Processing math: 24%

CBSE Questions for Class 11 Medical Chemistry Thermodynamics Quiz 10 - MCQExams.com

Heat of reaction for the reaction is:

PCl5(g)+H2O(g)POCl3(g)+2HCl(g)

Given that,
Pwhite+(3/2)Cl2(g)+12O2(g)POCl3;ΔH=135.5kcal
   
H2(g)+Cl2(g)+2HCl(g);ΔH=44.1kcal

P(w)+(5/2)Cl2(g)PCl5(g);ΔH=89.6kcal
 
 H2(g)+12O2(g)H2O(g);ΔH=57.8kcal
  • 32.2kcal
  • 52.5kcal
  • 45.2kcal
  • None of these
The dissolution of 1 mole of NaOH(s) in 100moleofH2O(l) give rise to evolution of heat as -42.34 kJ. However, if1 mole of NaOH(s) is dissolved in 1000moleofH2O(l) the heat given out is 42.76 kJ. 

If the enthalpy change when 900moleofH2O(l) are added to a solution containing 1 mole of NaOH(s) in 100moleofH2O is x kJ:
  • 0.42
  • 0.42
  • 0.24
  • None of these
The heat measured for a reaction in bomb calorimeter is :
  • ΔG
  • ΔH
  • ΔU
  • PΔV
1 gram sample of NH4NO3 is decomposed in a bomb calorimeter. The temperature of the calorimeter increases by 6.12 K. The heat capacity of the system is 1.23 kJ/g-deg. What is the molar heat of decomposition for NH4NO3?
  • -7.53 kJ/mol
  • -398.1 kJ/mol
  • -16.1 kJ/mol
  • 602 kJ/mol
The ΔfH for CO2(g),CO(g)andH2O(g) are 393.5,110.5 and 241.8kJmol1 respectively. The standard enthalpy change (in kJ) for the reaction is:

CO2(g)+H2(g)CO(g)+H2O(g) 
  • 524.1
  • 41.2
  • -262.5
  • -41.2
Combustion of carbon studies in a bomb calorimeter to obtain heat of reaction. Which of the following options are correct?
  • The value obtained shows change in heat enthalpy.
  • The value obtained shows change in internal energy.
  • The volume remains constant.
  • The pressure remains constant.
The commercial production of water gas utilize the reaction under standard conditions:

                           C+H2O(g)H2(g)+CO

The heat required for this endothermic reaction may be supplied by adding a limited amount of air and burning some carbon to CO2. How many g of carbon must be burnt to CO2 to provide enough heat for the water-gas conversion of 100 g carbon? 

Neglect all heat losses to the environment. Also ΔfH of CO, H2O(g) and CO2 are -110.53, 241.81 and -393.51 kJ/mol respectively.
  • 33.4g
  • 66.72g
  • 15.18g
  • None of these
The enthalpies of formation of N2O and NO are 28 and 90 kJmol1 respectively. The enthalpy of the reaction, 2N2O(g)+O2(g)4NO(g) is equal to :
  • 8 kJ
  • 88 kJ
  • -16 kJ
  • 304 kJ
Select the incorrect statements:
  • A few combustion process are endothermic
  • Heat of combustion may be positive
  • Exothermic compounds arc more stable than endothermic compounds
  • Hess's law can he verified experimentally
Which of the following are applicable for a thermochemical equations? It tells:
  • about the physical state of reactants and products.
  • about the allotropic form (if any) of the reactants.
  • whether the reaction is exothermic or endothermic.
  • whether a particular reaction is spontaneous or not.
Which of the following are correct for the given diagram?


217226.jpg
  • ΔH3=ΔH1+ΔH2
  • ΔH1=0
  • ΔH2=(Ccalorimeter+Cproduct)×(T1T2)
  • ΔH2=(Ccalorimeter+Cproduct)×(T2T1)
Find the ΔH of the following reaction. OF2(g)+H2O(g)O2(g)+2HF(g). Average bond energies of OF, OH, O=O and HF are 44, 111, 118 and 135 kcal mol1, respectively.
  • ΔH=78 kcal
  • ΔH=+78 kcal
  • ΔH=498 kcal
  • ΔH=+498 kcal
The thermo-chemical equation for solid and liquid rocket fuel are given below:
2Al(s)+112O2(g)Al2O3(s),ΔH=1667.8kJ

H2(g)+12O2(g)H2O(l),ΔH=285.9kJ

Then, ΔH for the reaction : Al2O3(s)2Al(s)+112O2(g) is :
  •  1667.8 kJmol1
  •  1222.3 kJmol1
  •  1458.2 kJmol1
  •  1785.3 kJmol1
Which of the following has the same value as ΔfH , CO
a. 12ΔfH(CO2)
b. 12ΔcH(graphite)
c. ΔfH(CO2)ΔfH(graphite)
d. ΔcH(graphite)ΔcH(CO)?
  • a
  • b
  • c
  • d
If  the resonance energy of NO2(:ON==O:) is X kJ The measured enthalpy formation of NO2(ΔfH) is 34kJmol1. The bond energies given are:
NO222kJmol1
NN946kJmol1
O==O498kJmol1
N==O607kJmol1
Find out the value of X
  • X=108
  • X=+108
  • X=59
  • None of these
A change in the free energy of a system at constant temperature and pressure will be:

\Delta_{ sys }G = \Delta_{ sys }H - T\Delta_{ sys }S

At constant temperature and pressure,
\Delta_{ sys }G < 0 (spontaneous)
\Delta_{ sys }G = 0 (equilibrium)
\Delta_{ sys }G > 0 (non-spontaneous)

For a system in equilibrium, \Delta G = 0, under conditions of constant_____
  • temperature and pressure
  • pressure and volume
  • temperature and volume
  • energy and volume
Calculate the \Delta H^{ \ominus } for the reduction of Fe_2O_3(s) by Al(s) at 25^{ \circ }C. The enthalpies of formation of Fe_2O_3(s) and Al_2O_3 are -825.5 and -1675.7  kJ  mol^{ -1 } respectively.
  • \Delta H= - 850.2 kJ mol^{ -1 }
  • \Delta H= +850.2 kJ mol^{ -1 }
  • \Delta H= - 2500 kJ mol^{ -1 }
  • None of these
4 grams of sodium hydroxide pellets were dissolved in 100  {cm}^{3} of water. The temperature before adding the sodium hydroxide pellets was 25 degrees C, and after adding the pellets it was 35 degrees C. Calculate the enthalpy change in {kJ}/{mole} of the reaction.
[Specific heat capacity of water = 4.2  {J}/{k}/{g}]
  • 42 {kJ}/{mole}
  • 4.2 {kJ}/{mole}
  • 4200 {kJ}/{mole}
  • None
How much heat is liberated when one mole of gaseous Na^{ \oplus } combines with one mole of Cl^{ \ominus } ion to form solid NaCl.

Use the data given below:
Na(s) + \frac { 1 }{ 2 } Cl_2(g) \longrightarrow NaCl(s);       \Delta H = -98.23  kcal 
Na(s)\longrightarrow Na(g);\,\,\,\, \Delta H = +25.98  kcal
Na(g)\longrightarrow Na^{ \oplus } + e^ { - };\,\,\,\,\,\,\,\Delta H = +120.0  kcal
Cl_2(g)\longrightarrow 2Cl(g);\,\,\,\,\,\,\,\,\Delta H = +58.02  kcal
Cl^{ \ominus } (g)\longrightarrow Cl(g) + e^{ - };\,\,\,\,\,\,\,\Delta H = +87.3  kcal
  • \Delta H = -185.92 Kcal
  • \Delta H = +185.92 Kcal
  • \Delta H = 0 Kcal
  • None of these
\Delta_f H^{ \ominus } of Cyclohexene (l) and benzene at 25^{ \circ}C is -156 and +46  kJ  mol^{ -1 }, respectively. 
\Delta_{ hydrogenation }H^{ \ominus } of Cyclohexene (l) at 25^{ \circ }C is -119  kJ  mol^{ -1 }.

Resonance energy of benzene is found to be -38x  kJ  mol^{ -1 }. Find the value of x.
  • 4
  • 2
  • 8
  • None of these
If 2Al(s) + 1\frac { 1 }{ 2 }O_2(g)\longrightarrow Al_2O_3(s), \Delta H = -166.78 kJ
H_2(g) + \frac { 1 }{ 2 }O_2(g)\longrightarrow H_2O(l), \Delta H = -285.9 kJ

Then  \Delta H for the reaction,

Al_2O_3(s)\longrightarrow 2Al(s) + 1\frac { 1 }{ 2 }O_2(g) is:
  • \Delta H = 174.20kJ mol^{ -1 }
  • \Delta H = 124.55 kJ mol^{ -1 }
  • \Delta H = 166.78 kJ mol^{ -1 }
  • \Delta H = 156.33 kJ mol^{ -1 }
Determine { \Delta H }/{ kJ } for the following reaction using the listed enthalpies of reaction:
4CO\left( g \right) +8{ H }_{ 2 }\left( g \right) \longrightarrow 3C{ H }_{ 4 }\left( g \right) +C{ O }_{ 2 }\left( g \right) +2{ H }_{ 2 }O\left( l \right)

C\left( graphite \right) +{ 1 }/{ 2 }{ O }_{ 2 }\left( g \right) \longrightarrow CO\left( g \right) ;                           { \Delta H }/{ kJ }=-110.5kJ

CO\left( g \right) +{ 1 }/{ 2 }{ O }_{ 2 }\left( g \right) \longrightarrow C{ O }_{ 2 }\left( g \right)         ;                 { \Delta H }/{ kJ }=-282.9kJ

{ H }_{ 2 }\left( g \right) +{ 1 }/{ 2 }{ O }_{ 2 }\left( g \right) \longrightarrow { H }_{ 2 }O\left( l \right)        ;                   { \Delta H }/{ kJ }=-285.8kJ

C\left( graphite \right) +2{ H }_{ 2 }\left( g \right) \longrightarrow C{ H }_{ 4 }\left( g \right)           ;                       { \Delta H }/{ kJ }=-74.8kJ
  • -622.4
  • -686.2
  • -747.5
  • -653.5
\Delta_f H^{ \ominus } of hypothetical MgCl is -125  kJ  mol^{ -1 } and for MgCl_2 is -642  kJ  mol^{ -1 }. The enthalpy of disproportionation of MgCl is -49x. Find the value of x.
  • x = 8
  • x = 8.5
  • x = 16
  • None of these
Using the enthalpies of formation, calculate the energy (kJ) released when 3.00  g of N{ H }_{ 3\left( g \right)  } reacts according to the following equation?
(Atomic weights: N = 14.00,  H = 1.008).
          4N{ H }_{ 3 }\left( g \right) +5{ O }_{ 2 }\left( g \right) \longrightarrow 4NO\left( g \right) +6{ H }_{ 2 }O\left( g \right)
\Delta HN{ H }_{ 3 }\left( g \right) =-46.1   { kJ }/{ mole }
\Delta HNO\left( g \right) =+90.2   { kJ }/{ mole }
\Delta H{ H }_{ 2 }O\left( g \right) =-241.8   { kJ }/{ mole }
  • 34.3
  • 30.8
  • 39.9
  • 42.6
Calculate { \Delta H }/{ kJ } for the following reaction using the listed standard enthalpy of reaction data.
2{ N }_{ 2 }\left( g \right) +5{ O }_{ 2 }\left( g \right) \longrightarrow 2{ N }_{ 2 }{ O }_{ 5 }\left( s \right)

{ N }_{ 2 }\left( g \right) +3{ O }_{ 2 }\left( g \right) +{ H }_{ 2 }\left( g \right) \longrightarrow 2HN{ O }_{ 3 }\left( aq \right)    ;        \           { \Delta H }/{ kJ }=-414.0

{ N }_{ 2 }{ O }_{ 5 }\left( s \right) +{ H }_{ 2 }O\left( l \right) \longrightarrow 2HN{ O }_{ 3 }\left( aq \right)                  ;    \       { \Delta H }/{ kJ }=-86.0

2{ H }_{ 2 }\left( g \right) +{ O }_{ 2 }\left( g \right) \longrightarrow 2{ H }_{ 2 }O\left( l \right)                     ;      \    { \Delta H }/{ kJ }=-571.6
  • -84.4
  • -243.6
  • -71.2
  • -121.8
Calculate the value of { \Delta H }{\ ( kJ) } for the following reaction using the listed thermochemical equations 2C(s) + H_2(g) \rightarrow C_2H_ 2 (g).

2{ C }_{ 2 }{ H }_{ 2 }\left( g \right) +5{ O }_{ 2 }\left( g \right) \longrightarrow 4C{ O }_{ 2 }\left( g \right) +2{ H }_{ 2 }O\left( l \right) ;     \Delta H^o= -2600\ kJ
C\left( s \right) +{ O }_{ 2 }\left( g \right) \longrightarrow C{ O }_{ 2 }\left( g \right) ;                                      \Delta H^o=-390\ kJ
2{ H }_{ 2 }\left( g \right) +{ O }_{ 2 }\left( g \right) \longrightarrow 2{ H }_{ 2 }O\left( l \right) ;                                \Delta H^o =-572\ kJ
  • +184
  • +214
  • +202
  • +234
Use the given standard enthalpies of formation to determine the heat of reaction of the following reaction:
         { C }_{ 2 }{ H }_{ 5 }OH\left( l\right) +3{ O }_{ 2 }\left( g \right) \longrightarrow 2C{ O }_{ 2 }\left( g \right) +3{ H }_{ 2 }O\left( g \right)
\Delta { H }_{ f }^{ }{ C }_{ 2 }{ H }_{ 5 }OH\left( l \right) =-277.7{ kJ }/{ mole }
\Delta { H }_{ f }^{ }C{ O }_{ 2 }\left( g \right) =-393.5{ kJ }/{ mole }
\Delta { H }_{ f }^{ }{ H }_{ 2 }O\left( g \right) =-241.8{ kJ }/{ mole }
  • -1456.3
  • -1234.7
  • -1034.0
  • -1119.4
The enthalpy change for the following process at {25}^{o}C and under constant pressure at 1 atm are as follows:
{CH}_{4}(g)\longrightarrow C(g)+4H(g) {\Delta}_{r}H=396kcal/mole
{C}_{2}{H}_{6}(g)\longrightarrow 2C(g)+6H(g) {\Delta}_{r}H=676kcal/mole

Calculate C-C bond energy in {C}_{2}{H}_{6} and heat formation of {C}_{2}{H}_{6}(g).

[Given: {\Delta}_{sub}C(s)=171.8kcal/mole   B.E(H-H)=104.1kcal/mole]
  • B.E(C-C)=82kcal/mol, {\Delta}_{f}H[{C}_{2}{H}_{6}(g)]=-20.1kcal/mol
  • B.E(C-C)=-82kcal/mol, {\Delta}_{f}H[{C}_{2}{H}_{6}(g)]=-20.1kcal/mol
  • B.E(C-C)=82kcal/mol, {\Delta}_{f}H[{C}_{2}{H}_{6}(g)]=+20.1kcal/mol
  • None of these
Use the given standard enthalpies of formation to determine the heat of reaction of the following reaction:
               2LiOH+C{ O }_{ 2 }\left( g \right) \longrightarrow { Li }_{ 2 }C{ O }_{ 3 }\left( s \right) +{ H }_{ 2 }O\ (l)
\Delta { H }_{ f }^{ }LiOH\left( s \right) =-487.23{ kJ }/{ mole }
\Delta { H }_{ f }^{ }{ Li }_{ 2 }C{ O }_{ 3 }\left( s \right) =-1215.6{ kJ }/{ mole }
\Delta { H }_{ f }^{ }{ H }_{ 2 }O\ (l) =-285.85{ kJ }/{ mole }
\Delta { H }_{ f }^{ }C{ O }_{ 2 }\left( g \right) =-393.5{ kJ }/{ mole }
  • +303.4
  • -133.5
  • -198.6
  • +198.6
Determine \Delta H of the following reaction using the listed heats of formation:
               4HN{ O }_{ 3 }\left( I \right) +{ P }_{ 4 }{ O }_{ 10 }\left( s \right) \longrightarrow 2{ N }_{ 2 }{ O }_{ 5 }\left( s \right) +4HP{ O }_{ 3 }\left( s \right)
\Delta { H }_{ f }^{ }HN{ O }_{ 3 }\left( I \right) =-174.1{ kJ }/{ mole }
\Delta { H }_{ f }^{ }{ N }_{ 2 }{ O }_{ 5 }\left( s \right) =-43.1{ kJ }/{ mole }
\Delta { H }_{ f }^{ }{ P }_{ 4 }{ O }_{ 10 }\left( s \right) =-2984.0{ kJ }/{ mole }
\Delta { H }_{ f }^{ }HP{ O }_{ 3 }\left( s \right) =-948.5{ kJ }/mole
  • -176.3
  • -199.8
  • +276.2
  • -242.4
Caesium chloride is formed according to the following equation:

Cs(s)+0.5{Cl}_{2}(g)\longrightarrow CsCl(s)

The enthalpy of sublimation of Cs, enthalpy of dissociation of chlorine, ionization energy of Cs and electron affinity of chlorine are 81.2, 243.0, 375.7 and -348.3kJ {ol}^{-1}. The energy change involved in the formation of CsCl is 388.6\ kJ.{mol}^{-1}. Calculate the lattice energy of CsCl.
  • -618.7\ kJ{mol}^{-1}
  • +618.7\ kJ{mol}^{-1}
  • 1315.2\ kJ{mol}^{-1}
  • None of these
Determine { \Delta H }/{ kJ } for the following reaction using the listed enthalpies of reaction:
4CO\left( g \right) +8{ H }_{ 2 }\left( g \right) \longrightarrow 3C{ H }_{ 4 }\left( g \right) +C{ O }_{ 2 }\left( g \right) +2{ H }_{ 2 }O\left( l \right)

Given that
C\left( graphite \right) +{ 1 }/{ 2 }{ O }_{ 2 }\left( g \right) \longrightarrow CO\left( g \right)    ;        \                { \Delta H }/{ kJ }=-110.5kJ

CO\left( g \right) +{ 1 }/{ 2 }{ O }_{ 2 }\left( g \right) \longrightarrow C{ O }_{ 2 }\left( g \right)      ;\                    { \Delta H }/{ kJ }=-282.9kJ

{ H }_{ 2 }\left( g \right) +{ 1 }/{ 2 }{ O }_{ 2 }\left( g \right) \longrightarrow { H }_{ 2 }O\left( l \right)     ;\                      { \Delta H }/{ kJ }=-285.8kJ

C\left( graphite \right) +2{ H }_{ 2 }\left( g \right) \longrightarrow C{ H }_{ 4 }\left( g \right)       ;\                           { \Delta H }/{ kJ }=-74.8kJ
  • 584.9\:kJ\:mol^{-1}
  • 279.8\:kJ\:mol^{-1}
  • 747.4\:kJ\:mol^{-1}
  • 925\:kJ\:mol^{-1}
Using the data (all values are in kJ/mol at {25}^{o}C) given below:

(i) Enthalpy of polymerization of ethylene=-72
(ii) Enthalpy of formation of benzene (l)=49
(iii) Enthalpy of vaporization of benzene (l)=30
(iv) Resonance energy of benzene (l)=-152
(v) Heat of formation of gaseous atoms from the elements in their standard states H=218, C=715.

Average bond energy of C-H=415. Calculate the B.E of C-C and C=C.
  • C-C=343.67, C=C=615.33
  • C-C=615.33, C=C=342.67
  • C-C=343.67, C=C=959
  • None of these
Use the given standard enthalpies of formation to determine the heat of reaction of the following reaction:  TiCL_4(g)+2\:H_2O(g)\rightarrow TiO_2(g)+4\:HCl(g)

\Delta H^{\circ}_f\:TiCL_4(g)=-763.2\:kJ/mol
\Delta H^{\circ}_f\:TiO_2(g)=-944.7\:kJ/mol
\Delta H^{\circ}_f\:H_2O(g)=-241.8\:kJ/mol
\Delta H^{\circ}_f\:HCl(g)=-92.3\:kJ/mol
  • -\:278.1
  • +\:369.2
  • +\:67.1
  • -\:67.1
How many joules of heat are absorbed when 70.0 g of water is completely vaporised at its boiling point ?
[Take : LV = 2260 kJ / kg]
  • 22352
  • 52460
  • 22344
  • 158200
Anhydrous AlCl_3 is a covalent compound. From the data given below, predict whether it would remain covalent or become ionic in an aqueous solution .

Ionisation energy of Al = 5137 \ kJ mol^{-1}, \Delta H hydration for Al^{3+}=-4665\:kJ\:mol^{-1}; \Delta H hydration for Cl^-=-381\:kJ\:mol^{-1}
  • Ionic
  • Covalent
  • Partially ionic
  • Partially covalent
A piston filled with 0.04 mole of an ideal gas expands reversibly from 50.0 mL to 375 mL at a constant temperature of 37.0°C. As it does so, it absorbs 207 J of heat. The values of q and W for the process will be :
[Take : R = 8.314 J / mol K, In 7.5 = 2.01]
  • q = +207, W = -207
  • q = -207, W = -207
  • q = -207, W = +207
  • q = +207, W = +207
A swimmer coming out from a pool is covered with a film of water weighing about 18 g. Calculate the internal energy of vaporisation at 100°C.
[\Delta H_{vap}^o for water at 373 K = 40.66 kJ/mol ]

The correct option is:
  • 35.67 kJ
  • 36.64 kJ
  • 37.56 kJ
  • None of the above
The enthalpies of formation of Al_2O_3 and Cr_2O_3 are -1596 kJ and -1134 kJ respectively. \Delta H for the reaction,
2Al + Cr_2O_3\rightarrow 2Cr + Al_2O_3 is :
  • -2730 kJ
  • -462 kJ
  • -1365 kJ
  • +2730 kJ
According to the given reaction, when a 45 gram sample of the ethanol is burned with excess oxygen, how much energy is released in the form of heat?

C_2H_5OH(l) + 3O_2(g)\rightarrow 2CO_2(g) + 3H_2O(l)

\triangle H = -1.40\times 10^3 kJ.
  • 0.995 kJ
  • 5.1 \times 10^2 kJ
  • 1.40 \times 10^3 kJ
  • 2.80 \times 10^3  kJ
  • 5000 kJ
If 10 g of liquid at 300K is heated to 350 K, the liquid absorbs 6 kcals. Determine the specific heat of the liquid in cal/\displaystyle { g }^{ \circ  }C.
  • 6
  • 12
  • 60
  • 120
  • 600
Compute \Delta_rG for the reaction H_2O (;, 1 atm, 323 K) \rightarrow H_2O (g, 1 atm, 323 K)
Given that : \Delta_{vap}H at 373 K = 40.639 kJmol^{1}, C_P(H_2O, l) = 75.312 J K^{1} mol^{1}, C_P(H_2O, g) = 33.305 J K^{1}mol^{1}
  • \Delta_rG = 5.59 kJ mol^{1}
  • \Delta_rG = -5.59 kJ mol^{1}
  • \Delta_rG = 55.9 kJ mol^{1}
  • None of these
Calculate the { \Delta H }_{ r } of KH(s).
  • 62 kJ/mol
  • 124 kJ/mol
  • 31 kJ/mol
  • None of these
Fixed amount of an ideal gas contained in a sealed rigid vessel (V = 24.6\ litre) at 1.0 bar is heated reversibly from 27^oC to 127^oC
Determine change in Gibb's energy (in Joule) if entropy of gas S = 10 + 10^{2} T (J/K).
  • -530 J
  • +530 J
  • 530 kJ
  • None of the above
Calculate the free energy change at 298 K for the reaction :
Br_2(l) + Cl_2(g) \rightarrow 2BrCl(g). For the reaction \Delta H^o = 29.3 kJ & the entropies of 
Br_2(l), Cl_2(g) & BrCl(g) at the 298 K are 152.3, 223.0, 239.7 J mol^{1} K^{1} respectively
  • 1721.8 J
  • 1721.8 kJ
  • 17218 J
  • None of these
What is internal energy change of combustion for methanol?
291153.png
  • -680\:kJ/mole
  • -6.8\:kJ/mole
  • -567\:kJ/mole
  • -5.67\:kJ/mole
For the reaction X_2O_4(l)\rightarrow 2XO_2(g)\Delta U = 2.1\,Kcal, and \Delta S = 20\,cal\,K^{ -1 } at 300 K. Hence, \Delta G is:
  • 2.7\,Kcal
  • -2.7\,Kcal
  • 9.3\,Kcal
  • -9.3\,Kcal
The energy of a system available to do work is called as:
  • gibbs free energy
  • heat of formation
  • specific heat
  • heinsenberg uncertainty principle
  • heat of vaporization
What is the amount of the heat necessary to raise the temperature of 50.0 grams of liquid water from 10.0 ^{\circ} C to 30.0  ^{\circ}C.
(The specific heat of water liquid is 4.18\ J/g/ ^{\circ}C)
  • 20\ J
  • 80\ J
  • 100\ J
  • 200\ J
  • 4,180\ J
A certain amount of potassium chlorate on thermal decomposition gives oxygen which is sufficient for the combustion of ethane. When the products are cooled, the volume of the gaseous product is v ml. Identify the correct sequence of steps for the calculation of the mass of potassium chlorate
(a) Calculation of oxygen required for the combustion of ethane.
(b) Calculation of the amount of the ethane subjected to combustion from the volume of gaseous product.
(c) Calculation of potassium chlorate which can give the required amount of oxygen.
(d) Identification of the products of combustion of ethane and the product left after the cooling of products.
  • a b c d
  • d b a c
  • b c a d
  • d a c b
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Medical Chemistry Quiz Questions and Answers