Object: $$\displaystyle\int cosec^{-1}x, dx, x > 1$$.
The acceleration of a particle varies with time $$t$$ seconds according to the relation $$a = 6t + 6\ ms^{-2}$$. Find velocity and position as functions of time. It is given that the particle starts from origin at $$t = 0$$ with velocity $$2\ ms^{-1}$$.
Prove that $$\displaystyle \int x^{2}a^{x}dx=\frac{a^{x}}{\left ( \log a \right )^{3}}\left [ x^{2}\left ( \log a \right )^{2}-2x\left ( \log a \right )+2 \right ].$$
$$\displaystyle\int x^{3}\left ( \log x \right )^{2}dx=\frac{x^{4}}{4}\left ( \log x \right )^{2}-\frac{1}{8}x^{4}\log x+\frac{1}{4k}x^{4}.$$ Find the value of $$k$$
Show that $$\displaystyle \int \left ( e^{\log x}+\sin x \right )\cos dx=x\sin x+\cos x+\frac{1}{2}\sin^{2}x.$$
$$\displaystyle \int \left [ \frac{1}{\log x}-\frac{1}{\left ( \log x \right )^{2}} \right ]dx=x \left ( \log x \right )^{-1}.$$ If this is true enter 1, else enter 0.
Show that $$\int \displaystyle x\sin x\cos x = f(x)$$, taking const. of integration as zero. Find $$f(\pi /4)$$
$$\displaystyle \int \sec ^{2}x\log \left ( 1+\sin^{2}x \right )dx=\tan x\log \left ( 1+\sin ^{2}x \right )-2x+\sqrt{k}\tan^{-1}\sqrt{k}\tan x$$. Find the value of $$k$$.
The value of $$\displaystyle\int{{e}^{\ln{\sqrt{x}}}dx}$$ is
Find the integrals of the functions. i) $$sin^2 (2x + 5)$$ ii) $$sin \, 3x \, cos \, 4x$$ iii) $$cos \, 2x \, cos \, 4x \, cos \, 6x$$ iv) $$sin^3 (2x + 1)$$
Find the integrals of the functions. i) $$sin^3 \, x \, cos^3 \, x$$ ii) $$sin \, x \, sin \, 2x \, sin \, 3x$$ iii) $$sin \, 4x \, sin \, 8x$$ iv) $$\dfrac{1 - cos \, x}{1 + cos \, x}$$ v) $$\dfrac{cos \, x}{1 + cos \, x}$$
Find the area bounded by the ellipse $$\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1$$ and the ordinates $$x=0$$ and $$x=ae$$, where $$b^{2}=a^{2}(1-e^{2})$$ and $$e<1$$
$$\dfrac { d y } { d x } = ( 4 x + y + 1 ) ^ { 2 }$$
If $$\displaystyle \int {\left (\dfrac { x-1 }{ { x }^{ 2 } } \right ){ e }^{ x }dx=f\left( x \right) { e }^{ x }+c } $$, then write the value of f(x).
$$\displaystyle \int xe^{x}\cos x dx=\frac{e^{x}}{2}\left [ \left ( x-1 \right )\sin x+x\cos x \right ]$$. If this is true enter 1, else enter 0.
$$f$$ the graph of the antiderivative $$F(x)$$ of $$\displaystyle f\left ( x \right )=\log \left ( \log x \right )+\left ( \log x \right )^{-2}$$ passes through $$(e, 1998-e)$$ then the term independent of $$x$$ in $$F(x)$$ is
$$\displaystyle \int \sqrt{x^{6}+1}.\frac{\log \left ( x^{6}+1 \right )-6\log x}{x^{10}}dx=\frac{1}{6}\left [ \frac{2}{3}t^{3/2}\log t -\frac{2}{3}\int t^{3/2}\frac{1}{t} \right ]$$ where $$t=1+\frac{1}{x^{6}}$$. If this is true enter 1, else enter 0.