Explanation
Let EC $$=x$$
In $$\Delta BCE$$,
$$\displaystyle\frac{x}{l}=\sin \theta \Rightarrow x=l\sin \theta$$
$$EF=x=l\sin \theta$$
In $$\Delta ABF,$$
$$\angle ABF=90-2\theta$$
$$\angle AFB=2\theta$$
$$\sin 2\theta =\displaystyle\frac{6}{l\sin \theta}$$
$$\Rightarrow l=\displaystyle\frac{6}{\sin\theta .\sin 2\theta}$$
$$=\displaystyle\frac{6}{\sin \theta(2\sin \theta\cdot \cos\theta)}$$
$$l=\displaystyle\frac{3}{\sin^2\theta \cdot \cos\theta}$$.
From the top of a $$25\ \text{m}$$ high pillar at the top of tower, angle of elevation is same as the angle of depression of foot of tower, then height of tower is:
Please disable the adBlock and continue. Thank you.