Definite Integrals - Class 12 Commerce Applied Mathematics - Extra Questions
If $$\displaystyle \alpha = \int_0^{1} { \left (e^{ \left (9x + 3\tan^{-1}x \right) } \right) } \left( \dfrac{12+9x^2}{1+x^2} \right) dx $$ , where $$\tan^{-1} x $$ takes only principal values, then the value of $$ \left ( \log_e |1 +\alpha| - \dfrac{3\pi}{4} \right)$$ is
Evaluate :
$$\int \dfrac{\cos \sqrt{x}}{\sqrt{x}}dx$$
Evaluate the integral $$\displaystyle \int _{ 4 }^{ 5 }{ \left( { x }^{ 2 }-12x+8 \right) dx } $$
The value of $$\left(\int_{0}^{\pi/6} sec^{2} x dx\right)^2$$ is:
If $$y=2^23^{2x}5^{-5}7^{-5}$$ then $$\dfrac{dy}{dx}=$$
Evaluate the given integral. $$\displaystyle \int_{0}^{5} x^2dx$$
The value of $$\displaystyle \int _{0}^{1}x^2+2 dx$$ is equal to ?
The value of $$\displaystyle \int _{0}^{1}x^2+2 \ dx$$ is equal to ____ .
Show that $$\displaystyle \int_{0}^{1}\frac{1}{\left ( 1+x^{2} \right )^{3/2}}dx=\frac{3}{\sqrt{\left ( 2 \right )}}$$
$$\displaystyle \int_{0}^{\infty }\frac{dx}{\left ( x+\sqrt{1+x^{2}} \right )^{n}} = f(n)$$ Find the value if $$n=6$$, can be expressed as $$a/b$$ in simplest form, then $$b-a = ?$$
$$\displaystyle \int_{0}^{\pi /2}\frac{\cos x dx}{1-\sin ^{2}x+\sin ^{4}x}=\frac{\pi }{k}+\frac{1}{4\sqrt{(3)}}log(\dfrac{(2+\sqrt{3})}{(2-\sqrt{3})})$$. Find the value of $$k$$.
Evaluate the integral $$\displaystyle \int_0^1\frac {x}{x^2+1}dx$$ using substitution.
Find all numbers $$\alpha$$ for which $$\displaystyle\, \int_{1}^{2}[\alpha^2 \, + \, (4 \, - \, 4\alpha)x \, + \, 4x^3]dx \leqslant 12$$
Find the area of the figure bounded by the following curves Find all values of a for which the inequality $$\displaystyle \int_{0}^{a} \, x \, dx \, \leqslant \, a \, + \, 4$$ is satisfied.
Let $$T= \int_0^{\ln2} \frac{3e^{3x} + 2e^{2x} }{e^{3x}+e^{2x} +1} dx $$, then $$e^T=\frac{p}{q} $$ where $$p$$ and $$q$$ are coprime to each other, then find the value of $$p+q$$ is
Evaluate the following integrals $$\int { \cfrac { 1 }{ 5-4\cos { x } } } dx$$
Evaluate the following integrals $$\int { \cfrac { 1 }{ \sin { x } +\sqrt { 3 } \cos { x } } } dx$$
Evaluate the following definite integral:
$$\displaystyle \int _0^{\pi/2} \sin x \cos x dx $$ is equal to
Evaluate $$\displaystyle \int_{1}^{3}(3x^2+1)dx$$
Evaluate the following integrals $$\int { \cfrac { 1 }{ 2+\sin { x } +\cos { x } } } dx$$
Evaluate the following integrals $$\int { \cfrac { 1 }{ \sqrt { 3 } \sin { x } +\cos { x } } } dx$$
Evaluate the following integral $$\int { \sin ^{ -1 }{ \sqrt { \cfrac { x }{ a+x } } } } dx$$
Evaluate the following integrals: $$\displaystyle \int { \cfrac { 1 }{ { x }^{ 3 } } } \sin { \left( \log { x } \right) } dx\quad $$
Evaluate the following integral $$\int { x\cos ^{ 3 }{ x } } dx\quad $$
Evaluate the following integrals: $$\int { \sqrt { 4{ x }^{ 2 }-5 } } dx\quad $$
Evaluate the following integral: $$\displaystyle\int^a_0\sqrt{a^2-x^2}dx$$.
Evaluate the following integral: $$\displaystyle\int^{\sqrt{2}}_0\sqrt{2-x^2}dx$$.
If the value of the definite integral $$\int_{0}^{1} \frac{\sin ^{-1} \sqrt{x}}{x^{2}-x+1} d x=\frac{\pi^{2}}{\sqrt{n}}$$(where $$n \in N$$ ), then the value of $$n / 27$$ is
If $$ \int\left(x^{2010}+x^{\text {804 }}+x^{402}\right)\left(2 x^{160 8}+5 x^{402}+10\right)^{1 / 402} d x $$ $$ =\dfrac{1}{10 a}\left(2 x^{2010}+5 x^{804}+10 x^{402}\right)^{a / 402} . $$ Then $$ (a-400) $$ is equal to
Let $$f(x)=\displaystyle \int_{-2}^{x} e^{(1+t)^2}dt $$ and $$g(x)=f(h(x)), $$ where h(x) is defined for all $$x \in R.$$ If $$g'(2)=e^4$$ and $$h'(2)=1.$$ Then, absolute value of sum for all possible value of h(2), is ...
Find the value of the following integrals: $$\displaystyle \int^{\beta}_{\alpha} \frac{dx}{(x - \alpha)(\beta - x)}, \beta > \alpha$$
Find the value of the following integrals: $$\displaystyle \int^{\beta}_{\alpha} \frac{dx}{\sqrt{(x - \alpha)(\beta - x)}}, \beta > \alpha$$
Find the value of the following integrals: $$\displaystyle \int^{1}_{0} \frac{x^3}{\sqrt{1 - x^2}} dx$$
$$\int_{1}^{2} \dfrac {x+3}{x(x+2)} dx$$
Find the value of the following integrals : $$ \displaystyle \int _{-2}^{2} | 2x + 3 | dx $$
$$\int_{1/3}^{1} \dfrac {(x-x^3)^{1/3}}{x^4} dx$$
$$\int_{1}^{2} \dfrac {xe^x}{(1+x)^2} dx$$
Find the value of the following integrals: $$\displaystyle \int^{\infty}_{0} \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx$$
Find the value of following integrals : $$ \displaystyle \int_{-2}^{2} |1 - x^{2}| dx $$
Find the value of the following integrals : $$ \displaystyle \int_{1}^{4} f(x) dx, $$ where $$ f(x) = \left [ \begin{matrix} 7x + 3, &1 \leq x \leq 3 \\ 8x,& 3\leq x \leq 4 \end{matrix} \right ] $$
If $${I}_{1}=\displaystyle\int_{0}^{1}{\dfrac{{\tan}^{-1}{x}}{x}dx}$$ and $${I}_{2}=\displaystyle\int_{0}^{1}{\dfrac{x}{\sin{x}}dx}$$ then $$\dfrac{{I}_{1}}{{I}_{2}}$$
Evaluate the following integral: $$\int { x\tan ^{ 2 }{ x } } dx\quad $$
Prove that $$\displaystyle \int_{0}^{x}[x]dx=x[x]-\dfrac{1}{2}[x]([x]+1),$$ where [.] denotes the greatest integer function.
The value of the definite integral $$\int_{\sqrt{2}-1}^{\sqrt{2}+1} \frac{x^{4}+x^{2}+2}{\left(x^{2}+1\right)^{2}} d x\\$$ equals
If $$f(n)=\dfrac{\displaystyle \int_{0}^{n}[x]dx}{\displaystyle \int_{0}^{n}{x}dx}$$ (where,[.] and {.} denotes greatest integer and fractional part of x and n $$\in $$ N). Then, the value of f(4) is ...
If $$\displaystyle \int_{0}^{x}[x]dx=\displaystyle \int_{0}^{[x]}xdx,x \notin $$ integer (where,[.] and {.} denotes the greatest integer and fractional parts respectively.then the value of 4{x} is equal to ...
$$\begin{array}{l}\text { Let } J=\int_{-5}^{-4}\left(3-x^{2}\right) \tan \left(3-x^{2}\right) d x \text { and } K=\int_{-2}^{-1}\left(6-6 x+x^{2}\right) \\\tan \left(6 x-x^{2}-6\right) d x, \text { then }(J+K) \text { equals }\end{array}$$
Let $$f:RR$$ be a function defined by $$f(x) = \left\{\begin{array}{ll} [x], \space x \leq 2 \\ 0, \space x > 0 \end{array} \right.$$ where [x] denotes the greatest integer less than or equal to x. If $$I=\displaystyle \int_{-1}^{2} \dfrac{xf(x^2)}{2+f(x+1)}dx, $$ then the value of (4I-1) is
$$\text { Evaluate: } \int_{0}^{\pi / 2} 2 \sin x \cos x \tan ^{-1}(\sin x) d x$$
Class 12 Commerce Applied Mathematics Extra Questions