) =0
Therefore,
\left| x-3 \right| =-2,1
But
\left| x-3 \right| \neq -2
Hence,
\left| x-3 \right| =1
\Rightarrow x-3=\pm 1
\Rightarrow x=3\pm 1
\Rightarrow x=4, 2
Now, sum of the roots
=4+2=6
.
The equation
{ e }^{ \sin { x } }-{ e }^{ -\sin { x } }-4=0
has
Report Question
0%
No solution
0%
Two solutions
0%
Three solutions
0%
None of these
Explanation
Given,
{ e }^{ \sin { x } }-{ e }^{ -\sin { x } }-4=0
multiply throughout by
e^{sinx}
\Rightarrow { e }^{ 2\sin { x } }-4{ e }^{ \sin { x } }-1=0
this is quadratc equation in
e^{sinx}
converting from exponential to logarithmic form.
{ e }^{ \sin { x } }=\dfrac { 4\pm \sqrt { 16+4 } }{ 2 } =2\pm \sqrt { 5 }
\Rightarrow \sin { x } =\log { \left( 2+\sqrt { 5 } \right) }
[
\because \log { \left( 2-\sqrt { 5 } \right) }
is not defined ]
Since,
2+\sqrt { 5 } > e \Rightarrow \log { \left( 2+\sqrt { 5 } \right) } > 1
\Rightarrow \sin { x } > 1
, which is not possible.
Hence, no solution exist.
The root of the equation
2(1+i)x^2-4(2-i)x-5-3i=0
, where
i=\sqrt{-1}
, which has eater modulus is
Report Question
0%
(3-5i)/2
0%
(5-3i)/2
0%
(3+i)/2
0%
(1+3i)/2
Which of the following equations, is not a quadratic equation?
Report Question
0%
4x^{2} - 7x + 3 = 0
0%
3x^{2} - 4x + 1 = 0
0%
2x - 7 = 0
0%
4x^{2} - 3 = 0
Explanation
Alternate
(A) : 4x^{2} - 7x + 3 = 0
The maximum exponent of variable
x
is
2
. So it is a quadratic equation.
Alternate
(B) : 3x^{2} - 4x + 1 = 0
The maximum exponent of variable
x
is
2
. So it is a quadratic equation.
Alternate
(C) : 2x - 7 = 0
The maximum exponent of variable
x
is
1
. So it is not a quadratic equation.
The discriminant of quadratic equation
3x^{2} - 4x - 1 = 0
is _______.
Report Question
0%
0
0%
4
0%
12
0%
28
Explanation
Quadratic equation:
3x^{2} - 4x - 1 = 0
Comparing the given equation with
ax^{2} + bx + c = 0
we have
a = 3, b = -4, c = -1
Now, discriminant
D = b^{2} - 4ac
= (-4)^{2} - 4(3) (-1)
= 16 + 12
= 28
.
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 10 Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page