The step wise formation of $$[Cu(NH_{3})_{4}]^{2+} $$ is given below
$$Cu^{2+} + NH_{3} \overset{K_{1}} \rightleftharpoons [Cu(NH_{3})]^{2+} $$
$$[Cu(NH_{3})]^{2+} + NH_{3} \overset{K_{2}} \rightleftharpoons [Cu(NH_{3})_{2} ]^{2+} $$
$$[Cu(NH_{3})_{2}]^{2+} + NH_{3} \overset{K_{3}} \rightleftharpoons [Cu(NH_{3})_{3}]^{2+} $$
$$[Cu(NH_{3})_{3}]^{2+} + NH_{3} \overset{K_{4}} \rightleftharpoons [Cu(NH_{3})_{4}]^{2+} $$
The value of stability constants $$K_{1} , K_{2} , K_{3}$$ and $$K_{4}$$ are $$10^{4} , 1.58 \times 10^{3} , 5 \times 10^{2}$$ and $$10^{2} $$ respectively. The overall equilibrium constants for dissociation of $$[Cu(NH_{3})_{4}]^{2+} $$ is $$x \times 10^{-12} $$. The value of $$x$$ is _____________.
(Rounded off to the nearest integer)