Explanation
Let the distance between the nearer kilometre stone and the hill be 'x' km.
So, the distance between the farther kilometre stone and the hill is '1+x' km since both are on the same side of the hill.
In triangle APB,
\tan 45 ^0=\dfrac hx
\Rightarrow 1=\dfrac { h }{ x }
\Rightarrow h=x
In triangle AQB,
\tan 30 ^0=\dfrac {h}{1+x}
\Rightarrow \dfrac { 1 }{ \sqrt { 3 } } =\dfrac { h }{ 1+x }
\Rightarrow 1+x=\sqrt { 3 } h
From equation 1,
1+h=\sqrt { 3 } h \Rightarrow 1=\sqrt { 3 } h-h
\Rightarrow h=\dfrac { 1 }{ \sqrt { 3 } -1 }
\Rightarrow h=1.365km
Hence option A is correct.
Let AB be the tower which is 50\sqrt { 3 } m high and C and D be the positions of the two towers such that
\angle ADB=45 ^0 and \angle ACB=60 ^0
Now, in triangle ABC,
\tan {60 ^0}=\dfrac {AB}{BC}
\Rightarrow \sqrt { 3 } =\dfrac { 50\sqrt { 3 } }{ BC }
\Rightarrow BC=50m
Also, in triangle ABD,
\tan 45 ^0=\dfrac {AB}{BD}
\Rightarrow \tan 45 ^0=\dfrac {AB}{BC+CD}
\Rightarrow 1=\dfrac { 50\sqrt { 3 } }{ 50+CD }
\Rightarrow 50+CD=50\sqrt { 3 }
\Rightarrow CD=50\sqrt { 3 } -50
\Rightarrow CD=50\left( \sqrt { 3 } -1 \right) m.
Hence option C is correct.
Please disable the adBlock and continue. Thank you.