CBSE Questions for Class 10 Maths Some Applications Of Trigonometry Quiz 6 - MCQExams.com

The length of a string between a kite and a point on the ground is 90m. The string makes an angle of $$\displaystyle 60^{\circ}$$ with the level ground if there is no slack in the string, the height of the kite is 
  • $$\displaystyle 90\sqrt{3}m$$
  • $$\displaystyle 45\sqrt{3}m$$
  • $$180 m$$
  • $$45 m$$
The angle of elevation of the top of a tower at a distance of $$\displaystyle \frac{50\sqrt{3}}{3}$$ metres from the foot is $$\displaystyle 60^{\circ}$$. Find the height of the tower 
  • $$\displaystyle 50\sqrt{3}$$ metres
  • $$\displaystyle \frac{20}{\sqrt{3}}$$ metres
  • $$-50$$ metres
  • $$50$$ metres
If from the top of a tower 50 m high, the angles of depression of two objects due north of the tower are respectively $$\displaystyle 60^{\circ}$$ and $$\displaystyle 45^{\circ}$$, then the approximate distance between the objects is :
  • $$\displaystyle 50\left ( \sqrt{2}-2 \right )m$$
  • $$\displaystyle 50\left ( \sqrt{3}-3 \right )m$$
  • $$31 \ m$$
  • None of these
A man on a cliff observes a boat at an angle of depression of $$\displaystyle 30^{\circ} $$ which is approaching the shore to the point immediately beneath the observer with a uniform speed. Six minutes later the angle of depression of the boat is found to be $$\displaystyle 60^{\circ}. $$ Find the total time taken by the boat from the initial point to reach the shore.
  • $$9$$ min
  • $$7$$ min
  • $$10$$ min
  • $$6$$ min
The angle of elevation of the top of tower as observed from a pint on the horizontal ground is 'x' if we move a distance 'd' towards the foot of the tower the angle of elevation increases to 'y' then the height of the tower is 
  • $$\displaystyle \frac{d\tan x\tan y}{\tan y-\tan x}$$
  • $$\displaystyle d(\tan y+\tan x)$$
  • $$\displaystyle d(\tan y-\tan x)$$
  • $$\displaystyle \frac{d\tan x\tan y}{\tan y+\tan x}$$
The angels of elevation of the top of a vertical tower from two points $$30$$ meter apart and on the same straight line passing through the base of tower are $$\displaystyle 30^{\circ}$$ and $$\displaystyle 60^{\circ}$$ respectively The height of the tower is 
  • $$10 m$$
  • $$15 m$$
  • $$\displaystyle 15\sqrt{3}m$$
  • $$30 m$$
The angle of elevation of the top of a tower from a point on the ground $$\displaystyle 30^{\circ}$$ after walking $$200$$ m towards the tower the angle of elevation becomes $$\displaystyle 60^{\circ}$$. The height of the tower is 
  • $$\displaystyle 100\sqrt{3}$$ m
  • $$\displaystyle 200\sqrt{3}$$ m
  • $$100$$ m
  • $$200$$ m
The angles of elevation of the top of a vertical tower from two points 30 metres apart and on the same straight line passing through the base of tower are $$\displaystyle 30^{\circ}$$ and $$\displaystyle 60^{\circ}$$ respectively. The height of the tower is 
  • $$10 m$$
  • $$15 m$$
  • $$\displaystyle 15\sqrt{3}m$$
  • $$30 m$$
If the altitude of the sun is at $$\displaystyle 60^{\circ}$$ then the height of the vertical tower that will cast a shadow of  length 20 m is 
  • $$\displaystyle 20\sqrt{3}m$$
  • $$\displaystyle \frac{20}{\sqrt{3}}m$$
  • $$\displaystyle \frac{15}{\sqrt{3}}m$$
  • $$\displaystyle 40\sqrt{3}m$$
The length of a ladder is exactly equal to the height of the wall it is leaning against. If the lower end of the ladder is kept on a bench of height 3 m. and the bench is kept 9 m. away from the wall, the upper end of the ladder coincides with the top of the wall. The height of the wall is
  • $$11 m$$
  • $$12 m$$
  • $$15 m$$
  • $$18 m$$
The shadow of a tower is 30 meters when the sun's altitude is $$\displaystyle 30^{\circ}$$. When the sun's altitude is $$\displaystyle 60^{\circ}$$ then the length of shadow will be 
  • $$60 m$$
  • $$15 m$$
  • $$10 m$$
  • $$5 m$$
The angle of depression of a car moving with uniform speed towards the building as observed from the top of the building is found to be $$30^{\circ}$$. The same angle of depression changes to $$60^{\circ}$$ after $$12$$ seconds. How much more time would the car take to reach the base?
  • $$6$$ sec
  • $$8$$ sec
  • $$4$$ sec
  • $$12$$ sec
The angle of elevation of the top of a building from the foot of the tower is $$30$$ and the angle of the elevation of the top of the tower from the foot of the building is $$60$$. If the tower is $$50$$ m high, then the height of the building is :
  • $$\displaystyle \frac { 50 }{ 3 } $$ m
  • $$\displaystyle \frac { 35 }{ 3 }$$ m
  • $$\displaystyle \frac { 47 }{ 3 }$$ m
  • $$\displaystyle \frac { 52 }{ 3 }$$ m
 The angles of elevation of the top of a tower from two points a and b from the base and in the same straight line with it are complementary. The height of the tower is :
  • $$\displaystyle ab$$
  • $$\displaystyle \sqrt { ab } $$
  • $$\displaystyle { a }^{ 2 }{ b }^{ 2 }$$
  • None of these
Two poles of equal heights are standing opposite to each other on either side of a road, which is $$100$$ metres wide. From a point between them on the road, the angles of elevation of their tops are $$30$$ and $$60$$. The height of each pole is :
  • $$44$$ m
  • $$43.25$$ m
  • $$50$$ m
  • $$40.5$$ m
The angle of elevation of the top of a tower from a point on the ground, which is $$30$$ m away from the foot of the tower is $$30$$. The height of the tower is :
  • $$\displaystyle 8\sqrt { 3 } $$ m
  • $$\displaystyle 9\sqrt { 3 } $$ m
  • $$\displaystyle 10\sqrt { 3 } $$ m
  • $$\displaystyle 12\sqrt { 3 } $$ m
The shadow of a vertical tower on level ground increases by $$10$$ metres when the altitude of the sun changes from the angle of elevation $$45^0$$ to $$30^0$$. Find the height of the tower correct to one place of decimal.
(take $$\displaystyle \sqrt { 3 } =1.732$$)

348279_e0e4c7324a3741b5a6901305368d1a60.png
  • $$13.67\ m$$
  • $$15\ m$$
  • $$18.67\ m$$
  • $$20\ m$$
A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle $$30$$ with it. The distance between the foot of the tree to the point where the top touches the ground is $$8$$ m. The height of the tree is:
  • $$\displaystyle 5\sqrt { 3 } $$ m
  • $$\displaystyle 8\sqrt { 3 } $$ m
  • $$\displaystyle 10\sqrt { 3 } $$ m
  • $$\displaystyle 6\sqrt { 3 } $$ m
From the top of a building h metres high, the angle of elevation of a monument is $$45^o$$ and angle of depression of its foot is $$30^o$$. The height of the monument is
  • $$\sqrt 3h$$
  • $$\dfrac {(\sqrt 3+1)}{2}h$$
  • $$\dfrac {\sqrt 3-1}{2}h$$
  • $$(\sqrt 3+1)h$$
From a point on the ground, the angles of elevation of the bottom and top of a transmission tower fixed at the top of a $$20$$ m high building are 45 and 60 respectively. The height of the tower is:
  • $$\displaystyle 25\left( \sqrt { 3 } -1 \right)\ m$$
  • $$\displaystyle 20\left( \sqrt { 3 } -1 \right)\ m$$
  • $$\displaystyle 20\ m$$
  • $$\displaystyle 10\ m$$
A kite is flying at a height of $$60$$ m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is $$60$$. Find the length of the string, assuming that there is no slack in the string. 
  • $$\displaystyle 40\sqrt { 3 } $$ m
  • $$\displaystyle 30\sqrt { 3 } $$ m
  • $$\displaystyle 20\sqrt { 3 } $$ m
  • $$\displaystyle 10\sqrt { 3 } $$ m
The angle of elevation of the top of a hill at the foot of a tower is $$60$$ and the angle of elevation of top of the tower from the foot of the hill is $$30$$. If the tower is $$50$$ m high, then the height of the hill is :
  • $$148$$ m
  • $$150$$ m
  • $$152$$ m
  • $$160$$ m
The shadow of a pole standing on a horizontal plane is $$a$$ meters longer when the sun's elevation is $$\theta$$ than when it is $$\phi$$. The height of the pole will be:   {Use $$\sin(A-B) = \sin A \cos B - \sin B \cos A$$}
  • $$a\displaystyle\frac{\cos\theta\cdot\cos\phi}{\cos(\theta-\phi)}$$ meter
  • $$a\displaystyle\frac{\sin\theta\sin\phi}{\sin(\phi-\theta)}$$ meter
  • $$a\displaystyle\frac{\sin\theta\cos\phi}{\sin(\theta-\phi)}$$ meter
  • $$a\displaystyle\frac{\sin\phi\cos\theta}{\cos(\theta-\phi)}$$ meter
From the top of house $$32$$ meter high, if the angle of elevation of the top of a tower is $$ \displaystyle 45^{\circ} $$ and the angle of depression of the foot of the tower is$$ \displaystyle 30^{\circ} $$ , then the height of the tower is 
  • $$ \displaystyle \frac{32}{\sqrt{3}}(\sqrt{3+1}) $$ meter
  • $$ \displaystyle 32(\sqrt{3+1}) $$ meter
  • $$ \displaystyle 32\sqrt3 $$ meter
  • $$ \displaystyle \frac{32}{3}(\sqrt{3+1}) $$ meter
An aeroplane flying horizontally at a height of $$1.5$$ km above the ground is observed at a certain point on earth to subtend an angle of $$60$$. After $$15$$ seconds, its angle of elevation is observed to be $$30$$. Calculate the speed of the, aeroplane in km/h. 
  • $$\displaystyle 240\sqrt { 3 }$$ km/h
  • $$\displaystyle 230\sqrt { 3 }$$ km/h
  • $$\displaystyle 210$$ km/h
  • $$\displaystyle 220$$  km/h
If the angle of elevation of an object from a point 200 meter above the lake is found to be  $$ \displaystyle 30 ^{\circ}$$ and the angle of  depression of its image in the  lake is $$ \displaystyle 45^{\circ}$$ , then the height of the object above the lake is 
  • $$ \displaystyle \frac{200\left ( \sqrt{3-1} \right )}{\left ( \sqrt{3+1} \right )} $$ meter
  • $$ \displaystyle \frac{200\left ( \sqrt{3-1} \right )}{\sqrt{3}} $$
  • $$ \displaystyle \frac{200\left ( \sqrt{3+1} \right )}{\sqrt{3}} $$
  • $$ \displaystyle \frac{200\left ( \sqrt{3+1} \right )}{\left ( \sqrt{3+1} \right )} $$ meter
A vertical tower stands on a horizontal plane and is surmounted by a vertical flagstaff of height $$h$$. At a point on the plane, the angle of elevation of the bottom of the flagstaff is $$\displaystyle \alpha $$ and that of the top of the flagstaff is $$\displaystyle \beta $$ Then the
height of the tower is :
  • $$\displaystyle \frac { h }{ \tan { \alpha } } $$
  • $$\displaystyle \frac { h\tan { \alpha } }{ \tan { \beta } -\tan { \alpha } } $$
  • $$\displaystyle \frac { \tan { \beta } }{ h } $$
  • $$\displaystyle \frac { \tan { \alpha } }{ \tan { \beta } -\tan { \alpha } } $$
The angles of elevations of the top of the tower from two points in the same straight line and at a distance of $$9 \text{ m}$$ and $$16\text{ m}$$ from the base of the tower are complementary. The height of the tower is :
  • $$18\text{ m}$$
  • $$16\text{ m}$$
  • $$10\text{ m}$$
  • $$12\text{ m}$$
The angle of elevation of the top of a tower at a distance of $$\displaystyle\frac{50\sqrt{3}}{3}$$ metres from the foot is $$60^\circ$$. Find the height of the tower.
  • $$50\sqrt{3}\:m$$
  • $$\displaystyle\frac{20}{\sqrt{3}}\:m$$
  • $$-50 m$$
  • $$50 m$$
The angles of elevation of the top of a tower from two points at the distances of $$4\ m$$ and $$9\ m$$ from the base of the tower and in the same straight line with it are complementary. The height of the tower is :
  • $$8\ m$$
  • $$5\ m$$
  • $$6\ m$$
  • $$4\ m$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 10 Maths Quiz Questions and Answers