Explanation
In $$\Delta DPC$$
$$\tan p = {{CD} \over {CP}}$$
$$\tan {30^0}$$
$${1 \over {\sqrt 3 }} = {{CD} \over {CP}}$$
$$CP = {{CP} \over {\sqrt 3 }}$$ (1)
IN $$\Delta APB$$
$$\tan p = {{AB} \over {PB}}$$
$$\tan {60^0} = {{AB} \over {BP}}$$
$$\sqrt 3 BP = AB$$
$$CD = \sqrt 3 BP$$ (2)
FROM (1) & (2)
$${{CP} \over {\sqrt 3 }} = \sqrt 3 BP$$
$$CP = 3BP$$
NOW ,$$BC = BP + CP$$
$$80 = BP + 3BP$$
$$BP = 20m$$
$$CP = 60m$$
$$CD = \sqrt 3 BP$$
$$ = 20\sqrt 3 $$
Let the distance between point of observation and foot of tower $$BC=20\,m\,$$
Height of tower $$AB=H$$
Angle of elevation of top of tower $$\theta ={{60}^{0}}$$
Now from figure $$\Delta ABC$$
We know that, $$\Delta ABC$$ is a right angle triangle.
$$ \tan \theta =\dfrac{AB}{BC} $$
$$ \tan {{60}^{0}}=\dfrac{h}{20} $$
$$ \Rightarrow \dfrac{h}{20}=\sqrt{3} $$
$$ \Rightarrow h=20\sqrt{3}\,\,m. $$
$$ {\textbf{Step - 1: Find tan }}\alpha $$
$$ {\text{H = height of the tower}} $$
$$ \alpha {\text{ = from bottom of a pole the angle of elevation the top of a tower}} $$
$$ \beta {\text{ = subtends angle}} $$
$$ {\text{Let AO = BM = a and AB = OM = h}}{\text{.}} $$
$$ \therefore {\text{PM = H - h}} $$
$$ {\text{In }} \Delta {\text{AOP}} $$
$$ {\text{tan}}\alpha {\text{ = }}\dfrac{{{\text{PO}}}}{{{\text{AO}}}} $$
$$ \Rightarrow {\text{AO = Hcot}}\alpha $$
$$ \Rightarrow {\text{BM = Hcot}}\alpha \;\;......{\text{(i)}} $$
$$ {\textbf{Step -2: Find the height of the tower}}{\text{.}} $$
$$ {\text{In }}\Delta {\text{PBM}},{\text{tan}}(90 - \alpha + \beta ) = \dfrac{{{\text{BM}}}}{{{\text{PM}}}} $$
$$ \Rightarrow {\text{BM = PM tan}}(90 - \alpha + \beta )\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;\; $$
$$ = {\text{(H - h)cot}}(\alpha - \beta ) \ldots ..{\text{(ii) by using [tan}}(90 - \theta ){\text{ = cot}}\theta ] $$
$$ {\text{From (i) and (ii),}} $$
$$ {\text{Hcot}}\alpha = {\text{(H - h)cot}}(\alpha - \beta ) $$
$$ \Rightarrow {\text{hcot}}(\alpha - \beta ){\text{ = H[cot}}(\alpha - \beta ) - {\text{cot}}\alpha ] $$
$$ \Rightarrow {\text{H = }}\dfrac{{{\text{hcot}}(\alpha - \beta )}}{{{\text{cot}}(\alpha - \beta ) - {\text{cot}}\alpha }}\;\;\;.....\;{\text{[Proved]}} $$
$${\textbf{Hence the correct answer is option B}}$$
A person , standing on the bank of a river observer that the angle subtended by tree on the opposite bank is, when he retreats 40 meters from the bank, he finds the angle to be . the height of the tree and the breadth of the river are :
Please disable the adBlock and continue. Thank you.