Processing math: 7%

CBSE Questions for Class 11 Medical Chemistry Thermodynamics Quiz 11 - MCQExams.com

Hess's law is used to calculate:
  • Enthalpy of reaction
  • Entropy of reaction
  • Work done in reaction
  • All the above
A sample of liquid in a thermally insulated container (a calorimeter) is stirred for 2 hr by a mechanical linkage to a motor in the surrounding. For this process:
  • w<0;q=0;ΔU=0
  • w>0;q<0;ΔU>0
  • w<0;q>0;ΔU=0
  • w>0;q=0;ΔU>0
The temperature in K at which ΔG=0, for a given reaction with ΔH=20.5 kJmol1 and ΔS=50.0 JK1mol1 is:
  • -410
  • 410
  • 2.44
  • -2.44
Calculate ΔH/kJ for the following reaction using the listed standard enthalpy of reaction data:
                       2N2(g)+5O2(g)2N2O5(s)

N2(g)+3O2(g)+H2(g)2HNO3(aq)ΔH/kJ=414.0

N2O5(s)+H2O(I)2HNO3(aq)ΔH/kJ=86.0

2H2(g)+O2(g)2H2O(I)ΔH/kJ=571.6
  • 84.4
  • 243.6
  • 71.2
  • 121.8
What can be used in combination with a calorimeter to compare the specific heats of two substances?
  • Thermometer
  • Conductivity tester
  • Graduated cylinder
  • Buret
  • Salt bridge
The equilibrium constant (K) of a reaction may be written as:
  • K=eΔG/RT
  • K=eΔG/RT
  • K=eΔH/RT
  • K=eΔH/RT
H_2(g) + \frac{ 1 }{ 2 }O_2(g)\longrightarrow 2H_2O(l);   \Delta H = -86  kJ
2H_2(g) + O_2(g)\longrightarrow 2H_2O(l)......... kJ(\pm?)
  • 2H_2(g) + O_2(g)\longrightarrow 2H_2O(l) + 172 kJ.
  • 2H_2(g) + O_2(g)\longrightarrow 2H_2O(l) - 172 kJ.
  • 2H_2(g) + O_2(g)\longrightarrow 2H_2O(l) +0 kJ.
  • None of these
Based on the following thermochemical equations
{H}_{2}(g)+C(s)\longrightarrow  CO(g)+{H}_{2}(g); \Delta H=133kJ {mol}^{-1}
CO(g)+\cfrac{1}{2}{O}_{2}(g)\longrightarrow  {CO}_{2}(g); \Delta H=-282kJ{mol}^{-1}
{H}_{2}(g)+\cfrac{1}{2}{O}_{2}(g)\longrightarrow  {H}_{2}O(g);  \Delta H=-242kJ{mol}^{-1}
C(s)+{O}_{2}(g)\longrightarrow  {CO}_{2}(g); \Delta H=xkJ{mol}^{-1}
The value of x will be:
  • 393.0
  • 655.0
  • -393.0
  • -655.0
I : \displaystyle { S }_{ 8 }\left( s \right) +8{ O }_{ 2 }\left( g \right) \rightarrow 8{ SO }_{ 2 }\left( g \right) \Delta H=-2374.6kJ
II : \displaystyle { S }_{ 8 }\left( s \right) +12{ O }_{ 2 }\left( g \right) \rightarrow 8{ SO }_{ 3 }\left( g \right) \Delta H=-3165.8.6kJ
From the information given above, determine the heat of reaction for the combustion of sulfur dioxide.
\displaystyle 2{ SO }_{ 2 }\left( g \right) +{ O }_{ 2 }\left( g \right) \rightarrow 2{ SO }_{ 3 }\left( g \right) 
  • -5540.4 kJ
  • -1385.1 kJ
  • -791.2 kJ
  • -197.8 kJ
  • -899.2 kJ
Bond Average Bond Energy (kJ/mol)
 C \equiv O 1075
 C=O 728
 C-Cl 326
 Cl-Cl 243
From the above given data, calculate the heat of reaction for the following reaction :

CO+{ Cl }_{ 2 }\rightarrow CO{ Cl }_{ 2 }
  • +62 kJ
  • -62 kJ
  • -409 kJ
  • +706 kJ
Name the apparatus used to measure the heat absorbed or released by a reaction.
  • Centrifuge
  • Barometer
  • Balance
  • Calorimeter
  • Battery
Statement 1: The \Delta H_{reaction} of a particular reaction can be arrived at by the summation of the \Delta H_{reaction} values of two or more reactions that, added together, will give the \Delta H_{reaction} of the particular reaction.
Statement 2: Hess's Law conforms to the First Law of Thermodynamics, which states that the total energy of the universe is a constant.
  • Both Statement 1 and Statement 2 are correct and Statement 2 is the correct explanation of Statement 1.

  • Both Statement 1 and Statement 2 are correct and Statement 2 is not the correct explanation of Statement 1.

  • Statement 1 is correct but Statement 2 is not correct.

  • Statement 1 is not correct but Statement 2 is correct.

  • Both the Statement 1 and Statement 2 are not correct.

Calculate the enthalpy , \Delta  H, for the given reaction using the the given bond energies ?
C_{2}H_{4} + Cl_{2}\rightarrow ClH_{2}C-CH_{2}Cl
Bond energieskJ/ mol
C-C347
C = C612
C-Cl341
C-H414
Cl-Cl243
  • \Delta H = -800 kJ
  • \Delta H = -680 kJ
  • \Delta H = -174 kJ
  • \Delta H = +174 kJ
  • \Delta H = +200 kJ
The spontaneity of a reaction is indicated by:
  • enthalpy change
  • entropy change
  • gibbs free energy change
  • activation energy
  • specific heat capacity
At the standard temperature and pressure (STP) of 0 ^oC and 1 atmosphere, the Gibbs free energy change is  ______.
  • -247 kJ/mol.
  • -257 kJ/mol.
  • -237 kJ/mol.
  • -227 kJ/mol.
The reverse of a spontaneous reaction is ......... .
  • always spontaneous
  • always non spontaneous
  • sometimes spontaneous
  • sometimes non spontaneous
  • There is no way of telling
The important considerations in deciding if a reaction will be spontaneous are :
  • stability & state of reactants
  • energy gained & heat evolved
  • exothermic energy & randomness of the products
  • endothermic energy & randomness of the products
  • endothermic energy & structure of the products
What is the value of \Delta H for the reaction X + 2Y \rightarrow 2Z?
W+X\rightarrow  2Y ;                                  \Delta H=-  400 kcal/mol
2W + 3X \rightarrow  2Z + 2Y  ;                  \Delta H=- 150 kcal/mol 
  • - 550 kcal/mol
  • +50 kcal/mol
  • - 50 kcal/mol
  • + 650 kcal/mol
  • +250 kcal/mol
If \Delta G standard is zero, this means :
  • the reaction is spontaneous at standard conditions
  • the reaction is non spontaneous at standard conditions
  • the system is at equilibrium at standard conditions
  • the reaction is both non spontaneous and at equilibrium
  • the reaction is both spontaneous and at equilibrium
Which of the following drives spontaneous reactions?
  • Low enthalpy values and high entropy values.
  • Low enthalpy values and low entropy values.
  • High enthalpy values and low entropy values.
  • High enthalpy values and high entropy values.
  • High temperatures and low pressures.
From the heats of reaction of these individual reactions:
A + B \rightarrow 2C      \triangle H = -500 kJ
D + 2B \rightarrow E      \triangle H = -700 kJ
2D + 2A \rightarrow F    \triangle H = +50 kJ
Find the heat of reaction for F + 6B
\rightarrow 2E + 4C
  • +450 kJ
  • -1100 kJ
  • +2350 kJ
  • -350 kJ
  • -2450 kJ
For a reaction to be spontaneous, the sign on delta G should be :
  • positive
  • there should be no sign
  • negative
  • spontaneity is not related to Gibbs Free Energy
  • positive or Negative
Which of the following is most likely to produce a spontaneous reaction?
  • Negative Enthalpy
  • Positive Enthalpy
  • Negative Entropy
  • Positive Entropy
  • Negative Enthalpy and positive Entropy
If the gibbs free energy is negative than reaction will be?
  • always positive
  • sometimes negative
  • non-spontaneous 
  • spontaneous 
  • None of the above
Determine \Delta G^{o}  for the following reaction.

 CO(g)+\cfrac{1}{2}O_2(g)\rightarrow CO_2(g); \Delta H^{o} = -282.84 kJ

[Given: S^{o} _{CO_2}=213.8 JK^{-1}mol^{-1}, S^{o}\ _{ CO(g)} = 197.9 J K^{-1}mol^{-1} S^{o} \ _{O_2}=205.8 J K^{-1}mol^{-1}]
  • -157.33 kJ
  • +201.033 kJ
  • -256.91 kJ
  • +257.033 kJ
An ideal mono-atomic gas of given mass is heated at constant pressure. In this process, the fraction of supplied energy used for the increase of the internal energy of the gas is
  • \dfrac{3}{8}
  • \dfrac{3}{5}
  • \dfrac{3}{4}
  • \dfrac{2}{5}
How much energy is needed to convert 100\ g of ice at 263\ K to liquid water at a temperature of 283\ K?
{C}_{ice}=0.49\ cal/({g}^{o}C)
{C}_{water}=1.00\ cal/({g}^{o}C)
\Delta {H}_{fus}= 79.8\ cal/{g}
\Delta {H}_{vap}=540\ cal/g
  • 9470\ cal
  • 3288\ cal
  • 2288\ cal
  • 727.3\ cal
H_2(g)+Cl_2(g)=2HCl(g);
\Delta H(298K)=-22.06kcal. For this reaction, \Delta U is equal to:
  • -22.06+2\times 10^{-3}\times 298\times 2kcal
  • -22.06+2\times 298 kcal
  • -22.06-2\times 298\times 4kcal
  • -22.06 kcal
Mg(s) \rightarrow \rightarrow \rightarrow Mg^{2+} ; Energy = A KJ/mol.
Cl_{2}(g) \rightarrow \rightarrow \rightarrow 2Cl^{-} ; Energy = B KJ/mol.
What is the \triangle H_{f} of MgCl_{2} if lattice enthalpy involved is C KJ/mol ?
  • A+B+C KJ/mol.
  • A-B+C KJ/mol.
  • A+B-C KJ/mol.
  • -(A+B+C) KJ/mol.
What is the necessary condition for the sponataneity of a process?
  • \Delta S>0
  • \Delta E<0
  • \Delta H<0
  • \Delta G<0
The equilibrium constant of a reaction is 0.008 at 298 K. The standard free energy change of the reaction at the same temperature is :
  • +11.96 \ kJ
  • -11.96\ kJ
  • -5.43 \ kJ
  • -8.46 \ kJ
Which of the following conditions are true about spontaneous process?
  • \Delta (G_{system})_{T,P}<0
  • \Delta S_{system} + \Delta S_{Surroundings} >0
  • \Delta (G_{system})_{T,P}=0
  • \Delta S_{system} + \Delta S_{Surroundings} <0
The process is spontaneous at the given temperature, if:
  • \Delta H is +ve and \Delta S is -ve
  • \Delta H is -ve and \Delta S is +ve
  • \Delta H is +ve and \Delta S is +ve
  • \Delta H is +ve and \Delta S is equal to zero
Calculate enthalpy for formation of ethylene from the following data:

(I) C(graphite) + O_2 (g) \rightarrow CO_2 (g); \ \ \ \Delta H = -393.5 kJ
(II) H_2(g) + \dfrac{1}{2} O_2 (g) \rightarrow H_2O(l); \ \ \ \ \Delta H = - 286.2 kJ
(III) C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g)  + 2H_2 O(l); \ \ \ \   \Delta H = - 1410.8 kJ
  • 54.1 kJ
  • 44.8 kJ
  • 51.4 kJ
  • 48.4 kJ
At 1000\ K, from the data :
N_{2}(g) + 3H_{2}(g) \rightarrow 2NH_{3}(g); \triangle H = -123.77\ kJ\ mol^{-1}

SubstanceN_{2}H_{2}NH_{3}
P/R3.53.54

Calculate the heat of formation of NH_{3} at 300\ K.
  • -44.42\ kJ\ mol^{-1}
  • -88.85\ kJ\ mol^{-1}
  • + 44.42\ kJ\ mol^{-1}
  • + 88.85\ kJ\ mol^{-1}
For A\rightarrow B,\, \Delta H=4\,\text{kcal mol}^{-1}, \Delta S=10 \,\text{cal mol}^{-1}K^{-1}. Reaction is spontaneous when temperature is:
  • 400K
  • 300K
  • 500K
  • None of these
For spontaneity of cell, which is correct?
  • \Delta G=0, \ \Delta H=0
  • \Delta G=-ve, \ \Delta H=0
  • \Delta G=+ve,\ \Delta H=0
  • \Delta G=-ve
Given that the bond energies of :N\equiv N is 946 kJ mol^{-1} H-H is 435 kJ mol^{-1}, N-N is 159 kJ mol^{-1}, and N-H is 389 kJ mol^{-1}, the heat of formation of hydrazine in the gas phase in kJ mol^{-1} is:
  • 833
  • 101
  • 334
  • 1264
A heat engine operating between 227 deg C and 27 deg C absorbs 1 kcal of heat from the 227 deg C reservoir per cycle. Calculate
(1) the amount of heat discharged into the low temperature reservoir.
(2) the amount of work done per cycle.
(3) the efficiency of cycle.
  • 0.4 kcal, 0.6 kcal, 40%
  • 0.6 kcal, 0.4 kcal, 40%
  • 0.4 kcal, 0.6 kcal, 60%
  • 0.7 kcal, 0.4 kcal, 40%
For a system in equilibrium, \Delta G = 0, under conditions of constant ________.
  • temperature and pressure
  • temperature and volume
  • pressure and volume
  • energy and volume
Given, 
C(s)+{O}_{2}(g)\rightarrow {CO}_{2}(g); \Delta H=-395\ kJ
S(s)+{O}_{2}(g)\rightarrow {SO}_{2}(g);\Delta H=-295\ kJ
C{S}_{2}(l)+3{O}_{2}(g)\rightarrow {CO}_{2}(g)+2{SO}_{2}(g);\Delta H=-1110\ kJ

The heat of formation of C{S}_{2}(l) is:
  • 250\ kJ
  • 62.5\ kJ
  • 31.25\ kJ
  • 125\ kJ
What will be the heat formation of methane; if the heat of combustion of carbon is '-x' kJ, heat of formation of water is  '-y' kJ and heat of combustion of methane is  '-z' kJ?
  • (-x-y-z)kJ
  • (-z-x+2y)kJ
  • (-x-2y-z)kJ
  • (-x-2y+z)kJ
Which one of the following is not applicable for a thermochemical equation?
  • It tell about physical state of reactants and products
  • It tells whether the reaction is spontaneous
  • It tells whether the reaction is exothermic or endothermic
  • It tells about the allotropic form (if any) of the reactants
Super cooled water is liquid water that has been cooled below its normal freezing point. This state is thermodynamically :
  • unstable and tends to freeze into ice spontaneously
  • stable and tends to freeze Into ice spontaneously
  • stable and tends to fuse into liquid spontaneously
  • unstable and tends to fuse into liquid spontaneously
If {H}_{2}+\cfrac{1}{2}{O}_{2}\rightarrow {H}_{2}O;\Delta H=-68.09kcal
K+{H}_{2}O+water \rightarrow KOH(aq.)+\cfrac{1}{2}{H}_{2};\Delta H=-48.0kcal
KOH+water\rightarrow KOH(aq); \Delta H=-14.0kcal
the heat of formation of KOH is:
  • -68.39+48-14.0
  • -68.39-48.0+14.0
  • +68.39-48.0+14.0
  • +68.39+48.0-14.0
From the following reactions at 298\ K.

(A) CaC_{2}(s) + 2H_{2}O(l) \rightarrow Ca(OH)_{2}(s) + C_{2}H_{2} (g);\ \Delta H^{\circ}= - 127.9\ kJ\ mol^{-1}

(B) Ca(s) + \dfrac {1}{2} O_{2}(g) \rightarrow CaO(s) ;\ \Delta H=- 635.1kJ\ mol^{-1}

(C) CaO(s) + H_{2}O(l) \rightarrow Ca(OH)_{2}(s);\ \Delta H=- 65.2\ kJ\ mol^{-1}

(D) C(s) + O_{2}(s) \rightarrow CO_{2}(s) ;\ \Delta H=- 393.5\ kJ\ mol^{-1}

(E) C_{2}H_{2}(g) + \dfrac {5}{2}O_{2}(g) \rightarrow 2CO_{2}(g) + H_{2}O(l);\ \Delta H= - 1299.58\ kJ\ mol^{-1}

Calculate the heat of formation of CaC_{2}(s) at 298\ K.
  • -59.82\ kJ\ mol^{-1}
  • +59.82\ kJ\ mol^{-1}
  • -190.22\ kJ\ mol^{-1}
  • +190.22\ kJ\ mol^{-1}
Standard heats of formation for C{Cl}_{4},{H}_{2}O,{CO}_{2} and HCl at 298K are -25.5,-57.8,-94.1 and -22.1kJ/mol respectively.
For the reaction, what will be \Delta H?
C{Cl}_{4}+2{H}_{2}O\rightarrow {CO}_{2}+4HCl
  • 36.4\ kJ
  • 20.7\ kJ
  • -20.7\ kJ
  • -41.4\ kJ
S+{O}_{2}\rightarrow {SO}_{2}; \Delta H=-298.2kJ
{ SO }_{ 2 }+\cfrac { 1 }{ 2 }{O}_{2} \rightarrow { SO_3 }; \Delta H=-98.7kJ
{SO}_{3}+{H}_{2}O\rightarrow {H}_{2}{SO}_{4};\Delta H=-130.2kJ
{H}_{2}+\cfrac { 1 }{ 2 } { O }_{ 2 }\rightarrow {H}_{2}O;\Delta H=-227.3kJ
The heat of formation of {H}_{2}{SO}_{4} will be:
  • -754.4kJ
  • +320.5kJ
  • -650.3kJ
  • -433.7kJ
\Delta {H}_{f(x)},\Delta {H}_{f(y)},\Delta {H}_{f(R)} and \Delta {H}_{f(S)} denote the enthalpies of formation of x,y,R and S respectively. The  enthalpy of the reaction x+y\rightarrow R+S is:
  • \Delta {H}_{f(x)}+\Delta {H}_{f(y)}
  • \Delta {H}_{f(R)}+\Delta {H}_{f(S)}
  • \Delta {H}_{f(x)}+\Delta {H}_{f(y)}-\Delta {H}_{f(R)}-\Delta {H}_{f(S)}
  • \Delta {H}_{f(R)}+\Delta {H}_{f(S)}-\Delta {H}_{f(x)}-\Delta {H}_{f(y)}
What are the most favourable conditions for the reaction;
{ SO }_{ 2 }(g)+\cfrac { 1 }{ 2 } { O }_{ 2 }(g)\leftrightharpoons { SO }_{ 3 }(g);\Delta { H }^{ o }=-ve to occur?
  • Low temp and high press
  • Low temp and low press
  • High temp and low press
  • High temp and high press
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Medical Chemistry Quiz Questions and Answers