Evaluate the given integral. \displaystyle \int_{0}^{5} x^2dx
The value of \displaystyle \int _{0}^{1}x^2+2 dx is equal to ?
The value of \displaystyle \int _{0}^{1}x^2+2 \ dx is equal to ____ .
Show that \displaystyle \int_{0}^{1}\frac{1}{\left ( 1+x^{2} \right )^{3/2}}dx=\frac{3}{\sqrt{\left ( 2 \right )}}
\displaystyle \int_{0}^{\infty }\frac{dx}{\left ( x+\sqrt{1+x^{2}} \right )^{n}} = f(n) Find the value if n=6, can be expressed as a/b in simplest form, then b-a = ?
\displaystyle \int_{0}^{\pi /2}\frac{\cos x dx}{1-\sin ^{2}x+\sin ^{4}x}=\frac{\pi }{k}+\frac{1}{4\sqrt{(3)}}log(\dfrac{(2+\sqrt{3})}{(2-\sqrt{3})}). Find the value of k.
Evaluate the integral \displaystyle \int_0^1\frac {x}{x^2+1}dx using substitution.
Find all numbers \alpha for which \displaystyle\, \int_{1}^{2}[\alpha^2 \, + \, (4 \, - \, 4\alpha)x \, + \, 4x^3]dx \leqslant 12
Find the area of the figure bounded by the following curves Find all values of a for which the inequality \displaystyle \int_{0}^{a} \, x \, dx \, \leqslant \, a \, + \, 4 is satisfied.
Let T= \int_0^{\ln2} \frac{3e^{3x} + 2e^{2x} }{e^{3x}+e^{2x} +1} dx , then e^T=\frac{p}{q} where p and q are coprime to each other, then find the value of p+q is
Evaluate the following integrals \int { \cfrac { 1 }{ 5-4\cos { x } } } dx
Evaluate the following integrals \int { \cfrac { 1 }{ \sin { x } +\sqrt { 3 } \cos { x } } } dx
Evaluate the following definite integral:
\displaystyle \int _0^{\pi/2} \sin x \cos x dx is equal to
Evaluate \displaystyle \int_{1}^{3}(3x^2+1)dx
Evaluate the following integrals \int { \cfrac { 1 }{ 2+\sin { x } +\cos { x } } } dx
Evaluate the following integrals \int { \cfrac { 1 }{ \sqrt { 3 } \sin { x } +\cos { x } } } dx
Evaluate the following integral \int { \sin ^{ -1 }{ \sqrt { \cfrac { x }{ a+x } } } } dx
Evaluate the following integrals: \displaystyle \int { \cfrac { 1 }{ { x }^{ 3 } } } \sin { \left( \log { x } \right) } dx\quad
Evaluate the following integral \int { x\cos ^{ 3 }{ x } } dx\quad
Evaluate the following integrals: \int { \sqrt { 4{ x }^{ 2 }-5 } } dx\quad
Evaluate the following integral: \displaystyle\int^a_0\sqrt{a^2-x^2}dx.
Evaluate the following integral: \displaystyle\int^{\sqrt{2}}_0\sqrt{2-x^2}dx.
If the value of the definite integral \int_{0}^{1} \frac{\sin ^{-1} \sqrt{x}}{x^{2}-x+1} d x=\frac{\pi^{2}}{\sqrt{n}}(where n \in N ), then the value of n / 27 is
If \int\left(x^{2010}+x^{\text {804 }}+x^{402}\right)\left(2 x^{160 8}+5 x^{402}+10\right)^{1 / 402} d x =\dfrac{1}{10 a}\left(2 x^{2010}+5 x^{804}+10 x^{402}\right)^{a / 402} . Then (a-400) is equal to
Let f(x)=\displaystyle \int_{-2}^{x} e^{(1+t)^2}dt and g(x)=f(h(x)), where h(x) is defined for all x \in R. If g'(2)=e^4 and h'(2)=1. Then, absolute value of sum for all possible value of h(2), is ...
Find the value of the following integrals: \displaystyle \int^{\beta}_{\alpha} \frac{dx}{(x - \alpha)(\beta - x)}, \beta > \alpha
Find the value of the following integrals: \displaystyle \int^{\beta}_{\alpha} \frac{dx}{\sqrt{(x - \alpha)(\beta - x)}}, \beta > \alpha
Find the value of the following integrals: \displaystyle \int^{1}_{0} \frac{x^3}{\sqrt{1 - x^2}} dx
\int_{1}^{2} \dfrac {x+3}{x(x+2)} dx
Find the value of the following integrals : \displaystyle \int _{-2}^{2} | 2x + 3 | dx
\int_{1/3}^{1} \dfrac {(x-x^3)^{1/3}}{x^4} dx
\int_{1}^{2} \dfrac {xe^x}{(1+x)^2} dx
Find the value of the following integrals: \displaystyle \int^{\infty}_{0} \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx
Find the value of following integrals : \displaystyle \int_{-2}^{2} |1 - x^{2}| dx
Find the value of the following integrals : \displaystyle \int_{1}^{4} f(x) dx, where f(x) = \left [ \begin{matrix} 7x + 3, &1 \leq x \leq 3 \\ 8x,& 3\leq x \leq 4 \end{matrix} \right ]
If {I}_{1}=\displaystyle\int_{0}^{1}{\dfrac{{\tan}^{-1}{x}}{x}dx} and {I}_{2}=\displaystyle\int_{0}^{1}{\dfrac{x}{\sin{x}}dx} then \dfrac{{I}_{1}}{{I}_{2}}
Evaluate the following integral: \int { x\tan ^{ 2 }{ x } } dx\quad
Prove that \displaystyle \int_{0}^{x}[x]dx=x[x]-\dfrac{1}{2}[x]([x]+1), where [.] denotes the greatest integer function.
The value of the definite integral \int_{\sqrt{2}-1}^{\sqrt{2}+1} \frac{x^{4}+x^{2}+2}{\left(x^{2}+1\right)^{2}} d x\\ equals
If f(n)=\dfrac{\displaystyle \int_{0}^{n}[x]dx}{\displaystyle \int_{0}^{n}{x}dx} (where,[.] and {.} denotes greatest integer and fractional part of x and n \in N). Then, the value of f(4) is ...
If \displaystyle \int_{0}^{x}[x]dx=\displaystyle \int_{0}^{[x]}xdx,x \notin integer (where,[.] and {.} denotes the greatest integer and fractional parts respectively.then the value of 4{x} is equal to ...
\begin{array}{l}\text { Let } J=\int_{-5}^{-4}\left(3-x^{2}\right) \tan \left(3-x^{2}\right) d x \text { and } K=\int_{-2}^{-1}\left(6-6 x+x^{2}\right) \\\tan \left(6 x-x^{2}-6\right) d x, \text { then }(J+K) \text { equals }\end{array}
Let f:RR be a function defined by f(x) = \left\{\begin{array}{ll} [x], \space x \leq 2 \\ 0, \space x > 0 \end{array} \right. where [x] denotes the greatest integer less than or equal to x. If I=\displaystyle \int_{-1}^{2} \dfrac{xf(x^2)}{2+f(x+1)}dx, then the value of (4I-1) is
\text { Evaluate: } \int_{0}^{\pi / 2} 2 \sin x \cos x \tan ^{-1}(\sin x) d x
Class 12 Commerce Applied Mathematics Extra Questions