Determinants - Class 12 Commerce Applied Mathematics - Extra Questions
If $$D_x\, =\, -18$$ and $$ D =\, 3$$ are the values of the determinants for certain simultaneous equations in $$x$$ and $$y$$, Find $$-x$$.
If the value of determinants $$\begin{vmatrix} x& -5\\ 3 & 4\end{vmatrix}$$ is $$31$$, then find the value of $$x$$
Find the value of the determinant: $$\begin{vmatrix} 4& -2\\ 3 & 1\end{vmatrix}$$
If $$D=7,{D}_{x}=35$$ and $${D}_{y}=42$$ are the values of the determinants for certain simultaneous equations in $$x$$ and $$y$$, then find the values of $$x$$ and $$y$$.
Find the value of the following determinant $$\begin{vmatrix}7 & 2\\ 5 &4 \end{vmatrix}$$
solve the following simultaneous equations by using Cramer's rule: $$x+y=7,x-y=5$$
If $${ D }_{ x }=18,{ D }_{ y }=15$$ and $$D=3$$ are the values of the determinants for certain simultaneous equations in $$x$$ and $$y$$, then find the values of $$x$$ and $$y$$.
Find the value of the following determinant $$\begin{vmatrix} 4 & 3\\2 & 7\end{vmatrix}$$.
Find the value of following determinant $$\begin{vmatrix} 5& 2\\ 7 & 4 \end{vmatrix}$$
If $${D}_{x}=30,{D}_{y}=42$$ and $$D=6$$ are the values of the determinants for certain simultaneous equations in $$x$$ and $$y$$, then find the values of $$x$$ and $$y$$.
Solve the following simultaneous equations by using Cramer's rule: $$x - 2y = -18$$ $$2x - y = 9$$
Find $$D_{x}$$ for the following simultaneous equations: $$3x + 4y = 8, x - 2y = 5$$
If $${ D }_{ x }=24,{ D }_{ y }=32$$ are the values of the determinants for certain simultaneous equations in $$x$$ and $$y$$, then find the values of $$x$$ and $$y$$
Solve the following equations by Cramer's rule: $$3x+y+z=2,2x-4y+3z=-1,4x+y-3z=-11\quad $$
Find the ratios of $$x : y : z$$ from the equations $$7x = 4y + 8z, 3z = 12x + 11y$$.
If $$A=\left[ \begin{matrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{matrix} \right] $$ verify that $$A(adj\ A)=\left| A \right| I$$.
Solve the system of linear equation $$ 3x-2y=13$$ and $$ 4x+y=21$$
Solve the following simu1taneous equations. (1) $$5x-3y=8;$$ $$3x+y=2$$
Solve: (i)$$4x+5y-62=0$$ (ii)$$3x+2y-36=0$$
Solve.
$$3x-2y=1$$ and $$2x+y=3$$.
Solve the given pair of linear equations: $$(a-b)x+(a+b)y={a}^{2}-2ab-{b}^{2}$$ $$(a+b)(x+y)={a}^{2}+{b}^{2}$$
Find co-factors of elements of the matrices $$\begin {bmatrix} -1 & 2 \\ -3 & 4\end {bmatrix}$$
Solve the following equation by cramer's method: $$7x+3y=15 , 12y-5x=39$$
Find the value of: $$\begin{vmatrix} -3 & -5 \\ -2 & -1 \end{vmatrix}$$
Find $${D}_{x}$$ and $$D$$ for the equation $$2x+3y=4;7x-5y=2$$
Solve the following simultaneous equations. 2x - y = 5 ; 3x + 2y = 11
Solve the following simultaneous equations. x + y = 11 ; 2x - 3 y =7
Solve by Cramer's rule $$x+y+z=6$$ $$x-y+z=2$$ $$3x+2y-4z=-5$$. The value of x is
If $$D_y\, =\, -15$$ and $$D\, =\, -5$$ are the values of the determinants for certain simultaneous equations in $$x$$ and $$y$$, find $$y$$.
If $$ \displaystyle a_{1}f_{1}\left ( x \right )+a_{2}f_{2}\left ( x \right )+a_{3}f_{3}\left ( x \right )=0 $$ where $$a_1,a_2,a_3$$ are constants (not all zero) and $$ \displaystyle f_{1},f_{2},f_{3} $$ are twice differentiable functions.Then $$ \displaystyle D=\begin{vmatrix}f_{1}\left ( x \right ) &f_{2}\left ( x \right ) & f_{3}\left ( x \right )\\ Df_{1}\left ( x \right ) & Df_{2}\left ( x \right ) & Df_{3}\left ( x \right )\\ D^{2}f_{1} \left ( x \right )& D^{2}f_{2}\left ( x \right ) & D^{2}f_{3}\left ( x \right )\end{vmatrix} $$ is equal to $$ \displaystyle Df_{1}\left ( x \right )=\frac{d}{dx}f_{1} $$
If the polynomial $$\displaystyle f\left ( x \right )=2x^{3}+mx^{2}+nx-14$$ has $$\displaystyle \left ( x-1 \right )$$ and $$\displaystyle \left ( x+2 \right )$$ as its factors find the value of $$\displaystyle m\times n$$
For what value of $$k$$ will the following pair of linear equations have no solution? $$2x + 3y = 1 $$ and $$(3k - 1)x +(1 - 2k) y = 2k + 3$$
If $$A=\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$, show that $${ A }^{ 2 }-5A+7I=O$$. Hence find $${ A }^{ -1 }$$
If $$A=\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$, verify that $${ A }^{ 3 }-{ 6A }^{ 2 }+9A-4I=0$$. Hence find $$ { A }^{ -1 }$$
For the matrix $$A=\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$, show that $${ A }^{ 3 }-{ 6A }^{ 2 }+5A+11I=0$$. Hence find $${ A }^{ -1 }$$
Given, $$-3x + 4y = 20$$ and $$6x +3y =15$$ If $$(x, y)$$ is the solution to the system of equations above, what is the value of $$x$$ ?
Find '$$m+n$$' for the following simultaneous equations: $$3m+4n=7$$ and $$4m+3n=14$$
Solve the following simultaneous equations by using Cramer's Rule $$3x + y = 1$$, $$2x - 11 y = 3$$
If $$A=\begin{bmatrix} \cos^2\theta & \cos\theta \sin\theta\\ \cos\theta\sin\theta & \sin^2\theta\end{bmatrix}$$ and $$B=\begin{bmatrix}\cos^2\Phi & \cos\Phi \sin\Phi\\ \cos\Phi \sin\Phi & \sin^2\Phi\end{bmatrix}$$, show that AB is a zero matrix if $$\theta$$ and $$\Phi$$ differ by an odd multiple of $$\displaystyle\frac{\pi}{2}$$.
Solve the following simultaneous equations using Cramer's rule. $$3x-2y=3$$; $$2x+y=16$$.
Solve $$x + y + z = 11\\ 2x - 6y - z = 0\\ 3x + 4y + 2z = 0$$.
For what value of k , the following pair of linear equations has infinite number of solutions : $$5x + 2y = k ; 10x + 4y = 3$$
If 3m +5n =9 and 5m +3n =7 then find the value of 8m +8n.
Solve the following $$\frac{x}{3}+\frac{y}{4}=4, \frac{x}{2}-\frac{y}{4}=1$$
Solve the following simultaneous equation using cramer's rule $$4x+3y-4=0: 6x=1$$
Solve the following simultaneous equation using cramer's rule $$6x-4y=-12: 8x-3y=-2$$
Solve the following simultaneous equation using cramer's rule $$4m+6n=54 : 3m +2n =28$$
Solve the simultaneous equations. $$\dfrac { x } { 3 } + \dfrac { y } { 4 } = 4 ; \quad \dfrac { x } { 2 } - \dfrac { y } { 4 } = 1$$
Solve the following simultaneous equations using Cramer's rule : $$3x+y=7; \ 2x-11y=3.$$
Solve the following simultaneous equation using cramer's rule. $$3x-4y=10:4x+3y=5$$
Solve the following simultaneous equation using cramer's rule $$x+2y=-1: 2x-3y=12$$
Solve the following simultaneous equation using cramer's rule 2x + 3y = 2: x-$$\frac { y }{ 2 } =\frac{1}{2}$$
If $$A = \begin{bmatrix} 3& 2\\ 2 & 1\end{bmatrix}$$, verify that $$A^{2} - 4A - I = O$$, and hence find $$A^{-1}$$.
Show that the matrix $$A =\begin{bmatrix} -8& 5\\ 2 & 4\end{bmatrix}$$ satisifies the equation $$A^{2} + 4A - 42I = 0$$ and hence find $$A^{-1}$$.
If $$A = \begin{bmatrix} -1& -1\\ 2 & -2\end{bmatrix}$$, show that $$A^{2} + 3A + 4I_{2} = O$$ and hence find $$A^{-1}$$.
If $$A = \begin{bmatrix} 3& -2\\ 4 & -2\end{bmatrix}$$, find the value of $$\lambda$$ so that $$A^{2} = \lambda A - 2I$$. Hence, find $$A^{-1}$$.
Show that the $$A = \begin{bmatrix}1 & 0 & -2\\ -2 & -1 & 2\\ 3 & 4 & 1\end{bmatrix}$$ satisfied the equation $$A^{3} - A^{2} - 3A - I = O$$, and hence find $$A^{-1}$$.
Solve the following equation: $$\begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix}=0$$
Show that $$\begin{vmatrix} a^2+\lambda & ab & ac & ad \\ ab & b^2+\lambda & bc & bd \\ ac & bc & c^2+\lambda & cd \\ ad & bd & cd & d^2+\lambda \end{vmatrix}$$ is divisible by $$\lambda^{3}$$ and find the other factor.
Absolute value of the sum of roots of the equation $$\begin{vmatrix} x+2 & 2x+3 & 3x+4 \\ 2x+3 & 3x+4 & 4x+5 \\ 3x+5 & 5x+8 & 10x+17 \end{vmatrix}=0$$ is
$$\begin{vmatrix} { x }^{ n } & { x }^{ n+2 } & { x }^{ n+4 } \\ { y }^{ n } & { y }^{ n+2 } & { y }^{ n+4 } \\ { z }^{ n } & { z }^{ n+2 } & { z }^{ n+4 } \end{vmatrix}=\left( \cfrac { 1 }{ { y }^{ 2 } } -\cfrac { 1 }{ { x }^{ 2 } } \right) \left( \cfrac { 1 }{ { z }^{ 2 } } -\cfrac { 1 }{ { y }^{ 2 } } \right) \left( \cfrac { 1 }{ { x }^{ 2 } } -\cfrac { 1 }{ { z }^{ 2 } } \right) $$ then $$n$$ is _____.
If $$ x=-4 $$ is a root of $$ \Delta = \left| \begin{matrix} x & 2 & 3 \\ 1 & x & 1 \\ 3 & 2 & x \end{matrix} \right| = 0 $$ then find the other two roots.
If $$ x = - 9 $$ is root of $$ \left| \begin{matrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{matrix} \right| =0 $$ then other two roots are _________
The digit in the tens place of a two-digit number is three times that in the units place. If the digits are reversed, the new number will be $$36$$ less than the original number. Find the original number. Check your solution.
Find $$x$$ and $$y$$ using Cramer's Rule if : $$\dfrac{1}{2x}+\dfrac{2}{3y}=10,\dfrac{3}{2x}-\dfrac{5}{3y}=-3$$
Prove that one root of the equation is x=2 and hence find the remaining roots
If S the set of distinct values of 'b' for which the following system of linear equations x + y + z = 1 x + ay + z = 1 ax + by + z = 1
Use cramer's rule and solve
$$3x+4y+5z=18$$
$$2x-y+8z=13$$
$$5x-2y+7z=20$$
Solve the following simultaneous equations using corner's rule. (3) $$x+2y=-1;2x-3y=12$$
The value of $$\begin{vmatrix} 2{ x }_{ 1 }{ y }_{ 1 } & { x }_{ 1 }{ y }_{ 2 }+{ x }_{ 2 }{ y }_{ 1 } & { x }_{ 1 }{ y }_{ 3 }+{ x }_{ 3 }{ y }_{ 1 } \\ { x }_{ 1 }{ y }_{ 2 }+{ x }_{ 2 }{ y }_{ 1 } & 2{ x }_{ 2 }{ y }_{ 2 } & { x }_{ 2 }{ y }_{ 3 }+{ x }_{ 3 }{ y }_{ 2 } \\ { x }_{ 1 }{ y }_{ 3 }+{ x }_{ 3 }{ y }_{ 1 } & { x }_{ 2 }{ y }_{ 3 }+{ x }_{ 3 }{ y }_{ 2 } & 2{ x }_{ 3 }{ y }_{ 3 } \end{vmatrix}$$ is