CBSE Questions for Class 11 Medical Chemistry Equilibrium Quiz 11 - MCQExams.com

Assertion:
Solubility of $$AgCl$$ in water decreases if $$NaCl$$ is added to it.
Reason:
$$NaCl$$ is soluble freely in water but $$AgCl$$ is sparingly soluble.
  • Both Assertion and Reason are correct and Reason is the correct explanation of Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation of Assertion
  • Assertion is correct but Reason is not correct
  • Assertion is not correct but Reason is correct
  • Both Assertion and Reason are not correct
By adding which of the following in 1 L 0.1 M solution of HA, $$(Ka=10^{-5})$$, the degree of dissociation of HA decreases appreciably?
  • $${10^{-3} M \: HCl, 1\; L}$$
  • $${0.5 M \: HX (Ka=2\times 10^{-6}), 1 \: L}$$
  • $${0.1 M \: HNO_{3}, 1\: L}$$
  • All of these

The percentage of one of the anion precipitated when another anion starts precipitation is:

(Given $$\frac{1}{\sqrt{2}}=0.7$$)

  • 98.7%
  • 99.3%
  • 97.6%
  • 92.7%
The degree of dissociation $$(\alpha)$$ of a weak electrolyte, $$\mathrm{A}_{\mathrm{x}}\mathrm{B}_{\mathrm{y}}$$ is related to van't Hoff factor (i) by the expression:
  • $$\alpha =\displaystyle \frac{\mathrm{i}-1}{(\mathrm{x}+\mathrm{y}-1)}$$
  • $$\alpha =\displaystyle \frac{\mathrm{i}-1}{\mathrm{x}+\mathrm{y}+1}$$
  • $$\alpha =\displaystyle \frac{\mathrm{x}+\mathrm{y}-1}{\mathrm{i}-1}$$
  • $$\alpha =\displaystyle \frac{\mathrm{x}+\mathrm{y}+1}{\mathrm{i}-1}$$
Given that $$K_w$$ for water is $$10^{-13}M^2$$ at $$2^oC$$, compute the sum of $$p{OH}$$ and $$p{H}$$ for a neutral aqueous solution at $$2^oC$$?
  • $$7.0$$
  • $$13.30$$
  • $$14.0$$
  • $$13.0$$
Which of the following is a buffer solution?
  • $$500\space mL$$ of $$0.1\space N\space CH_3COOH + 500\space mL$$ of $$0.1\space N\space NaOH$$
  • $$500\space mL$$ of $$0.1\space N\space CH_3COOH + 500\space mL$$ of $$0.1\space N\space HCl$$
  • $$500\space mL$$ of $$0.1\space N\space CH_3COOH + 500\space mL$$ of $$0.2\space N\space NaOH$$
  • $$500\space mL$$ of $$0.2\space N\space CH_3COOH + 500\space mL$$ of $$0.1\space N\space NaOH$$
The solubility of $$AgI$$ in $$NaI$$ solution is less than that in pure water because
  • $$AgI$$ forms complex with $$NaI$$
  • Of common ion effect
  • Solubility product of $$AgI$$ is less than that of $$NaI$$
  • The temperature of the solution decreases
The precipitate of $$CaF_2 (K_{sp} = 1.7 \times 10^{-10})$$ is obtained when equal volumes of which of the following are mixed?
  • $$10^{-4} MCa^{+2} +10^{-4} MF^-$$
  • $$10^{-2} M Ca^{+2} + 10^{-3} MF^-$$
  • $$10^{-5} Ca^{+2} + 10^{-5} MF^-$$
  • $$10^{-3} M Ca^{+2} + 10^{-5} MF^-$$
$$Ag_3 PO_4$$ would be least soluble at 25$$^o$$C in
  • 0.1 M $$AgNO_3$$
  • 0.1 M $$HNO_3$$
  • pure water
  • 0.1 M $$Na_3PO_4$$
  • solubility in (a), (b), (c) or (d) is not different
What is the percent ionization $$(\alpha)$$ of a $$0.01M$$ $$HA$$ solution?
(Given that $$K_a = 10^{-4}$$)
  • $$9.5\mbox{%}$$
  • $$1\mbox{%}$$
  • $$10.5\mbox{%}$$
  • $$10\mbox{%}$$
What concentration of $$F-CH_2COOH, (K_a = 2.6\times10^{-3})$$ is needed so that $$[H^+] = 2\times10^{-3}$$?
  • $$1.53 \times10^{-3}\space M$$
  • $$2.6\times10^{-3}\space M$$
  • $$5.2\times10^{-3}\space M$$
  • $$3.53\times10^{-3}\space M$$
The value of the ion product constant for water, $$(K_w)$$ at $$60^{\small\circ}C$$ is $$9.6\times10^{-14}\, M^2$$. What is the $$[H_3O^+]$$ of a neutral aqueous solution at $$60^{\small\circ}C$$ and the nature of an aqueous solution with a $$pH = 7.0$$ at $$60^{\small\circ}C$$ are respectively?
  • $$3.1\times10^{-8}, \space acidic$$
  • $$3.1\times10^{-7}, \space neutral$$
  • $$3.1\times10^{-8}, \space basic$$
  • $$3.1\times10^{-7}, \space basic$$
Which of the following mixtures can act as a buffer?
  • $$NaOH + HCOONa\ (1:1\space molar\space ratio)$$
  • $$HCOOH + NaOH\ (2:1\space molar\space ratio)$$
  • $$NH_4Cl+NaOH\ (2:1\space molar\space ratio)$$
  • $$HCOOH + NaOH \ (1:1\space molar\space ratio)$$
Which of the following expressions for $$\mbox{%}$$ ionization of a monoacidic base $$(BOH)$$ in aqueous solution is not correct at appreciable concentration?
  • $$100\times\sqrt{\displaystyle\frac{K_b}{c}}$$
  • $$\displaystyle\frac{1}{1+10(pK_b - pOH)}$$
  • $$\displaystyle\frac{K_w[H^+]}{K_b+K_w}$$
  • $$\displaystyle\frac{K_b}{K_b+[OH^-]}$$
Which of the following mixtures constitute a buffer?
  • $$HCOOH + HCOONa$$
  • $$Na_2CO_3+NaHCO_3$$
  • $$NaCl+HCl$$
  • $$NH_4Cl + (NH_4)_2SO_4$$
Which of the following statement(s) is/are correct about the ionic product of water?
  • $$K_i$$ (ionization constant of water) $$< \space K_w$$ (ionic product of water)
  • $$pK_i > pK_w$$
  • At $$25^{\small\circ}C, \space K_i = 1.8\times10^{-14}$$
  • Ionic product of water at $$10^{\small\circ}C$$ is $$10^{-14}$$
A solution consists of a mixture of $$0.01\ M\ KI$$ and $$0.1\ M\ KCl$$. If solid $$AgNO_3$$ is added to the solution, what is the concentration of $$I^-$$ when $$AgCl$$ begins to precipitate?
$$[K_{sp\ (AgI)} = 1.5\times10^{-16}; \space K_{sp\ (AgCl)} = 1.8\times10^{-10}]$$
  • $$3.5\times10^{-7}\ M$$
  • $$6.1\times10^{-8}\ M$$
  • $$2.2\times10^{-7}\ M$$
  • $$8.3\times10^{-8}\ M$$
A solution is $$0.10\space M\space Ba(NO_3)_2$$ and $$0.10\space M\space Sr(NO_3)_2$$. If solid $$Na_2CrO_4$$, is added to the solution, what is $$[Ba^{2+}]$$ when $$SrCrO_4$$ begins to precipitate?

Given that : $$[K_{sp(BaCrO_4)} = 1.2\times10^{-10}; \space K_{sp(SrCrO_4)} = 3.5\times10^{-5}]$$
  • $$7.4\times10^{-7}$$
  • $$2.0\times10^{-7}$$
  • $$6.1\times10^{-7}$$
  • $$3.4\times10^{-7}$$
If the dissociation constant of $${ 5\times  }10^{ -4\  }M$$ aqueous solution of diethylamine is $${ 2.5\times  }10^{ -5  }$$, its pH value is
  • 8.4
  • 3.95
  • 10.05
  • 2
K$$_{b_1}$$ for X(OH)$$_{3}$$ (a weak base)  is 10$$^{-5}$$. What is the pH of its 0.1 M solution?
  • 3
  • 8
  • 11
  • 13
Which of the following statement(s) is/are correct?
  • The conjugate acid of $$NH_2^-$$ is $$NH_3$$.
  • Solubility product increases with increase in concentration of ions.
  • The change in $$pH$$ is negligible when a buffer solution is diluted.
  • The concentration of $$OH^-$$ increases if some $$HCl$$ is added in an alkaline buffer solution.
Which of the following expressions is/are true?
  • $$[H^+] = [OH^-] = \sqrt{K_w}$$ for a neutral solution
  • $$[OH^-]<\sqrt{K_w}$$ for an acidic solution
  • $$pH+pOH = 14$$ at all temperature
  • $$[OH^-] = 10^{-7}\space M$$ at $$25^{\small\circ}C$$
The compound whose $$0.1\space M$$ solution is acidic:
  • Ammonium formate
  • Ammonium sulphate
  • Ammonium chloride
  • Sodium formate
Consider the following statements:
(a)  Green crystals of ferrous sulphate become dirty white upon strong heating.
(b) The chemical formula of aluminium phyosphate is $$Al(PO_4)_3$$.
(c)  Silver salts are mostly sensitive to light.
(d)  The gas released in respiration is oxygen.
Which of the above statement is correct?
  • (a)
  • (b)
  • (c)
  • (d)
Simultaneous solubility of $$AgCNS\ (a)$$ and $$AgBr\ (b)$$ in a solution of water will be
$${K}_{{sp}_{(AgBr)}}=5\times {10}^{-13}$$ and $${K}_{{sp}_{(AgCNS)}}={10}^{-12}$$ 
  • $$a=4.08\times {10}^{-7}mol$$ $${litre}^{-1}$$; $$b=8.16\times {10}^{-7}$$ $$mol$$ $${litre}^{-1}$$
  • $$a=4.08\times {10}^{-7}mol$$ $${litre}^{-1}$$; $$b=4.08\times {10}^{-7}$$ $$mol$$ $${litre}^{-1}$$
  • $$a=8.16\times {10}^{-7}mol$$ $${litre}^{-1}$$; $$b=4.08\times {10}^{-7}$$ $$mol$$ $${litre}^{-1}$$
  • None of these
Which can act as buffer?
  • $${NH}_{4}Cl+{NH}_{4}OH$$
  • $${CH}_{3}COOH+{CH}_{3}COONa$$
  • $$40$$ mL of $$0.1M$$ $$NaCN+10$$ mL of $$0.1M$$ $$HCl$$
  • All of the above
Which one is correct for $${H}_{2}O$$ at $${25}^{o}C$$
  • Ionic product of water, $${K}_{w}={10}^{-14}$$
  • Equilibrium constant for dissociation of water $${K}_{c}=1.8\times {10}^{-16}$$
  • Aotoprotolysis constant of water, $${K}_{AP}=3.2\times {10}^{-18}$$
  • On heating $${K}_{w}$$ increases with temperature
The degree of dissociation of $$0.1M$$ $$HCN$$ solution is:
  • $$6.4\times { 10 }^{ -5 }$$
  • $$6.4\times { 10 }^{ - 3}$$
  • $$6.4\times { 10 }^{ -2 }$$
  • $$6.4\times { 10 }^{ -6 }$$
Assertion: A is very dilute acidic solution of $$Cd^{2+}$$ and $$Ni^{2+}$$ gives a yellow precipitate of CdS on passing hydrogen sulphide.
Reason: Solubility product of CdS is more than that of NiS.
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is correct but Reason is incorrect
  • Assertion is incorrect but Reason is correct
  • Both Assertion and Reason are incorrect
$$[H^+]=\sqrt { \frac { { K }_{ w }{ K }_{ a } }{ C }  } $$ is suitable for 
  • $$NaCl,$$ $$NH_4Cl$$
  • $$CH_3COONa,$$ $$NaCN$$
  • $$CH_3COONa,$$ $$(NH_4)_2SO_4$$
  • $$CH_3COONH_4,$$ $$(NH_4)_2CO_3$$
Aqueous solution sof $$H{NO}_{3},KOH,{CH}_{3}COOH,{CH}_{3}COONa$$ of identical concentrations are provided. The pairs of solution swhich forms a buffer upon mixing is (are):
  • $$H{NO}_{3}$$ and $${CH}_{3}COOH$$
  • $$KOH+{CH}_{3}COONa$$
  • $$H{NO}_{3}$$ and $${CH}_{3}COONa$$
  • $${CH}_{3}COOH+{CH}_{3}COONa$$
The given aqueous solution at $${25}^{o}C$$ is:
  • acidic if $$[{H}^{+}]< \sqrt{{K}_{w}}$$
  • alkaline if $$[{H}^{+}]< \sqrt{{K}_{w}}$$
  • acidic if $$[{H}^{+}]> \sqrt{{K}_{w}}$$
  • neutral if $$[{H}^{+}]= \sqrt{{K}_{w}}$$
The relation $$[{H}^{+}O]=\cfrac { { K }_{ w } }{ \left[ { H }_{ 3 }{ O }^{ + } \right]  } +{ \left[ HCl \right]  }_{ 0 }$$ for an aqueous solution of $$HCl$$ can be reduced to:
  • $$\left[ { H }_{ 3 }{ O }^{ + } \right] ={ \left[ HCl \right] }_{ 0 }\quad if\quad \left[ { H }_{ 3 }{ O }^{ + } \right] \ge { 10 }^{ -6 }\quad $$
  • $$\left[ { H }_{ 3 }{ O }^{ + } \right] ={ \left[ HCl \right] }_{ 0 }\quad if\quad \cfrac { { K }_{ w } }{ \left[ { H }_{ 3 }{ O }^{ + } \right] } \ge { 10 }^{ -8 }\quad $$
  • $$\left[ { H }_{ 3 }{ O }^{ + } \right] =\cfrac { { \left[ HCl \right] }_{ 0 }\pm \sqrt { { \left[ HCl \right] }_{ 0 }^{ 2 }+4{ K }_{ w } } }{ 2 } if\quad \left[ { H }_{ 3 }{ O }^{ + } \right] \le { 10 }^{ -6 }$$
  • $$\left[ { H }_{ 3 }{ O }^{ + } \right] ={ \left[ HCl \right] }_{ 0 }\quad if\quad { \left[ HCl \right] }_{ 0 }\ge { 10 }^{ -6 }\quad $$
Which are buffer mixtures?
  • $${H}_{3}{BO}_{3}$$ and borax
  • $$NaOH$$ and $$Na{NO}_{3}$$
  • $${CH}_{3}COONa$$ and $${CH}_{3}COOH$$
  • $${NH}_{4}OH$$ and $${NH}_{4}Cl$$
Assertion: On mixing equal volumes of 1 M $$HCl$$ and of 2 M $$CH_3COONa$$, an acidic buffer solution is formed.
Reason: The resultant mixture contains $$CH_3COOH$$ and $$CH_3COONa$$ which are parts of acidic buffer.
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is correct but Reason is incorrect
  • Assertion is incorrect but Reason is correct
  • Both Assertion and Reason are incorrect
The dissociation constant of $${NH}_{4}OH$$ can be given as
  • $${ K }_{ b }=\cfrac { { \left( { c }_{ 3 } \right) }^{ 2 } }{ \left( { c }_{ 2 }-{ c }_{ 3 } \right) } $$
  • $${ K }_{ b }=\cfrac { { \left( { c }_{ 3 } \right) }^{ 2 } }{ { c }_{ 2 } } $$
  • $${ K }_{ b }=\cfrac { { c }_{ 3 } }{ \left( { c }_{ 2 }-{ c }_{ 3 } \right) } $$
  • $${ K }_{ b }=\cfrac { { c }_{ 3 } }{ \left( { c }_{ 1 }-{ c }_{ 2 } \right) } $$
The $$pH$$ of pure water at $${25}^{o}C$$ and $${60}^{o}C$$ are $$7$$ and $$6.5$$ respectively. $$HCl$$ gas is passed through water at $${25}^{o}C$$ till the resulting $$1$$ litre solution which aquires a $$pH$$ of $$3$$. Now $$4\times {10}^{-3}$$ mole of $$NaCN$$ are added into this solution. Also a fresh $$0.1M$$ $$HCN$$ solution has $$pH$$ $$5.1936$$. Now in the one part of solution obtained after addition of $$NaCN$$, one milli mole of $$NaOH$$ are added and in the second part of this solution $$0.5$$ miili mole of $$HCl$$ are added.

The dissociation constant of $$HCN$$ is:
  • $$4.1\times {10}^{-10}$$
  • $$4.1\times {10}^{-6}$$
  • $$4.1\times {10}^{-3}$$
  • $$4.1\times {10}^{-8}$$
Acetyl salicylic acid (aspirin) ionises in water as: $$HC_9H_7O_4+H_2O\rightarrow H_3O^+ + C_9H_7O_4^-;$$ $$(K_a = 2.75\times 10^{-9})$$. If two tablets of aspirin each of 0.32 g is dissolved in water to produce 250 mL solution, calculate $$[\overset{\circleddash}{O}H].$$ 
  • $$1.61\times 10^{-9}M$$
  • $$1.61\times 10^{-7}M$$
  • $$1.61\times 10^{-3}M$$
  • $$1.61\times 10^{-5}M$$
Calculate the equilibrium constants for the reactions with water of $$H_2PO_4^{\circleddash}, HPO_4^{2-}$$ and $$PO_4^{3-}$$ as base. Comparing the relative values of two equilibrium constants of $$H_2PO_4^{\circleddash}$$ with water, deduce whether solutions of this ion in water are acidic or bases. Deduce whether solutions of $$HPO_4^{2-}$$ are acidic or bases. Given $$K_1, K_2$$ and $$K_3$$ for $$H_3PO_4$$ are $$7.1\times 10^{-3}, 6.3\times 10^{-8}$$ and $$4.5\times 10^{-13}$$ respectively .
  • $$1.4\times 10^{-12}, 1.6\times 10^{-7}, 2.2\times 10^{-2}, H_2PO_4^{\circleddash}$$ is acidic and $$HPO_4^{2-}$$ is basic
  • $$2.2\times 10^{-12}, 1.6\times 10^{-7}, 1.4\times 10^{-2}, H_2PO_4^{\circleddash}$$ is basic and $$HPO_4^{2-}$$ is basic
  • $$2.2\times 10^{-12}, 1.6\times 10^{-7}, 1.4\times 10^{-2}, H_2PO_4^{\circleddash}$$ is acidic and $$HPO_4^{2-}$$ is basic
  • $$1.4\times 10^{-12}, 1.6\times 10^{-7}, 2.2\times 10^{-2}, H_2PO_4^{\circleddash}$$ is basic and $$HPO_4^{2-}$$ is acidic
Which statement/relationship is correct?
  • Upon hydrolysis of salt of a strong base and weak acid gives a solution with $$pH < 7$$
  • $$pH = -\log { \displaystyle\frac { 1 }{ \left[ { H }^{ + } \right] } } $$
  • Only at $$25^{0}C$$ the $$pH$$ of water is 7
  • The value of $$p{ K }_{ w }$$ at $$25^{0}C$$ is 7
The degree of dissociation of abscorbic acid solution is:
  • $$0.40$$
  • $$0.33$$
  • $$0.20$$
  • $$0.15$$
$$K_{sp}\, of \, Mg(OH)_2$$ is $$1\times 10^{-12}, 0.01\, M\, MgCl_2$$ will be precipitating at the limiting $$pOH$$
  • $$7$$
  • $$8$$
  • $$9$$
  • $$5$$
Which of the following statements about a weak acid strong base titration is/are correct?
  • The pH after the equivalence point of the weak acid strong base titration is determined by using the $$K_b$$ expression for the conjugate base.
  • A buffer solution of weak acid and its conjugate base is formed before the equivalence is reached
  • The pH at the equivalence point of a weak monoprotic acid strong base titration is equal to the pH at the equivalence point of a strong acid-strong base titration.
  • The increase in pH in the region near the equivalence The increase in pH in the region near the equivalence point of a weak acid strong base titration is grater than the pH change in the same region of a strong acid strong base titration
The solubility products of MA, MB, MC, and MD are $$1.8\times 10^{-10}, 4\times 10^{-3}, 4\times 10^{-8}$$ and $$6\times 10^{-5}$$ respectively. If a 0.01 M solution of MX is added dropwise to a mixture containing $$A^{\circleddash}, B^{\circleddash}, C^{\circleddash}$$, and $$D^{\circleddash}$$ ions, then the one to be precipitated first will be:
  • MA
  • MB
  • MC
  • MD
$$EDTA,$$ often abbreviated as $${H}_{4}Y$$, forms very stable complexes with almost all metal ions. Calculate the fraction of EDTA in the fully protonated form, $${H}_{4}Y$$ in a solution obtained by dissolving $$0.1$$ mol $${Na}_{4}Y$$ in $$1$$ litre. 
Given, the acid dissociation constants of $${H}_{4}Y$$ are as follows:
$${k}_{1}=1.02\times {10}^{-2}$$, $${k}_{2}=2.13\times {10}^{-3}$$, $${k}_{3}=6.92\times {10}^{-7}$$; $${k}_{4}=5.50\times {10}^{-11}$$
  • $$3.82\times {10}^{-26}$$
  • $$3.82\times {10}^{-6}$$
  • $$3.82\times {10}^{-20}$$
  • $$3.82\times {10}^{-30}$$
If the equilibrium constant of $$BOH \rightleftharpoons B^{\oplus}+\overset{\circleddash}{O}H$$ at $$25^oC$$ is $$2.5\times 10^{-6}$$, then equilibrium constant for $$BOH + H^{\oplus} \rightleftharpoons  B^{\oplus}+H_2O$$ at the same temperature is
  • $$4.0\times 10^{-9}$$
  • $$4.0\times 10^{5}$$
  • $$2.5\times 10^{8}$$
  • $$2.5\times 10^{-6}$$
$$K_{sp}\, $$of$$ \, Mg(OH)_2$$ is $$1\times 10^{-12}, 0.01\, M\, MgCl_2$$ will be precipitating at the limiting pH :
  • 8
  • 9
  • 10
  • 12
The value of $$[Mg^{2+}][OH^{\circleddash}]^2$$ in a solution of 0.001 M $$Mg(OH)_2$$ in $$Mg(NO_3)_2$$ if the pH of solution is adjusted to 9 is:
$$K_{sp}$$ of $$Mg(OH)_2 = 8.9\times 10^{-12}$$
  • lesser than $$K_{sp}$$ and $$Mg(OH)_2$$ won't precipitate
  • greater than $$K_{sp}$$ and $$Mg(OH)_2$$ won't precipitate
  • lesser than $$K_{sp}$$ and $$Mg(OH)_2$$ will precipitate
  • greater than $$K_{sp}$$ and $$Mg(OH)_2$$ will precipitate
Calculate $$[\overset{\circleddash}{O}H]$$ which would be produced by each equilibrium concentration of $$NH_3$$ in part (a). Predict whether $$Zn(OH)_2$$ or $$Zn(OH)_4^{2-}$$ would form in prefemce to $$Zn(NH_3)_4^{2+}$$ upon addition of sufficient $$NH_3$$ to produce the equilibrium concentration calculated in part (a).
  • $$3.33\times 10^{-4} M$$
  • $$2.5\times 10^{-4} M$$
  • $$4.5\times 10^{-4} M$$
  • $$9.0\times 10^{-4} M$$
If $$0.00050$$ mol $$NaH{CO}_{3}$$ is added to $$1$$ litre of a buffered solution of $$pH\ 8$$, then how much material will exist in each of the three forms $${H}_{2}{CO}_{3},H{CO}_{3}^{-}$$ and $${CO}_{3}^{2-}$$? 
For $${H}_{2}{CO}_{3}$$, $${K}_{1}=5\times {10}^{-7}$$; $${K}_{2}=5\times {10}^{-13}$$
  • $$[{H}_{2}{CO}_{3}]=9.85\times {10}^{-6}M$$, $$[H{CO}_{3}^{-}]=4.9\times {10}^{-4}M$$, $$[{CO}_{3}^{-2}]=2.45\times {10}^{-8}M$$
  • $$[{H}_{2}{CO}_{3}]=4.9\times {10}^{-6}M$$, $$[H{CO}_{3}^{-}]=9.85\times {10}^{-4}M$$, $$[{CO}_{3}^{-2}]=2.45\times {10}^{-8}M$$
  • $$[{H}_{2}{CO}_{3}]=9.85\times {10}^{-6}M$$, $$[H{CO}_{3}^{-}]=2.45\times {10}^{-4}M$$, $$[{CO}_{3}^{-2}]=4.9\times {10}^{-8}M$$
  • $$[{H}_{2}{CO}_{3}]=92.45\times {10}^{-6}M$$, $$[H{CO}_{3}^{-}]=4.9\times {10}^{-4}M$$, $$[{CO}_{3}^{-2}]=9.85\times {10}^{-8}M$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Medical Chemistry Quiz Questions and Answers