Processing math: 9%

Indefinite Integrals - Class 12 Commerce Applied Mathematics - Extra Questions

Integrate the following function with respect to x.
xsinhx



Solve :

a0xx+axdx



The value of (x.exdx) is,



The integration of y=x22+c . What does c represent?



I=ex(2cos2x+2sinxcosxcos2x)dx



Integrate the function    xsinx



Evaluate x2exdx.



Object: cosec1x,dx,x>1.



The acceleration of a particle varies with time t seconds according to the relation a=6t+6 ms2. Find velocity and position as functions of time. It is given that the particle starts from origin at t=0 with velocity 2 ms1.



Object: (ex)x(2+logx)dx.



Evaluate:
ex(1x1x2) dx.



Evaluate:
xnlogex dx



Integrate with respect to x:
xsin2x



ex.axdx=



Integrate the following
i) logx
ii) cos1(x)



Evaluate 13sinx+cosxdx



Evaluate:
ex54exe2xdx



Solve: exx2e2xdx



Integrate: ex[tanx+logsecx]dx



Solve xsin2xdx



Evaluate dxx+1x



xsin1x1x2dx



y=cosx1+sinxdx.



Using integration, find the area of the triangle PQR, whose vertices are at P(2,5),Q(4,7)  and R(6,2).



Evaluate: log(logx)+(logx)2=?



Evaluate: ex(x2+2x) dx



(x+1)logxdx



e2x(sin(ax+b))dx



xtan2xdx



(1(nx)1(nx)2)dx



x2sin1xdx



Solve xtan1xdx



sin1(3x4x3)dx



Evaluate:
xe2xdx



Find (11x2)e(x+1x)dx on I where I=(0,).



Evaluate xex(1+x)2dx



Solve sin1(2x1+x2)dx



If 4+x2x6dx=(a+x2)3/2.(x2b)120x5+C then a+b equals to



\int {{x^3}\log xdx = }



Integrate with respect to x:
x\ ln\ x



\displaystyle \int \dfrac{(t^{2}+1)^{2}}{t^6+1} dt



Integrate the function w.r.t x : x{\left( {\log x} \right)^2} 



Solve: \int\limits_0^{\pi /4} {\left( {x\cos x - \cos 3x} \right)dx} 



Integrate with respect to x:
\ell n\ x



Simplify:-
\int {x\ell n\sqrt x dx}



Integrate with respect to x:
x\sin^{2}x



Integrate with respect to x:
(i) \dfrac{x}{nx}
(ii) x\sin^2x



Solve : \int \, 4 \, x^3 \sqrt{5 - x^2 } \, dx



Solve : \displaystyle \int \, \dfrac{dx}{x - \sqrt{x}}



Solve : \displaystyle \int \dfrac{2x}{x^2+5}dx



Solve: \int 3^x.e^x dx =?



Solve \int e^{ax}\sin bxdx.



\displaystyle\int cosec^3x dx.



Evaluate:
\displaystyle\int \dfrac{1}{24+1}dx=?



Solve: \int tan (x)dx=?



\displaystyle \int \dfrac {3ax}{ b^{2}+c^{2}x^{2}} dx



Solve:\displaystyle\int\dfrac{(\ln x )^n}{x}dx



\int e^{\ 10x} dx



Evaluate: - 2 \int \cos 2 \theta \sin 2\theta d \theta



Solve:\sqrt{\sin x}dx



Prove that 
\int e ^ { x } \left( \tan ^ { - 1 } x + \frac { 1 } { 1 + x ^ { 2 } } \right) d x



I= \int { \left( { 1-x } \right) \left( { 2+3x } \right) \left( { 5-4x } \right) dx } 



\int {\tan x}dx



I = \int {\left( {3\sin x - 4\cos x + 5{{\sec }^2}x - 2\cos e{c^2}x} \right)dx}



Evaluate: \displaystyle \int{\dfrac{dx}{32-2x^{2}}}



\int {\cot xdx}



\int {cosec\;x dx}



\int {\sec xdx}



I = \int {{x^9}dx}



Evaluate: \int {\frac{{\tan x}}{{{{\left( {\cos x} \right)}^2}}}dx}



Evaluate :
\displaystyle \int \dfrac{2x}{1+x^2}dx



Find the value of -
\int xdx



I = \int {\sqrt[3]{x}dx}



Solve:
\displaystyle \int \dfrac{\log{x}}{x^{2}}\ dx



Solve
\int \dfrac{\cos (x+a)}{\cos (x-a)} dx



Solve:
\displaystyle \int \dfrac{x\tan^{-1}{x^{2}}}{(1+x^{4})}\ dx



Write the formula for integration by parts.



Find \displaystyle \int \dfrac {1}{9x^{2}+6x+5}dx



\int {{x^9}dx}



Evaluate \displaystyle \int{\cos^{2}x\, dx}.



Evaluate \displaystyle \int \dfrac{\cos^{-1} x}{\sqrt {1-x^2}}dx



Evaluate:
\displaystyle\int{\dfrac{1}{4+9x^{2}}}dx



Evaluate \displaystyle \int \dfrac {x^{3}}{x+2}dx



Integrate \displaystyle \int \dfrac{\sqrt{a-x}}{x}\ dx



Evaluate \int \dfrac{sec^2x}{3+tan^2x}dx



Evaluate \int \dfrac{log(\sin x)}{\tan x}dx



Integrate :
\int \dfrac{2\cos x}{sin^2x}dx



\int \sqrt{\frac{x}{a-x}} d x=



Evaluate :
\int 2^x dx



Evaluate :
\int (\dfrac{2}{1+2x}-\dfrac{1}{1-x})dx



I=\int ({1+x+x^{2}})dx



Prove that \displaystyle \int x^{2}a^{x}dx=\frac{a^{x}}{\left ( \log a \right )^{3}}\left [ x^{2}\left ( \log a \right )^{2}-2x\left ( \log a \right )+2 \right ]. 



\displaystyle\int x^{3}\left ( \log x \right )^{2}dx=\frac{x^{4}}{4}\left ( \log x \right )^{2}-\frac{1}{8}x^{4}\log x+\frac{1}{4k}x^{4}. Find the value of k



\displaystyle\int \frac{1}{x^{2}}\log \left ( x^{2}+a^{2} \right )dx=\frac{-1}{x}\log \left ( x^{2}+a^{2} \right )+k.\frac{1}{a}\tan^{-1}\frac{x}{a}. Find k.



Solve \displaystyle \int \frac{x}{1+\sin x}dx 



Show that \displaystyle \int \left ( e^{\log x}+\sin x \right )\cos  dx=x\sin x+\cos x+\frac{1}{2}\sin^{2}x.



\displaystyle \int \left [ \frac{1}{\log x}-\frac{1}{\left ( \log x \right )^{2}} \right ]dx=x \left ( \log x \right )^{-1}. If this is true enter 1, else enter 0.



Show that \int \displaystyle x\sin x\cos x = f(x), taking const. of integration  as zero. Find f(\pi /4)



\displaystyle \int \sec ^{2}x\log \left ( 1+\sin^{2}x \right )dx=\tan x\log \left ( 1+\sin ^{2}x \right )-2x+\sqrt{k}\tan^{-1}\sqrt{k}\tan x. Find the value of k.



Find the value of \int { x\sin { x } dx }  .



Evaluate: \displaystyle\int \log_ex dx.



Integration of \dfrac{\cos x}{\cos 3x}



Evaluate: \displaystyle\int\displaystyle\frac{x^3+5x^2+4x+1}{x^2}dx.



The value of \int { \cos ^{ 6 }{ x }  } dx is



Evaluate:
\displaystyle\int\dfrac{2^{x+1}-5^{x-1}}{10^x}dx



Find \displaystyle \int e^{x}\sin x\ dx.



\int { { e }^{ 3x } } \cdot { x }^{ 2 }dx



Integrate the following function: e^x\left(\dfrac{1+ sinx}{1+ cosx}\right)



Evaluate:
\displaystyle\int\log x\ dx



Solve \displaystyle \int_0^{\pi/4} ln (1+tan\,\,x)dx



\displaystyle \int {\sin x\sqrt {1 - \cos 2x} } \;dx



Integrate \displaystyle \int {\sqrt {1 + {x^2}} } dx is equal to:



Find \displaystyle  \int_{}^{} {x{e^x}dx.}



\int \frac{x^{-2/3}}{\sqrt(x^{1/3})^{2} - 4} dx =



Number of real solution of the given equation for x, \int x^{2}\ e^{x}dx=0



\displaystyle \int \dfrac {1-x}{1+x}



If \int \dfrac{1}{1+ \sin x} dx=\tan x-m\sec x.Find m



Solve:
\int { \tan { x } \tan { 2x } \tan { 3xdx }  }



Solve :
\displaystyle \int \left (\log(\log x)+\dfrac{1}{(\log x)^2}\right)dx



Solve \displaystyle\int^{\pi/2}_0e^x\cdot\sin \left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)dx.



Solve \displaystyle\int {\frac{{{e^x}\left( {{x^2} + 5x + 7} \right)}}{{{{\left( {x + 3} \right)}^2}}}} dx



Integrate:\displaystyle \int e^x\sin x\ dx



Solve \displaystyle\int \dfrac{\sqrt{1+x^2}}{x^2}dx



Solve \dfrac{1}{4}\displaystyle\int \left(\dfrac{1+\cos 2x}{2}\right)^2dx.



Integrate \int x.\cos^{-1}x



Evaluate \displaystyle\int a^{x} e^{x}\ dx.



\displaystyle \int {\dfrac{7^{2x+3}\sin^2 2x+ \cos^22x}{\sin^22x}}=\dfrac{7^{2x+3}}{2\log 7}-\dfrac{(\cot x+x)}{b}.Find b



\displaystyle\int x^3\tan^{-1}xdx.



Integrate with respect to x.:
e^{x}\sin x



Evaluate \int {{e^x}\left( {\tan x - \log \,\cos \,x} \right)\,dx}



Evaluate \int {x{\mathop{\rm sintx}\nolimits} \,dx}



\int {x^2}\,{e^x}\, dx =?



\int { \cos ^{ -1 }{ \left( 4{ x }^{ 3 }-3x \right) dx }  }



\int \sin x \log (\cos x)dx



\int x^{3}\cos x^{2}dx



Find the following integral.
\displaystyle\int e^x (\sec^2 x + \tan x).dx



Evaluate:
\displaystyle\int{{x}^{2}{(3-x)}^{5}dx}



\int { { x }^{ 3 }\tan ^{ -1 }{ x } dx }



\int { \cos ^{ -1 }{ \left( \dfrac { 1-{ x }^{ 2 } }{ 1+{ x }^{ 2 } }  \right)  } dx }



\int { \tan ^{ -1 }{ \left( \sqrt { x }  \right)  }  } dx



Evaluate \int\tan^{-1}x dx



\int{\dfrac{dx}{{x}^{1/3}+{x}^{1/2}}}



\int {{e^x}\left( {\cos x - \sin x} \right)dx}



\int {\ell n\left( {{x^2} + 1} \right)dx}



\int {{e^x}\left( {{{\sec }^2}x + \tan x} \right)} dx



Solve  \int { \cfrac { 1 }{ 9{ x }^{ 2 }+6x+10 } dx }



Evaluate \int{\sin ^{ - 1}}xdx



Evaluate: \displaystyle \int { \dfrac { \left( x-1 \right) \left( x-2 \right) \left( x-3 \right)  }{ \left( x-4 \right) \left( x-5 \right) \left( x-6 \right)  } dx }



Evaluate \displaystyle \int {\frac{{{x^2}\,{e^x}}}{{{{\left( {x + \,2} \right)}^2}}}\,dx}



Evaluate:

\displaystyle \int \dfrac{\sin (x)}{\sqrt{1+ \sin (x)}} dx



Evaluate: \displaystyle\int \dfrac{\cos 2x+2\sin^2x}{\sin^2x}dx.



\displaystyle\int \dfrac{1}{\cos^4x+\sin^4x}dx.



I = \displaystyle \int{\dfrac{x\cos x+\sin x}{x\sin x}}dx Then I = ?



Evaluate:
\displaystyle\int \dfrac{\sin^3xdx}{(\cos^4x+3\cos^2x+1)\tan^{-1}(\sec x+\cos x)}.



Evaluate the following :
\displaystyle \int{\left(\dfrac{\tfrac{x}{x+1}-ln(x+1) }{x(ln(x+1)) }\right)}dx



Integrate:
\displaystyle\int{\left( x+1 \right)\sqrt{3-2x-{{x}^{2}}}}dx =



Solve
\displaystyle \int{\dfrac{x}{(x^{2}+1)(x+1)}}



\int {\dfrac{1}{\sin x\ \cos^{2}x}}dx =



\int \frac{1}{x(x^n+1)}dx.



Simplify: \int {\dfrac{{{e^x}\left( {x - 1} \right)}}{{{{\left( {x + 1} \right)}^3}}}dx}



\int\frac{dx}{x^2-16}



Integrate with respect to x:
\dfrac { { x }^{ 2 }\tan ^{ -1 }{ x }  }{ 1+{ x }^{ 2 } }



Integrate with respect to x:
e^{x}\sin x



\int { \dfrac { x\sin ^{ -1 }{ x }  }{ \sqrt { 1-{ x }^{ 2 } }  }  } dx =



Integrate with respect to x:
2x^{2}e^{x^{2}}



\displaystyle \int a^{x}e^{x}dx



Find :
\int {\log xdx}



Solve:-
\int {\dfrac{{{e^x}}}{x}} \left( {1 + x.\ln x} \right)dx



Simplify:
\int {x{{\tan }^{ - 1}}xdx}



\displaystyle \int\dfrac {\cos 2x+2\sin^{2}x}{\cos^{2}x}dx



Solve : \int (1 - x) \sqrt{x}  \, dx



Integrate:
\int 2x^3 \,e^{x^2}.dx



Integrate:
\int e^x\sin  x.dx



Integrate : \int x\sin^2x 



Evaluate:
\displaystyle \int x+5 dx 



Evaluate
 \int {  { e }^{ x }(\tan { x } +1)secx\quad dx}



Find \int {{e^x}\left( {\frac{{x - 1}}{{{x^2}}}} \right)} dx



Solve:
 \int {\sin ^4}x.{\cos ^2}xdx



Integrate  \displaystyle \int e^{\log (\sec x+\tan x)}\sqrt{1+\tan^2 x}\ dx.



The value of \displaystyle\int{{e}^{\ln{\sqrt{x}}}dx} is



Find the integrals of the functions.
i) sin^2 (2x + 5)
ii) sin \, 3x \, cos \, 4x
iii) cos \, 2x \, cos \, 4x \, cos \, 6x
iv) sin^3 (2x + 1)



Find the integrals of the functions.
i) sin^3 \, x \, cos^3 \, x
ii) sin \, x \, sin \, 2x \, sin \, 3x
iii) sin \, 4x \, sin \, 8x
iv) \dfrac{1 - cos \, x}{1 + cos \, x}
v) \dfrac{cos \, x}{1 + cos \, x}



Evaluate:
\displaystyle\int x \cos^3x dx.



Find :
\int {\frac{e^x(x-1)}{(x+1)^3}dx}



\displaystyle\int e^{\tan x}\cdot \tan x\cdot \sec^2x \ dx.



\displaystyle\int \sqrt{1-x^2}dx.



Solve:
\int x^2e^x\sin xdx



Evaluate: \displaystyle \int { { x }^{ 2 }{ sin }^{ -1 } } x\ dx



Solve :
\int e^x \left( log x + \dfrac {1}{x^2} \right) dx



Solve \int { x\sqrt { x+2 }  } dx



\int e^{2} \left(\dfrac{x-1}{x^{2}}\right)



Solve:
I = \int {\dfrac{{dx}}{{18 - 4x - {x^2}}}}



Evaluate: \displaystyle\int{\dfrac{1+\cos x} { x+\sin x}dx } .



I= \int \dfrac{1}{x(1+\log x)}. dx



Solve :
I=\int \sin^{6}{x}dx



Solve :
\int x^{ \sin x} \left( \dfrac {sinx}{x} + \cos x . logx \right) dx



Evaluate:
\int { \sin ^{ 3 }{ x } .\cos ^{ 3 }{ x }  } dx



\int \sin^{3}x\cos^{2}x dx is equal to



Integrate the function:
\dfrac{\sin(\tan^{-1}x)}{1+x^2}



Evaluate:
\int x \cdot \sin^{2}x dx



Solve: \displaystyle \int { \dfrac {dx  }{ e^x+e^{-x} }  } 



\int \frac{ln(\frac{x-1}{x+1})}{x^{2}-1}dx is equal to



Find the integral part of the greatest root of equation x^{3}-10x^{2}-11x-100=0.



Solve :
\int 2^x . e^x dx



Find the following integrals:
\int \left (\sqrt {x} - \dfrac {1}{\sqrt {x}}\right )^{2}dx.



Solve : \int e^x. \sin \,3xdx



Solve:-
\int \dfrac{{\cos \,x}}{{1 + \cos \,x}}d x



Solve   \dfrac {1}{\sqrt {3}}\int \dfrac {dx}{\sin \left (x + \dfrac {\pi}{4}\right ) + 1}.



Solve :\int{x}{e^x}\sin x dx



\displaystyle\int { \sin { x\sin { \left( \cos { x }  \right)  }  }  } dx



Solve: \displaystyle \int \dfrac{x \cdot \sin^{-1}x}{(1 - x^2)^{\frac{3}{2}}} dx.



Solve:\displaystyle \int\dfrac{1}{\sqrt{1+4x^2}}dx



solve it.
I = \int {{x^2}\cos x} dx



Interget that :-  
   \int {x\sqrt {x + 2} }   dx



Evaluate 
\displaystyle \int {x.\,\,\,{{\sin }^2}x\,\,dx}



Evaluate  \int {x.\,\,\,\log x\,\,dx}



Solve:
\int {{{\cos }^3}x{e^{\log \left( {\sin x} \right)}}dx}



Integrate:
\int \frac{1-V}{1+V^{2}}dv.



\displaystyle\int \:e^x\left(x^2-x+1\right)dx 



integrate : 
   \int {{{\tan }^{ - 1}}xdx} .



\int cos^{2}\theta  d\theta = ?



\int \dfrac {\sec^{8}x}{cosec x}dx.



\int x  \sin ^ { - 1 } x \cdot d x



Evaluate: \int (3x^2 - 5)^2 dx



Find the area bounded by the ellipse \dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1 and the ordinates x=0 and x=ae, where b^{2}=a^{2}(1-e^{2}) and e<1



\dfrac { d y } { d x } = ( 4 x + y + 1 ) ^ { 2 }



Evaluate: \displaystyle\int {{x \over {\sqrt {x + 4} }}dx}



Evaluate:
\int {\frac{1}{{\sqrt {1 - x - {x^2}} dx}}}



\int \dfrac { \sin 2 x } { 1 + \sin ^ { 2 } x }



\displaystyle\int \dfrac{(x^2+\sin^2x)\sec^2x}{1+x^2}\cdot dx.



Solve:
\displaystyle \int_{0}^{2\pi}{e^{x}.\sin\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)dx}



Evaluate:
\displaystyle\int e^x(x^2+2x)\ dx.



Evaluate: \displaystyle  \int \frac { 1 } { \sqrt { x ^ { 2 } + 8 x + 25 } } d x



I = \int \frac { 1 } { \sqrt { 2 x ^ { 2 } + 3 x + 8 } } d x



Evaluate : \displaystyle \int \dfrac{x}{(x+1)^2}e^x dx



\displaystyle \int x \sin \dfrac {x}{2}=?



Evaluate:\displaystyle \int \tan ^ { 3 } 2 x \sec 2 x d x 



Solve:
\int \frac{dx}{\sqrt{4-x^{2}}}



Solve
I= \displaystyle\int \dfrac{x+2}{x^{2}+5x+6}dx



\int {\frac{{1 - \sin x}}{{\cos x}}} dx=?



Evaluate: \int x \sec ^ { 2 } x d x



Integrate: \sin ^ { 3 } ( 2 x + 1 )



Evaluate: \int x \sin 2 x d x



Solve
\int (4x^{3}-\dfrac{3}{x^{4}}) dx



Evaluate : \int { \sqrt { \dfrac { x }{ { x }^{ 3 }{ a }^{ 3 } }  } dx }



Evaluate: \displaystyle\int \dfrac { \cos x + x \sin x  } { x ( x + \cos x ) } d x



Evaluate
\int \dfrac {x+2}{2X^{2}+6x+5}dx



Solve: \displaystyle \int{\dfrac{dx}{x(a+bx^{n})^{2}}}



Solve
\int \csc  x dx



Prove that:
\displaystyle \int {\sin 2x}\ dx



Evaluate : \displaystyle\int \left(\dfrac{1}{\log x} - \dfrac{1}{(\log x)^2} \right) . dx



Find: \int { \frac { cos\theta  }{ (4+sin^{ 2 }\theta )(5-4{ cos }^{ 2 }\theta ) } d\theta  }



\displaystyle\int { \dfrac { dx }{ { e }^{ x }+{ e }^{ -x } }  } equals



Evaluate \int \dfrac{dx}{sin^2 X cos^2 X}



\int { \dfrac { { x }^{ 2 }+x+1 }{ \sqrt { { x }^{ 2 } } +x-1 }  } dx



\int { \left( x+2 \right)  } \sqrt { { x }^{ 2 }+1 } dx



Find \displaystyle \int \dfrac{x^{3}+x+1}{x^{2}-1}\ dx



Solve : \displaystyle \int \dfrac{dx}{\sqrt{x^{2}-3x+2}}



Solve
f(x)=\displaystyle\int _{ 0 }^{ 2 }{ t\left( \sin { x } -\sin { t }  \right) dt }



Integration 
\displaystyle\int \dfrac{x^{2}+3}{x^{6}(x^{2}+1)}dx



Solve:
\displaystyle \int{\dfrac{1}{x}\sqrt{\dfrac{x-1}{x+1}}dx}



Find \displaystyle \int \dfrac{1}{x\sqrt{x^{2}-1}}\ dx



Evaluate 
\int{e^{x} \left(\dfrac{1+\sin x}{1+\cos x}\right)}



Evaluate :
\displaystyle \int \dfrac{x}{\sqrt{x+2}}dx



Evaluate 
\int \dfrac{\log (1+x)}{(1+x)}dx



Integrate:
\displaystyle \int{\dfrac{\sqrt{1-x^{2}}+\sqrt{1+x^{2}}}{\sqrt{1-x^{4}}}}dx=



Find:
\displaystyle \int \dfrac {xe^{x}}{(1+x)^{2}}dx



Evaluate
\displaystyle\int { \dfrac { { x }^{ 3 }+{ 4x }^{ 2 }-7x+5 }{ x+2 }  } dx



\int \dfrac{x^2dx}{(x sin x+ cosx)^2}



Write the value of \int \dfrac{dx}{x^2+16}.



Evaluate:
\displaystyle\int e^x\left[\tan^{-1} x+\dfrac{1}{1+x^2}\right] dx.



\displaystyle\int { \sqrt { 4-{ x }^{ 2 } }  } dx is equals to



Solve
\int { \cfrac { { x }^{ 2 }-1 }{ ({ x }+1) }  } dx.



Evaluate:
\displaystyle\int\dfrac{a^x}{a^x+1} dx,a>0



Find the value of \displaystyle\int { { x }^{ 2 }\left( 1-\dfrac { 1 }{ { x }^{ 2 } }  \right) dx } .



Find the value of \displaystyle\int\dfrac{1-\cos 2x}{1+\cos 2x}dx



Evaluate \int \dfrac{(\log x)^2}{x}dx



Solve
I=\displaystyle \int (\sin 3x+ \cos 4\ x\ )dx



\displaystyle \int 2x^3+9x^2-8x+5 dx 



\displaystyle \int \dfrac {x^2}{x^3+64} dx



\displaystyle \int \dfrac{8x+5}{4x^2+5x+6} dx



\displaystyle \int \dfrac 2x+\dfrac 3x dx



If \displaystyle \int {\left  (\dfrac { x-1 }{ { x }^{ 2 } } \right ){ e }^{ x }dx=f\left( x \right) { e }^{ x }+c } , then write the value of f(x).



Integrate:
\int { x } \sin { 2x } dx



\displaystyle \int 4x^3+2x^3-3x+6 dx



\displaystyle \int \dfrac{ dx}{\sqrt{1 + x}}



Evaluate \displaystyle \int { \dfrac { 1-4x }{ \sqrt { 6+x-{ 2x }^{ 2 } }  }  } dx



\displaystyle \int \dfrac {\sin x\cos x}{\tan x \cot x}dx



\int { \frac { dx }{ \sqrt { x } -\sqrt { x-1 }  }  }



Solve
\int { { x }^{ 3 } } \log xdx



Simplify : \displaystyle\int{\dfrac{2dx}{\sqrt{x}}}



Find: \int { { x }^{ 2 }.\log { x } dx }.



Match the correct pair.



\int x log x dx =?



Evaluate :   \displaystyle \;\int {{x^4}\left( {1 + \log x} \right)dx}



Find :-
\int {\left[ {\log (\log x) + \frac{1}{{(\log {x^2})}}} \right]dx}



Find : \displaystyle\int (log \, x)^2 dx



Evaluate the given integral
\int { x.cosec ^{ 2 }{ x }  } dx



Evaluate the given integral.
\int { x\sin { x } \cos { x }  } dx



Evaluate the given integral.
\int { { x }^{ n }\log { x }  } dx



Evaluate the given integral.
\int { \sin { x } \log { \left( \cos { x }  \right)  }  } dx\quad



Evaluate the given integral.
\int { { x }^{ 2 }\cos { x }  } dx



Evaluate the given integral.
\int { x\cos { x }  } dx\quad



Evaluate the given integral.
\int { x\sin { 2x }  } dx\quad



Evaluate the given integral.
\int { { e }^{ x } } \left( \tan { x } -\log { \cos { x }  }  \right) dx



Evaluate the given integral.
\displaystyle \int { \cos ^{ -1 }{ \left( \cfrac { 1-{ x }^{ 2 } }{ 1+{ x }^{ 2 } }  \right)  }  } dx



Evaluate the given integral.
\int { \log _{ 10 }{ x }  } dx



Evaluate the given integral.
\int { { e }^{ x } } \left( \sec { x } (1+\tan { x } ) \right) dx



Evaluate \int x\cdot log (x+1) dx



\text { Evaluate: } \displaystyle \int \dfrac{e^{x}}{\sqrt{5-4 e^{x}-e^{2 x}}} \mathrm{d} \mathrm{x}



Find \displaystyle \int x^2 \,tan^{-1} \,xdx.



Solve:
\int x\sin x \ dx



Find \displaystyle \int_{0}^{1} x(tan^{-1} x)^2 dx



\displaystyle \int xe^{x}\cos x dx=\frac{e^{x}}{2}\left [ \left ( x-1 \right )\sin x+x\cos x \right ]. If this is true enter 1, else enter 0.



f the graph of the antiderivative F(x) of \displaystyle f\left ( x \right )=\log \left ( \log x \right )+\left ( \log x \right )^{-2}
passes through (e, 1998-e) then the term independent of x in F(x) is



\displaystyle \int \sqrt{x^{6}+1}.\frac{\log \left ( x^{6}+1 \right )-6\log x}{x^{10}}dx=\frac{1}{6}\left [ \frac{2}{3}t^{3/2}\log t -\frac{2}{3}\int t^{3/2}\frac{1}{t} \right ] where t=1+\frac{1}{x^{6}}. If this is true enter 1, else enter 0.



Evaluate \displaystyle \int { \frac { { x }^{ 2 } }{ x\left( 1+{ x }^{ 2 } \right)  }  } dx



Evaluate: \int \cos^{-1} (\sin x)dx.



Evaluate : \displaystyle\int \dfrac{\sin(x-a)}{\sin(x+a)}dx.



Find: \displaystyle \int x \tan^{-1} x  dx



Prove that: \displaystyle \int \sqrt {a^{2} - x^{2}}dx = \dfrac {x}{2}\sqrt {a^{2} - x^{2}} + \dfrac {a^{2}}{2}\sin^{-1} \left (\dfrac {x}{a}\right ) + c



Prove that \displaystyle \int \sqrt{x^2 - a^2} dx = \dfrac{x}{2} \sqrt{x^2 - a^2} - \dfrac{a^2}{2} \log |x + \sqrt{x^2 - a^2}| + c.



Solve \int { \sqrt { \cfrac { \sin { (x-a) }  }{ \sin { (x+a) }  }  }  } dx



Evaluate \displaystyle\int\displaystyle\frac{\cos 2x}{\sqrt{1+\sin 2x}}dx.



Evaluate: \displaystyle\int \tan^{-1}\sqrt{x}dx.



\int x^{x^2 +1} (2 \ln x + 1) dx



Prove that \int \sin^{17}x dx = -\dfrac {\sin^{16}x \cos x}{17} + \dfrac {16}{17}\int \sin^{15}x dx + c.



\int { \cfrac { { e }^{ x }\left( { x }^{ 3 }-x+2 \right)  }{ { \left( 1+{ x }^{ 2 } \right)  }^{ 2 } }  } dx=



Integrate  \int_{0}^{2[x]} \left \{\dfrac {x}{2}\right \} dx



Integrate  \displaystyle \int{ \frac{1}{x^{1/2} + x^{1/3}} dx}



Evaluate \int_{0}^{4}(|x| + |x - 2| + |x - 4|)dx.



Evaluate : \int^1_0\frac{log (1 +x)}{1 + x^2}dx 



Evaluate \displaystyle\int\dfrac{e^{-x}}{1+e^x}dx



Solve \left[-\displaystyle \int^{\pi/2}_0\cos \left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)e^x\right]dx



\int { { x }^{ n }\log { x } dx } 



\int { \sin { 4x } .{ e }^{ \tan ^{ 2 }{ x }  } } dx



Integrate the following functions:
x^{2}\cdot e^{3x}



\int {{{dx} \over {2{x^2} + 2x + 5}}}



Integrate \int { { e }^{ x }{ a }^{ x }dx } 



Solve \displaystyle \int_0^{\pi/2} \dfrac{x\,\,\sin\,x \,cos\,x}{cos^4x+\sin^4x}dx



\int \sqrt {2x}.\cos 2x dx



\int _{ 0 }^{ \pi /2 }{ \underbrace { { x }^{ 2 } }_{ I } \underbrace { \csc ^{ 2 }{ xd }  }_{ II }  } =I



Solve \displaystyle\int \dfrac{\sin x\cos x}{5\sin^2 x+3\cos^2 x}dx.



 Evaluate \int {\dfrac{{dx}}{{\left( {2x\, - \,7} \right)\,\sqrt {\left( {x\, - \,3} \right)\left( {x\, - \,4} \right)} }}}



Solve \displaystyle\int \left(\dfrac {x\sqrt {1+x}}{\sqrt {1-x}}\right)dx



Solve \displaystyle\int{\dfrac{6{u}^{3}du}{1+u}}



\int \frac{dx}{5+4Cosx}



\displaystyle\int\sqrt{a^2-x^2}dx.



Solve \int { \dfrac { \sin ^{ -1 }{ \sqrt { x }  } -\cos ^{ -1 }{ \sqrt { x }  }  }{ \sin ^{ -1 }{ \sqrt { x }  } +\cos ^{ -1 }{ \sqrt { x }  }  }  } dx



Evaluate:
\displaystyle\int { \left( { e }^{ a\ln { x }  }+{ e }^{ x\ln { a }  }+\sin { \alpha  }  \right) dx }



Solve the problem:-
\int {x{{\sin }^{ - 1}}x\,dx}



Integrate the following expression with respect to x. \dfrac{1}{x^{4}+x^{2}+1}



Integrate with respect to x:
e^{x}(\sec^{2}x+\tan x)



Find the integral of \frac{1}{{\sqrt {{a^2} - {x^2}} }} with respect to x and hence evaluate \int {\frac{{dx}}{{\sqrt {7 - 6x - {x^2}} }}}  



\displaystyle \int(\cot x+x)\cot^{2}x.dx



Evaluate:
\displaystyle\int \dfrac{dx}{\sqrt{1+4x^2}}.



Solve : I = \int \dfrac{dx}{\sqrt{3x + 4} - \sqrt{3x + 1}}



\int { x{ cos }^{ 2 }2x } dx



Evaluate the following:
\int x \sin ^{2} x.dx ?



\displaystyle\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}}{\dfrac{x\,dx}{1+\sin{x}}dx}



Integrate:
\displaystyle \int \cos x \log \cos x\ dx



solve: \int \dfrac{dx}{1+x+x^{2}}



Solve \int {\dfrac { 1-{ x }^{ 7 } }{ x\left( 1+{ x }^{ 7 } \right)  }  } dx 



Evaluate:  \int \frac { t ^ { 4 } d t } { \sqrt { 1 - t ^ { 2 } } }



Evaluate \int e ^ { 2 x } \sin x d x.



Evaluate :
\displaystyle \int \dfrac{x^{1/2}}{1+x^{3/4}}dx



Evaluate:    \displaystyle \int x \sin 3 x d x



\int  { x }  e ^ { 2 x } d x



Evaluate  \int \dfrac {\sin \theta}{\sin 3\theta} d\theta.



Solve: \displaystyle \int {\dfrac{{{x^2} - 1}}{{x\sqrt {1 + {x^4}} }}\;{\text{dx}}}



Evaluate: I=\displaystyle \int x\sin{2x}\ dx



Evaluate 
\int x^{2} \tan^{-1} xdx



Evaluate:
\displaystyle \int{\sqrt{\dfrac{a+x}{a-x}}}dx.



\dfrac {1}{\left(x+1\right)\left(x^ {2}-1\right)}



Evaluate the given integral.
\int { \sec ^{ -1 }{ \sqrt { x }  }  } dx



Integrate:
\displaystyle \int{\dfrac{dx}{3x^{2}+13x-10}}



Evaluate the given integral.
\int { { x }^{ 2 }\cos ^{ 2 }{ x }  } dx



Evaluate the given integral.
\int { \left( x+1 \right) { e }^{ x }\log { \left( x{ e }^{ x } \right)  }  } dx



Evaluate: \displaystyle \int \frac { \log x } { ( 1 + \log x ) ^ { 2 } } d x



Prove that:
\displaystyle \int \dfrac {x^{2}dx}{(x\sin x+\cos x)^{2}}



Evaluate the given integral.
\displaystyle \int { \sin ^{ -1 }{ \left( \cfrac { 2x }{ 1+{ x }^{ 2 } }  \right)  }  } dx\quad \quad



Evaluate the given integral.
\int { \cos ^{ -1 }{ \left( 4{ x }^{ 3 }-3x \right)  }  } dx



Evaluate the given integral.
\int {x.{\sin}^{-1}{x}}



Evaluate the given integral.
\displaystyle \int { \tan ^{ -1 }{ \left( \cfrac { 2x }{ 1-{ x }^{ 2 } }  \right)  }  } dx\quad



Evaluate the given integral.
\int { \sin ^{ -1 }{ \left( 3x-4{ x }^{ 3 } \right)  }  } dx



Evaluate the given integral.
\displaystyle \int { \tan ^{ -1 }{ \left( \cfrac { 3x-{ x }^{ 3 } }{ 1-3{ x }^{ 2 } }  \right)  }  } dx



Class 12 Commerce Applied Mathematics Extra Questions