Processing math: 0%

Definite Integrals - Class 12 Commerce Applied Mathematics - Extra Questions

If α=10(e(9x+3tan1x))(12+9x21+x2)dx  , where tan1x takes only principal values, then the value of (loge|1+α|3π4) is



Evaluate :
\int \dfrac{\cos \sqrt{x}}{\sqrt{x}}dx



Evaluate the integral
\displaystyle \int _{ 4 }^{ 5 }{ \left( { x }^{ 2 }-12x+8 \right) dx }



The value of \left(\int_{0}^{\pi/6} sec^{2} x dx\right)^2 is:



If y=2^23^{2x}5^{-5}7^{-5} then \dfrac{dy}{dx}=



Find \displaystyle  \int_{0}^{\pi/2} \sin x. \sin 2x\ dx



Solve: \int\limits_0^{\frac{\pi }{2}} {{{\sin }^2}x{{\cos }^3}xdx}



Find the value \displaystyle\int\limits_{-\dfrac{\pi}{2}}^{\dfrac{\pi}{2}} \sin^{2017}x\cos ^{2018}x\ dx.



\int \dfrac{1+x}{\sqrt{1-{x}^{2}}}dx



Evaluate \displaystyle \int_0^\pi  {\frac{{{x^2}\sin 2x.\sin \left( {\frac{\pi }{2}\cos x} \right){\rm{ dx}}}}{{\left( {2x - \pi } \right)}}}



The value of integral \int _{ -1 }^{ 3 }{ \left( \tan ^{ -1 }{ \left( \dfrac { x }{ 1+{ x }^{ 2 } }  \right)  } +\tan ^{ -1 }{ \left( \dfrac { { x }^{ 2 }+1 }{ x }  \right)  }  \right) dx }



\displaystyle \int_0^{\dfrac{\pi }{4}} {\dfrac{{\sin x\cos x}}{{{{\cos }^4}x + {{\sin }^4}x}}} \,dx



\int_{ - 1}^2 {\sqrt {5x + 6} } dx



solve \int\limits_0^{11/2} {\frac{{{{\sin }^2}x}}{{{{\sin }^2}x + {{\cos }^2}x}}} dx



Solve: \displaystyle \overset{\cfrac{\pi}{3}}{\underset{\cfrac{\pi}{6}}{\int}}\cos x \,dx



Evaluate :
\displaystyle \int\limits_{0}^{2\pi} \cos^5x \ dx



Evaluate:
\displaystyle\int\limits_{0}^{1}\dfrac{x}{x^2+1}dx



Evaluate :
\displaystyle \int\limits_{0}^{\pi/2} \cos^2x \ dx



Evaluate the following
\int_{1}^{3} \dfrac {\cos (\log x)}{x} dx.



Find the value of \displaystyle \int_{0}^{(\pi/2)^{1/3}} x^{5}.\sin x^{3}\ dx



\displaystyle\int _{ 0 }^{ \infty  }{ \dfrac { \log{ x } }{ 1+x^{ 2 } }  } dx



Solve : \underset{0}{\overset{\pi / 4}{\int}} 2 \sin \, x \, \sin 2 x \, dx



\int^{1}_{0}\sqrt {x(1-x)}dx



Solve:\displaystyle \int_0^{\pi/4} \tan^3{x}\ \sec\ x\ dx



Evaluate;
\int_0^{\frac{2}{3}} {\frac{{dx}}{{4 + 9{x^2}}}}



Evaluate the following definite integral:
\displaystyle \int _{0}^1 \dfrac {1-x}{1+x}dx



\int_{0}^{4}x+e^{x} dx



Solve
\int_{0}^{2} \cos x dx



\int _{ 0 }^{ 2 }{ x\sqrt { x+2 }  }   (Put  x+2={ t }^{ 2 })



Solve:\displaystyle \int_{-\pi/2}^{\pi/2}\sin^2x dx



Evaluate the following definite integral:
\displaystyle \int_{0}^{1} \dfrac {2x+3}{5x^2 +1}dx



Evaluate : \displaystyle \int _{ 0 }^{ \pi /4 }{ { \tan }^{ 3 }x .{ \sec }^{ 2 } x dx } 



I=\int_{0}^{\pi /2}\dfrac{1+2cosx}{(2+cosx)^{2}}dx



Solve
\displaystyle \int_{0}^{\pi} \dfrac{x\ dx}{1+ \sin x}



Evaluate \int _{ 0 }^{ 1 }{ \left( { x }^{ 3 }+1 \right)  } dx 



\displaystyle \int _{ 0 }^{ 1 } (x^2+ 2x)  dx



Evaluate:
\displaystyle \int_{0}^{\pi /2}  {1+\sin x} dx 



Evaluate \displaystyle\int_{0}^{\pi/2}\dfrac{\sin x\cos x}{1+\sin^{4}x}dx



Evaluate the definite integrals :
\displaystyle \int_{0}^{\pi /2} ({1+\cos x}) dx 



\displaystyle \int _{ 0 }^{ 1 } x^2+ 2x  dx



Evaluate the following definite integrals :
\displaystyle \int_{0}^{3}x^2 \ dx 



\displaystyle\int_{0}^{1}(1-x^{2}) \ dx



Evaluate the following integral:
\displaystyle\int_{0}^{1}\sqrt x \ dx



\displaystyle\int_{0}^{\pi/2} \sin x \cos x\ dx 



Evaluate the definite integral :
\displaystyle \int _{0}^{\pi /2} \cos^2 x\ dx



Evaluate the definite integral :
\displaystyle \int _{0}^1 \dfrac {1-x}{1+x}dx



Evaluate
\displaystyle\int_{0}^{1}\dfrac{1-x^{2}}{(1+x^{2})^{2}}dx



Evaluate the following definite integral:

\displaystyle \int _2^3 x^2+2x+5 \ \  dx



Evaluate the following integral:
\displaystyle\int_{0}^{\pi} x\ dx



Evaluate the following definite integral:

\displaystyle\int_{0}^{1}\dfrac{1-x^{2}}{(1+x^{2})^{2}}dx



Evaluate \displaystyle \int _2^3 x^2+2x+5 \, dx



Evaluate the following definite integral:

\displaystyle \int_0^{1}(3x^2+2x)dx



Solve \displaystyle \int_{1}^{2}{(x+3)}\ dx



Evaluate \displaystyle \int_{0}^{2}(x^2+2x +1)dx



Evaluate the given integral.
\displaystyle \int_{0}^{5} x^2dx



The value of \displaystyle  \int _{0}^{1}x^2+2 dx is equal to ?



The value of \displaystyle  \int _{0}^{1}x^2+2 \  dx is equal to ____ .



Show that \displaystyle \int_{0}^{1}\frac{1}{\left ( 1+x^{2} \right )^{3/2}}dx=\frac{3}{\sqrt{\left ( 2 \right )}}



\displaystyle \int_{0}^{\infty }\frac{dx}{\left ( x+\sqrt{1+x^{2}} \right )^{n}} = f(n)
Find the value if n=6, can be expressed as a/b in simplest form, then b-a = ?



\displaystyle \int_{0}^{\pi }x\log \sin x= \frac{\pi ^{k}}{m}\log \frac{1}{n}..Find k+m+n ?



\displaystyle \int_{0}^{\pi /2}\frac{\cos x dx}{1-\sin ^{2}x+\sin ^{4}x}=\frac{\pi }{k}+\frac{1}{4\sqrt{(3)}}log(\dfrac{(2+\sqrt{3})}{(2-\sqrt{3})}). Find the value of k.



Evaluate the integral   \displaystyle \int_0^1\frac {x}{x^2+1}dx   using substitution.



Evaluate \displaystyle\int _{ 1 }^{ 5 }{ \frac { dx }{ \sqrt { 2x-1 }  }  } .



Find \begin{pmatrix}\int ^{\pi /4}_0 \dfrac{dx}{\cos^3 x\sqrt{2\sin2x}}\end{pmatrix}.



Evaluate \int \int_{R} e^{-(x^{2} + y^{2})}dx dy, where R is the region bounded by the circle x^{2} + y^{2} = a^{2}.



\int_{0}^{5}x^{3} (25 - x^{2})^{7/2} dx.



Use the substitution u={ e }^{ x } to evaluate
\displaystyle \int _{ 0 }^{ 1 }{ \sec { hx }  } dx



\displaystyle\int^{\pi}_{-\pi}\frac{\cos^2x}{1+a^x}dx=?



\int _{ 0 }^{ \cfrac { \pi  }{ 2 }  }{ \sqrt { 1-\sin { 2x }  }  } dx is equal to



Find all numbers \alpha for which \displaystyle\, \int_{1}^{2}[\alpha^2 \, + \,  (4 \, - \,  4\alpha)x \, + \,  4x^3]dx \leqslant  12



Find the area of the figure bounded by the following curves
Find all values of a for which the inequality \displaystyle \int_{0}^{a} \, x \, dx \, \leqslant \, a \, + \, 4 is satisfied.



Evaluate \displaystyle \int _{ 0 }^{ 2/3 }{ \cfrac { dx }{ \left( 4+9{ x }^{ 2 } \right)  }  }



Evaluate: \displaystyle \int_{\frac{\pi}{2}}^{\pi}\frac{1-sinx}{1-cosx}dx 



Let T= \int_0^{\ln2} \frac{3e^{3x} + 2e^{2x} }{e^{3x}+e^{2x} +1} dx , then e^T=\frac{p}{q} where p and q are coprime to each other, then find the value of p+q is



Integrate \int\limits_0^1 {{x \over {1 + {x^2}}}dx}



Evaluate  \displaystyle\int_0^{\tfrac{\pi }{2}} {\sqrt {\sin \phi } \,  {{\cos }^5}\phi d\phi }



Prove that \int\limits_0^{\tfrac {32\pi} 3} {\sqrt {1 + \cos 2x} \,dx = \sqrt {\frac{3}{2}} }



Evaluate: \displaystyle \int\limits_0^{\frac{\pi }{4}} {{{\cos }^{\frac{3}{2}}}\left( {2x} \right)\cos \left( x \right)dx}



Prove that: \int_0^{\pi /4} {\dfrac{{dx}}{{{{\cos }^3}x\sqrt {2\sin 2x} }}}  = \dfrac{6}{5}



x_{CM} = \frac{\int x dm}{\int dm} = \frac{\int\limits_0^1 x (1 + 2x) dx}{\int\limits_0^1(1 + 2x) dx}



Find 
\displaystyle \int_0^{1/4 \pi} ln(1 + \tan x )dx.



Evaluate:
\displaystyle\int^2_1\dfrac{dx}{x(x^4+1)}.



Solve \int\limits_2^6 {\sqrt {\left( {6 - x} \right)\left( {x - 2} \right)} dx}



\displaystyle\int^{1}_0\sin^{-1}\left(\dfrac{2x}{1+x^2}\right)dx.



Evaluate:

\displaystyle \int _{ 0 }^{ 1 } x^3+ 3x^2  dx



The value of  \displaystyle\int_{0}^{\dfrac{\pi}{2}}{\dfrac{dx}{1+{\tan}^{3}{x}}} is



Evaluate the integrals using substitution.
\displaystyle\int^2_0x\sqrt{x+2} (Put x+2=t^2).



\displaystyle\int^{\dfrac{\pi}{2}}_0\dfrac{\sin x}{1+\cos^2x}dx.



Solve :
\int_2^4 {\frac{{dx}}{x}}



\displaystyle \int_2^4 (6x^3 + 5x)  dx =



\displaystyle\int^{\dfrac{\pi}{4}}_0\dfrac{x\sin x}{\cos^3x}dx.



Evaluate \displaystyle \int_0^{\frac{\pi }{4}} {\frac{{dx}}{{{a^2}{{\cos }^2}x - {b^2}{{\sin }^2}x}}}



Solve :- \displaystyle \int_0^1 \ 3^x dx



Solve:\displaystyle \int_0^{\pi/2}sinx \cos^3 xdx



\int _{ 0 }^{ \dfrac { \pi  }{ 2 }  }{ \dfrac { \sin { ^{ 2 }x }  }{ \sin { x } +\cos { x }  } dx } =-\dfrac { 1 }{ 2\sqrt { 2 }  } \log { \left(-2 \sqrt { 2 } +3\right)  }



Solve it :-
\int\limits_{\pi /4}^{\pi /2} {\sqrt {1 - \sin 2x\,} \,\,dx}



Find m if :\displaystyle \int_{0}^{\pi}\left ( \dfrac{\sqrt{1+\cos\ 2x}}{2} \right )dx=\sqrt m



Prove that \displaystyle\int _ { 0 } ^ { \dfrac { \pi } { 4 } } \dfrac { \sin x \cos x } { \cos ^ { 4 } x + \sin ^ { 4 } x } d x



Integrate the following:
\displaystyle \int\limits_{\pi /3}^{\pi /2} {{{(\tan x + \cot x)}^2}dx}



\int\limits_0^{\pi /2} {\dfrac{{\sin x\cos x}}{{1 + {{\sin }^4}x}}dx = }



Evaluate  \int\limits_0^1 {\dfrac{{2x}}{{5{x^2} + 1}}dx}



Solve : \displaystyle \int_{0}^{2}{x\sqrt{x+2}dx}



\displaystyle \int _{ 2 }^{ 3 }{ \left( 1+2x \right)  } dx



Solve:\displaystyle \int_{-\pi/2}^{\pi/2} \log \left(\dfrac{2-\sin x}{2+\sin x}\right)dx



Solve:\int cos^{2}xsin^{2}xdx.



Evaluate: \int\limits_0^{\dfrac{\pi }{2}} {\cos x\;{e^{\sin x}}\;{\text{dx}}}



\displaystyle \int_0^{\pi}  {\dfrac{xdx}{{a^2}{{\cos }^2}x + {b^2}{{\sin }^2}x}} = {{{\pi ^2}} \over {2ab}}



Solve:
\displaystyle\int_0^{\frac{\pi }{2}} {{\left( {\sin 2x} \right)} \sin xdx}



Evaluate:
\int\limits_{\pi /4}^{\pi /2} {\sqrt {1 - \sin 2x} } dx



Solve :
\displaystyle \int_{0}^{\pi}{\sin^{3}x dx}



Solve
\displaystyle \int_{0}^{\pi} \dfrac{dx}{5+4 \cos 2x}



Solve:  \displaystyle\int _{ 0 }^{ 1 }{ \dfrac { 1 }{ { 2x }^{ 2 }+x+1 } dx }



\int _{ 2 }^{ 4 }{ \frac { x }{ { x }^{ 2 }+1 }  } dx



Solve:\int _{ 0 }^{ \log { 2 }  }{ \cos { 2x } dx } =



Evaluate: \displaystyle\int _{ { 1 }/{ \sqrt { 2 }  } }^{ { \sqrt { 3 }  }/{ 2 } }{ \frac { 1 }{ \sqrt { 1-{ x }^{ 2 } }  }  } dx



Evaluate \displaystyle \int_{0}^{\pi} \dfrac{x}{(a^{2} \cos^{2} x+b^{2} \sin^{2} x)^{2}}dx



Find : \displaystyle  \int_0^1 \dfrac{ x}{1+x^{2}} d x



Evaluate \overset { 3 }{ \underset { 0 }{\int  }  } \dfrac{x}{\sqrt{x^2+16}}dx.



\displaystyle\int_{0}^{\pi /2}\frac{\sin x}{1+\cos^{2}x}dx



Solve: I=2\displaystyle\int _{ 0 }^{ \pi /2 }{ \frac { \sec ^{ 2 }{ x }  }{ 1+3\tan ^{ 2 }{ x }  } dx }



Integrate \displaystyle \overset { 7 }{ \underset { 4 }{ \int }  } \dfrac{(11 - x)^2}{x^2 + ( 11 - x)^2} dx



Evaluate \int\limits_0^{\pi /2} {\dfrac{{\sin x}}{{\sin x + \cos x}}\;d} x.



Evaluate \displaystyle\int_{1}^{2}\dfrac{1}{x(1+\log x)^{2}}dx



I = \dfrac {2}{\pi}\int_{-\pi/4}^{\pi/4} \dfrac {dx}{(1 + e^{\sin x})(2 - \cos 2x)} then find 27I^{2} equals ________.



Evaluate:
\displaystyle\int_{0}^{\pi/4}\dfrac{\tan^{3}x}{1+\cos 2x}dx



Evaluate the definite integral :
\displaystyle \int_{e}^{e^2} \left\{\dfrac {1}{\log x} -\dfrac {1}{(\log x)^2}\right\} dx 



Evaluate \displaystyle\int_{0}^{\pi/4}\dfrac{\tan^{3}x}{1+\cos 2x}dx



Evaluate \displaystyle\int_{-1}^{1}5x^{4}\sqrt{x^{5}+1}\ dx



\displaystyle\int_{0}^{\pi/4}\dfrac{\tan^{3}x}{1+\cos 2x}dx



Evaluate the following integrals :
\displaystyle\int_{0}^{\pi/2}\dfrac{x\sin x\cos x}{\sin^{4}x+\cos^{4}x}\ dx



Evaluate the following definite integral:

\displaystyle \int_{1}^{2} e^{2x} \left (\dfrac {1}{x}-\dfrac {1}{2x^2}\right)dx.



Integrate \displaystyle \int_{2}^{3}(2x^2+1)dx



Evaluate \displaystyle \int_{1}^{3}(x^2+3x+e^{x})dx



Evaluate the following integrals
\int { \cfrac { 1 }{ 5-4\cos { x }  }  } dx



Evaluate the following integrals
\int { \cfrac { 1 }{ \sin { x } +\sqrt { 3 } \cos { x }  }  } dx



Evaluate the following definite integral:

\displaystyle \int _0^{\pi/2} \sin x \cos x dx is equal to



Evaluate \displaystyle \int_{1}^{3}(3x^2+1)dx



Evaluate the following integrals
\int { \cfrac { 1 }{ 2+\sin { x } +\cos { x }  }  } dx



Evaluate the following integrals
\int { \cfrac { 1 }{ \sqrt { 3 } \sin { x } +\cos { x }  }  } dx



Evaluate the following integral
\int { \sin ^{ -1 }{ \sqrt { \cfrac { x }{ a+x }  }  }  } dx



Evaluate the following integrals:
\displaystyle \int { \cfrac { 1 }{ { x }^{ 3 } }  } \sin { \left( \log { x }  \right)  } dx\quad



Evaluate the following integral
\int { x\cos ^{ 3 }{ x }  } dx\quad



Evaluate the following integrals:
\int { \sqrt { 4{ x }^{ 2 }-5 }  } dx\quad



Evaluate the following integral:
\displaystyle\int^a_0\sqrt{a^2-x^2}dx.



Evaluate the following integral:
\displaystyle\int^{\sqrt{2}}_0\sqrt{2-x^2}dx.



If the value of the definite integral \int_{0}^{1} \frac{\sin ^{-1} \sqrt{x}}{x^{2}-x+1} d x=\frac{\pi^{2}}{\sqrt{n}}(where n \in N ), then the value of n / 27 is



If \int\left(x^{2010}+x^{\text {804 }}+x^{402}\right)\left(2 x^{160 8}+5 x^{402}+10\right)^{1 / 402} d x
 =\dfrac{1}{10 a}\left(2 x^{2010}+5 x^{804}+10 x^{402}\right)^{a / 402} .  Then  (a-400)  is equal to



Let f(x)=\displaystyle \int_{-2}^{x} e^{(1+t)^2}dt and g(x)=f(h(x)), where h(x) is defined for all x \in R. If g'(2)=e^4 and h'(2)=1. Then, absolute value of sum for all possible value of h(2), is ...



Find the value of the following integrals:
\displaystyle \int^{\beta}_{\alpha} \frac{dx}{(x - \alpha)(\beta - x)}, \beta > \alpha



Find the value of the following integrals:
\displaystyle \int^{\beta}_{\alpha} \frac{dx}{\sqrt{(x - \alpha)(\beta - x)}}, \beta > \alpha



Find the value of the following integrals:
\displaystyle \int^{1}_{0} \frac{x^3}{\sqrt{1 - x^2}} dx



\int_{1}^{2} \dfrac {x+3}{x(x+2)} dx



Find the value of the following integrals :
\displaystyle \int _{-2}^{2} | 2x + 3 | dx



\int_{1/3}^{1} \dfrac {(x-x^3)^{1/3}}{x^4} dx



\int_{1}^{2} \dfrac {xe^x}{(1+x)^2} dx



Find the value of the following integrals:
\displaystyle \int^{\infty}_{0} \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx



Find the value of following integrals :
\displaystyle \int_{-2}^{2} |1 - x^{2}| dx



Find the value of the following integrals :
\displaystyle  \int_{1}^{4} f(x) dx, where f(x) = \left [ \begin{matrix} 7x + 3, &1 \leq x \leq 3 \\  8x,& 3\leq x \leq 4 \end{matrix} \right ]



\int_{-2}^{2} \left | 1- x^2 \right | dx



Evaluate \displaystyle\int _{ 0 }^{ \pi  }{ \dfrac { x\sin ^{ 3 }{ x }  }{ 1+\cos ^{ 2 }{ x }  } dx } .



Find \displaystyle \int^{1}_{0}x(\tan^{-1}x)^2dx.



\int_{0}^{\pi/2} \sin\phi \cos \phi \sqrt{(a^2\sin^2\phi +b^2\cos^2\phi )}d\phi \,\,a\neq b \,\, (a>0, b> 0)



Solve : \displaystyle \int ^{\cfrac{\pi}{2}}_{0} \frac{\sin^2 x}{\sin x+\cos x}



\displaystyle \int _{ 0 }^{ \frac{\pi}{2n}}{ \frac{dx}{1 + \cot^n nx} } =.



Evaluate \int _{ -3 }^{ 1 }{ \sqrt { \left( { x }^{ 2 }+6x+13 \right)  }  } dx leaving your answer in terms of natural logarithms.



The value of the integral
\displaystyle \int_{0}^{\frac {1}{2}}\frac {1 + \sqrt {3}}{(x + 1)^{2} (1 - x)^{6})^{\frac {1}{4}}}dx is _______.



Evaluate \int _{ 1 }^{ 4 }{ { 4 }^{ x }dx }



Evalute : \displaystyle \int_0^{\pi /2} \dfrac{dx}{(a^2\cos^2x+b^2\sin^2x)^2}



Integrate:
\int _{ 0 }^{ \pi  }{ \dfrac { dx }{ 5+3cosx }  }



Solve
\displaystyle \int_0 ^{\infty} ln \left(x + \dfrac{1}{x}\right). \dfrac{dx}{1 + x^2}



Solve:\displaystyle \int_0^{\pi/2}\dfrac{\sin \,x\,dx}{(\sin\,x +\cos \,x)^3}



Solve:
\displaystyle \int_{0}^{\pi/2}{\sin 2x.\tan^{-1}(\sin x)dx}



If {I}_{1}=\displaystyle\int_{0}^{1}{\dfrac{{\tan}^{-1}{x}}{x}dx} and {I}_{2}=\displaystyle\int_{0}^{1}{\dfrac{x}{\sin{x}}dx} then \dfrac{{I}_{1}}{{I}_{2}}



Evaluate:
\displaystyle\int_{-2}^{0}{\left({x}^{3}+3{x}^{2}+3x+3+\left(x+1\right)\cos{\left(x+1\right)}\right)dx}



Evaluate:
\displaystyle\int_{\tfrac{\pi}{2}}^{\tfrac{3\pi}{2}}{\left[2\sin{x}\right]dx}



Evaluate \displaystyle\int _{ 0 }^{ 1 }{ \frac { \log { \left( 1+x \right)  }  }{ 1+{ x }^{ 2 } } dx }



Evaluate:
\int\limits_0^{\pi /4} {{{\tan }^4}xdx}



Evaluate \displaystyle \int_{0}^{1}{\cot^{-1}(1-x+x^{2})dx}



Evaluate the following integral:
\int { x\tan ^{ 2 }{ x }  } dx\quad



Prove that \displaystyle \int_{0}^{x}[x]dx=x[x]-\dfrac{1}{2}[x]([x]+1), where [.] denotes the greatest integer function.



The value of the definite integral \int_{\sqrt{2}-1}^{\sqrt{2}+1} \frac{x^{4}+x^{2}+2}{\left(x^{2}+1\right)^{2}} d x\\ equals



If f(n)=\dfrac{\displaystyle \int_{0}^{n}[x]dx}{\displaystyle \int_{0}^{n}{x}dx} (where,[.] and {.} denotes greatest integer and fractional part of x and n \in N). Then, the value of f(4) is ...



If \displaystyle \int_{0}^{x}[x]dx=\displaystyle \int_{0}^{[x]}xdx,x \notin integer (where,[.] and {.} denotes the greatest integer and fractional parts respectively.then the value of 4{x} is equal to ...



\begin{array}{l}\text { Let } J=\int_{-5}^{-4}\left(3-x^{2}\right) \tan \left(3-x^{2}\right) d x \text { and } K=\int_{-2}^{-1}\left(6-6 x+x^{2}\right) \\\tan \left(6 x-x^{2}-6\right) d x, \text { then }(J+K) \text { equals }\end{array}



Let f:RR be a function defined by f(x) = \left\{\begin{array}{ll} [x], \space x \leq 2 \\ 0,  \space x > 0 \end{array} \right. where [x] denotes the greatest integer less than or equal to x. If I=\displaystyle \int_{-1}^{2} \dfrac{xf(x^2)}{2+f(x+1)}dx, then the value of (4I-1) is 



\text { Evaluate: } \int_{0}^{\pi / 2} 2 \sin x \cos x \tan ^{-1}(\sin x) d x



Class 12 Commerce Applied Mathematics Extra Questions