CBSE Questions for Class 10 Maths Quadratic Equations Quiz 7 - MCQExams.com

Value(s) of $$x$$ which satisfies the equation $$x^{2} + 2kx = \dfrac {j}{3}$$, where $$j$$ and $$k$$ are constants, is/are
  • $$x = -k\pm \dfrac {\sqrt {3(3k^{2} + j)}}{3}$$
  • $$x = -6k\pm \dfrac {\sqrt {3(3k^{2} + j)}}{3}$$
  • $$x = -k\pm \dfrac {\sqrt {3(3k^{2} + j)}}{6}$$
  • $$x = -6k\pm \left (k + \dfrac {\sqrt {3j}}{3}\right )$$
What are the real factors of $$x^2 + 4$$?
  • $$(x^2+2)$$ and $$(x^2-2)$$
  • $$(x+2)$$ and $$(x-2)n$$
  • Does not exist
  • $$(x^2 + 2)$$ and $$(x + 2)$$
Which of the following is an approximate of a zero of the equation $$x^2 - 3x = 7$$?
  • -4.54
  • -1.54
  • 1.54
  • 3.54
  • 5.54
If A and B are whole numbers such that $$9A^{2} = 12A + 96$$ and $$B^{2} = 2B + 3$$, find the value of $$5A + 7B$$.
  • $$31$$
  • $$37$$
  • $$41$$
  • $$43$$
Given that '$$x$$' is real then the solution set of the equation $$\sqrt { x-1 } +\sqrt { x+1 } =1$$.
  • No solution
  • Unique solution
  • $$2$$ solutions
  • None of these
Let $$a$$ be the solution of the equation $$4x^2-12x+9=16$$, then the value of $$10a-15$$ is
  • 20
  • 25
  • 30
  • 35
If $$x = 7 + 4\sqrt {3}$$ and $$xy = 1$$, what is the value of $$\dfrac {1}{x^{2}} + \dfrac {1}{y^{2}}$$?
  • $$64$$
  • $$134$$
  • $$194$$
  • $$\dfrac {1}{49}$$
The discriminant (D) of $$\sqrt {x^{2} + x + 1} = 2$$ is
  • $$-3$$
  • $$13$$
  • $$11$$
  • $$12$$
If $$f(x)=x^2+4x+a$$ is a perfect square function then calculate the value of $$a$$.
  • $$3$$
  • $$4$$
  • $$2$$
  • $$6$$
Identify which of the following is/are a quadratic polynomial function:
  • $$f(x)=(x+1)^3-(x+2)^3$$
  • $$g(x)=\dfrac{x^4}{x^2} $$
  • $$h(x)=(x+1)^2-(x+2)^2$$
  • All of these
The roots of the quadratic equation $$(a+b-2c)x^2-(2a-b-c)x+(a-2b+c)=0$$ are-
  • $$(a+b+c)$$ and $$(a-b-c)$$
  • $$\dfrac 12$$ and $$a-2b+c$$
  • $$a-2b+c$$ and $$\dfrac 1{(a+b-2c)}$$
  • None of the above.
Sum of the roots of the equation $$(x+3)^2-4|x+3|+3=0$$ is-
  • $$4$$
  • $$12$$
  • $$-12$$
  • $$-4$$
The roots of the equation , $$(x^2+1)^2=x(3x^2+4x+3)$$, are given by-
  • $$2-\sqrt 3$$
  • $$\dfrac {-1+i\sqrt 3}2$$
  • $$2+\sqrt 3$$
  • $$\dfrac {-1-i\sqrt 3}2$$
If $$\alpha,\beta$$ are roots of the equation $$2x^2-35x+2=0$$ then the value of $$(2\alpha-35)^3(2\beta-35)^3$$ is:
  • $$1$$
  • $$8$$
  • $$4$$
  • $$64$$
$$A$$ and $$B$$ solve an equation $$x^2+px+q=0$$. In solving $$A$$ commits a mistake in reading $$p$$ and finds the root $$2$$ and $$6$$ and $$B$$ commits a mistake in reading $$q$$ and finds the roots $$2$$ and $$-9$$. Find the correct roots.
  • $$2$$
  • $$-3$$
  • $$-4$$
  • $$-2$$
The minimum value of the expression $$4x^2+2x+1$$ is-
  • $$1$$
  • $$\dfrac{1}{3}$$
  • $$\dfrac{1}{2}$$
  • $$\dfrac{3}{4}$$
The number of values of $$a$$ for which $$(a^2-3a+2)x^2+(a^2-5a+6)x+a^2-4=0$$ is an identity in $$x$$ is-
  • $$0$$
  • $$2$$
  • $$1$$
  • $$3$$
If $$b\in F'$$ then the roots of the equation $$\left( 2+b \right) { x }^{ 2 }+(3+b)x+(4+b)=0\quad $$ is
  • real and imaginary
  • real and equal
  • imagenary
  • cannot predicted
The number of integral value of k such that the given quadratic equation has imaginary roots are?
  • $$0$$
  • $$\sqrt{2/3}$$
  • $$2$$
  • $$3$$
If $$a, b,c$$ are distinct and the roots of $$(b-c)x^{2} +(c-a)x +(a-b)=0$$ are equal, then $$a,b,c$$ are in:
  • Arithmetic Progression
  • Geometric progression
  • Harmonic progression
  • Arithmetico-Geometric progression
The discriminant value of equation $$5{x}^{2}-6x+1=0$$ is ............... 
  • $$16$$
  • $$\sqrt { 56 } $$
  • $$4$$
  • $$56$$
............... is true for discriminate of quadratic equation $$x^2 + x + 1 = 0$$.
  • D = 0
  • D < 0
  • D > 0
  • D is a perfect square
Solve the following quadratic equation by completing the square: $$\dfrac{5x+7}{x-1}=3x+2$$
  • $$\left \{ -1, 3  \right \}$$
  • $$\left \{ 1, 3  \right \}$$
  • $$\left \{ -1, -3  \right \}$$
  • None of these
Let $$\alpha$$ be the root of the equation $$25\cos^{2}\theta + 5\cos \theta - 12 = C$$, where $$\dfrac {\pi}{2} < \alpha < \pi$$.
What is $$\tan \alpha$$ equal to?
  • $$-\dfrac {3}{4}$$
  • $$\dfrac {3}{4}$$
  • $$-\dfrac {4}{3}$$
  • $$-\dfrac {4}{5}$$
If the roots of the equation $$x^{2} + px + c = 0$$ are $$(2, -2)$$ and the roots of the equation $$x^{2} + bx + q = 0$$ are $$(-1, -2)$$, then the roots of the equation $$x^{2} + bx + c = 0$$ are
  • $$-3, -2$$
  • $$-3, 2$$
  • $$1, -4$$
  • $$-5, 1$$
Sum of the roots of the equation $${ \left| x-3 \right|  }^{ 2 }+\left| x-3 \right| -2=0$$ is
  • $$2$$
  • $$4$$
  • $$6$$
  • $$16$$
  • $$-2$$
The equation $${ e }^{ \sin { x }  }-{ e }^{ -\sin { x }  }-4=0$$ has
  • No solution
  • Two solutions
  • Three solutions
  • None of these
The root of the equation $$2(1+i)x^2-4(2-i)x-5-3i=0$$, where $$i=\sqrt{-1}$$, which has eater modulus is
  • $$(3-5i)/2$$
  • $$(5-3i)/2$$
  • $$(3+i)/2$$
  • $$(1+3i)/2$$
Which of the following equations, is not a quadratic equation?
  • $$4x^{2} - 7x + 3 = 0$$
  • $$3x^{2} - 4x + 1 = 0$$
  • $$2x - 7 = 0$$
  • $$4x^{2} - 3 = 0$$
The discriminant of quadratic equation $$3x^{2} - 4x - 1 = 0$$ is _______.
  • $$0$$
  • $$4$$
  • $$12$$
  • $$28$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 10 Maths Quiz Questions and Answers