Explanation
1 \ ppm = 1 \ mg/L = 10^{-3} g/L
Water sample contains 1 \ ppm urea concentration.
\therefore \ 10^{-3} \ g of urea in 1 \ L
x \ g urea in 0.05 \times 10^{-3} \ L
x= 0.05 \times 10^{-6} \ g
60 \ g urea =6.023 \times 10^{23} \ molecules
0.05 \times 10^{-6} \ g = n \ molecules
n = \cfrac {6.023 \times 10^{23} \times 0.05 \times 10^{-6}}{60}
=0.005 \times 10^{17}
=5 \times 10^{14} \ molecules
We know that
K_a = \cfrac {K_w}{K_b}= \cfrac {10^{-14}}{1.7 \times 10^{-9}}= 5.88 \times 10^{-6}
C_5H_5N+ H_2O \rightleftharpoons C_5H_5NH + C_5H_5NH^+ + OH^-
Initial conc: 0.1 0 0 0
Final Conc: 0.1-x x x
K_a = \cfrac {x^2}{0.1-x} [Since x <<0.1 it can be neglected]
5.88 \times 0.1 \times 10^{-6} =x^2
x=7.6 \times 10^{-4}
% Pyridine =\cfrac {7.6 \times 10^{-4}}{0.1} \times 100 = 0.77\%
\because \left (\cfrac {dissociated \ ions}{concentration \ of \ solution }\times 100\right)
Hence, the correct option is A
Please disable the adBlock and continue. Thank you.