Matrices - Class 12 Commerce Applied Mathematics - Extra Questions

Determine whether for given matrices matrix product is defined or not. If the product is defined, state the dimension of the product matrix.
$$A_{1 \times 3}$$ and $$B_{4 \times 3}$$



Construct a $$2\times 2$$ matrix $$A=[a_{ij}]$$ whose elements are given by $$\dfrac{1}{2}|-3i+j|$$.



If A = $$\begin{bmatrix}2 &3  &1 \\0  & -1 & 5\end{bmatrix}$$ , B =$$ \begin{bmatrix}1 & 2  &-1 \\0  & -1 & 3\end{bmatrix}$$ find 2A - 3B



A = $$\begin{bmatrix}1 & 2 & -3\\ 5 & 0 & 2\\ 1 & -1 & 1 \end{bmatrix}$$ and   B  =  $$\begin{bmatrix}3 & -1 & 2\\ 4 & 2 & 5\\ 2 & 0 & 3 \end{bmatrix}$$
Find the matrix C satisfying the relation A + 2C = B



If $$ A=\begin{pmatrix} 4 & -2 \\ 5 & -9 \end{pmatrix}$$ and $$ B=\begin{pmatrix} 8 & 2 \\ -1 & -3 \end{pmatrix}$$ find $$6A-3B$$



If $$y=\left[ \begin{matrix} 1 & 2 \\ -1 & 5 \end{matrix} \right] $$, find a matrix $$X$$ such that $$2X+Y=\left[ \begin{matrix} 5 & 0 \\ -3 & 3 \end{matrix} \right] $$



Find matrix $$X$$, if $$X+\left[ \begin{matrix} 4 & 6 \\ -3 & 7 \end{matrix} \right] =\left[ \begin{matrix} 3 & -6 \\ 5 & -8 \end{matrix} \right] $$.



Identify the matrix given below:
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$



$$A=\begin{bmatrix} 5 & 7 \\ 9 & 4 \end{bmatrix}B=\begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$$ find $$A-B$$



Construct a $$2\times 2$$ matrix $$A = [a_{ij}]$$, whose element $$a_{ij}$$ is $$a_{ij} = \dfrac {|-3i + j|}{2}$$.



Find x if $$ \left| x\quad 2 \right| $$=$$\left| 6\quad 2 \right| $$.



Find the order of $$AB$$ and $$BA$$ if  $$A=\left[a_{ij}\right]_{4 \times 3} , B=\left[b_{ij}\right]_{3 \times 2}$$



Construct a $$2\times 3$$ matrix $$A = [a_{ij}]$$, whose element $$a_{ij}$$ is $$a_{ij} = i + j$$.



If the matrix $$A = \begin{bmatrix}0 & a & -3\\ 2 & 0 & -1\\ b & 1 & 0\end{bmatrix}$$ is skew-symmetric, then find the values of $$'a'$$ and $$'b'$$.



If $$A = [a_{ij}]$$ is a $$2\times 2$$ matrix such that $$a_{ij} = i + 2j$$, then find $$A$$.



If $$A$$ is skew-symmetric and $$n\epsilon N$$, such that $$(A^{n})^{T} = \lambda A^{n}$$, write the value of $$\lambda$$.




Find $$A-B$$
$$A=\begin{bmatrix} 2 & 2 & 0 \\ 3 & -4 & 5 \\ 2 & 3 & -7 \end{bmatrix}$$ and $$B=\begin{bmatrix} 3 & 3 & 1 \\ 4 & -5 & 4 \\ 3 & 2 & -4 \end{bmatrix}$$



Show that the elements on the main diagonal of a skew-symmetric matrix are all zero.



Let $$A=\begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}, B=\begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$$ and $$C=\begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix}$$. Find:
$$B-4C$$



If $$ A\quad =\quad \left[ \begin{matrix} 2 \\ 5 \end{matrix} \right] ,\quad B\quad =\quad \left[ \begin{matrix} 1 \\ 4 \end{matrix} \right] \quad and\quad C\quad =\quad \left[ \begin{matrix} 6 \\ -2 \end{matrix} \right]  $$
$$ A-C $$ 



Classify the following matrices:

$$\text { (i) }\left[\begin{array}{cc}2 & -1 \\5 & 1\end{array}\right]$$

$$\text { (ii) }\left[\begin{array}{llll}2 & 3 & -7\end{array}\right]$$

$$\text { (iii) }\left[\begin{array}{c}3 \\0 \\-1\end{array}\right]$$

$$\text { (iv) }\left[\begin{array}{cc}2 & -4 \\0 & 0 \\1 & 7\end{array}\right]$$

$$\text { (v) }\left[\begin{array}{rrr}2 & 7 & 8 \\-1 & \sqrt{2} & 0\end{array}\right]$$

$$\text { (vi) }\left[\begin{array}{lll}0 & 0 & 0 \\0 & 0 & 0\end{array}\right]$$



if $$ A = [ 8\ \ -3] $$ and $$ B = [ 4\ \ -5] $$ find 
$$ (ii) B- A $$



Construct a $$2 \times 2$$ matrix whose elements a are given by
(i) $$a_{i j}=2 i-j$$
(ii) $$a_{i j}=i . j$$



Let $$ A=\begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix},B=\begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix},C=\begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix} $$
Find the following:

$$ 3A-C $$



Evaluate  :
$$ 6 \left[ \begin{matrix} 3 \\ -2 \end{matrix} \right] -2 \left[ \begin{matrix} -8 \\ 1 \end{matrix} \right]  $$ 



Let $$ A=\begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix},B=\begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix},C=\begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix} $$
Find the following:

$$ A-B $$



Given $$ A\quad =\begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}\quad and\quad B\quad =\begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} $$ Find
$$ A - B $$



Find the symmetric and skew-symmetric parts of the matrix

$$\quad A = \begin{bmatrix}1 & 2 & 4 \\ 6 & 8 & 1 \\ 3 & 5 & 7 \end{bmatrix}$$



Write matrix $$A$$ as the sum of a symmetric and a skew symmetric matrix, where
$$\quad A = \begin{pmatrix}4 & 2 & -3 \\ 1 & 3 & -6 \\ -5 & 0 & -7\end{pmatrix}$$



Show any square matrix can be expressed as the sum of two matrices, one symmetric and the other anti-symmetric.



Construct a $$3 \times 4$$ matrix, whose elements are given by 
(i) $$\displaystyle { a }_{ ij }=\frac { 1 }{ 2 } \left| -3i+j \right| $$
(ii) $$\displaystyle { a }_{ ij }=2i-j$$



Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
(i) $$\displaystyle \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}$$

(ii) $$\displaystyle \left[ \begin{matrix} 6 \\ -2 \\ 2 \end{matrix}\begin{matrix} -2 \\ 3 \\ -1 \end{matrix}\begin{matrix} 2 \\ -1 \\ 3 \end{matrix} \right] $$

(iii) $$\displaystyle \left[ \begin{matrix} 3 \\ -2 \\ -4 \end{matrix}\begin{matrix} 3 \\ -2 \\ -5 \end{matrix}\begin{matrix} -1 \\ 1 \\ 2 \end{matrix} \right] $$

(iv) $$\displaystyle \begin{bmatrix} 1 & 5 \\ -1 & 2 \end{bmatrix}$$



Construct a 2 $$\times$$ 2 matrix $$A = [a_{ij}]$$, whose elements are given by $$a_{ij} = |-5i + 2j|$$.



Construct a $$2\times 3$$ matrix $$A=\left[ { a }_{ ij } \right] $$ whose elements are given by $${ a }_{ ij }=\left| 2i-3j \right| $$



Construct a $$2 \times 2$$ matrix $$A = [a_{ij}]$$ whose elements are given by $$a_{ij} = ij$$



A matrix consists of $$30$$ elements. What are the possible orders it can have?



A matrix has 8 elements. What are the possible orders it can have?



The fees structure for one-day admission to a swimming pool is as follows
Daily Admission Fees in Rs.
Member
Children
Adult
Before 2.00 p.m.
20
30
After 2.00 p.m.
30
40
Non - Member


Before 2.00 p.m.
25
35
After 2.00 p.m.
40
50
Write the matrix that represents the additional cost for non-membership.



Construct a $$2 \times 2$$ matrix $$A = [a_{ij}]$$ whose elements are given by $$a_{ij} = 2i - j$$



Write $$A = \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}$$ as the sum of a symmetric and a skew-symmetric matrix.



Prove that any square matrix $$A$$ can be expressed as the sum of two symmetric and skew-symmetric matrices.



Construct a $$2\times 2$$ matrix $$A = [a_{ij}]$$, whose elements are given by $$a_{ij} = \dfrac {i}{j}$$.



Prove
If $$A$$ and $$B$$ are $$n$$ squared skew symmetrics matrices then $$AB$$ is symmetric if and only if $$A$$ and $$B$$ commute.



Solve $$5x - 6y + 4z = 15
7x + 4y - 3z = 19
2x + y + 6z = 46$$.



Prove that:
[ x   y     z ] $$\begin{bmatrix} a& h & g\\  h & b & f\\ g & f  & c \end{bmatrix}$$$$\begin{bmatrix}x\\ y \\ z\end{bmatrix}$$
$$ = [ ax^2  \, + \, by^2  \, + \, cz^2 \, + cfz \, + 2gzx \, + \, 2hxy]$$



If $$A_\alpha \, = \, \begin{bmatrix}cos \, \, n\alpha & \sin \, n\alpha \\ -\sin \, n\alpha  &\cos \, \,  n\alpha \end{bmatrix}$$ , then the prove following .
$$A_\alpha\,A_\beta \, = \, A_{\alpha + \beta} \, =\,A_\beta A_\alpha $$



If A = $$ \begin{bmatrix}  3 & -4 \\ 1  & -1\end{bmatrix}$$ then $$ A^k \, = \, \begin{bmatrix}1 + 2k   &  - 4k \\ k    & 1 -2k\end{bmatrix}$$
where k is any +ve integer .



If $$X = \left[ \matrix{  0\;\;-1 \hfill \cr 1\;\; 0 \hfill \cr}  \right]$$ then $${X^{1023}} = $$



Express the matrices as the sum of systemmetric & a skew- symmetric matrices $$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$



Express $$ \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$$ as a sum of symmetric and skew symmetric matrices.



If $$A=\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix},B=\begin{bmatrix} 0 & 4 \\ -1 & 7 \end{bmatrix},C=\begin{bmatrix} 1 & 0 \\ -1 & 4 \end{bmatrix}$$, find $$AC+{B}^{2}-10C$$



Let $$f(x)=x^2-5x+5$$ then find $$f(A)$$ for $$A=\begin{bmatrix}3&1\\1&2\end{bmatrix}$$.



Find the value of $$\lambda $$, so that the matrix 
 $$\left[ \begin{gathered}  5 - \lambda \,\,\,\,\,\lambda  + 1 \hfill \\  \,\,\,\,2\,\,\,\,\,\,\,\,\,\,\,\,\,4 \hfill \\ \end{gathered}  \right]$$ may be singular.



If $$A=\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$$, show that $$A-{A}^{T}$$ is a skew-symmetric matrix.



If  ,$$3\begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}-2\begin{bmatrix} -2 & 1 \\ 3 & 2 \end{bmatrix}+\begin{bmatrix} x & -4 \\ 3 & y \end{bmatrix}=0$$ then $$(x,y)=$$



If $$A = \left[ \begin{array} { l l l } { 1 } & { 2 } & { 3 } \\ { 3 } & { 2 } & { 1 } \end{array} \right]$$ and $$B = \left[ \begin{array} { l l l } { 3 } & { 2 } & { 1 } \\ { 1 } & { 2 } & { 3 } \end{array} \right]$$ find$$3 B - 2 A$$



If $$A=\left[ \begin{matrix} a & 2 & 3 \\ b & c & 4 \\ d & e & f \end{matrix} \right]$$ is skew symmetric matrix, then find $$a,b,c,d,e,f$$.



If A and B are two skew symmetric matrices of same order, then AB is symmetric matrix if ___________ . 



If $$A$$ is any $$m \times n$$ matrix, then show that
$$\left(i\right) \left(1\right) A= A$$
$$\left (ii\right) \left( - 1\right ) A = - A$$



If A is a square matrix such that $$A^2=I$$, then find the simplified value of $$(A-I)^3+(A+I)^3-7A$$.



If $$A=\begin{bmatrix} 3 & 5 \\ 7 & -9 \end{bmatrix} $$ and $$B = \begin{bmatrix} 6 & -4 \\ 2 & 3 \end{bmatrix}$$, find $$(4A-3B)$$.



For the matrix $$A=\left[ \begin{matrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{matrix} \right] $$
verify that $$A^{ 3 }-6{ A }^{ 2 }+9A-4I=0$$ Hence find $${ A }^{ -1 }$$



If  $$ \Delta _ { r }  = \left| \begin{array} { c c c } { r - 1 } & { n } & { 6 } \\ { ( r - 1 ) ^ { 2 } } & { 2 n ^ { 2 } } & { 4 n - 2 } \\ { ( r - 1 ) ^ { 3 } } & { 3 n ^ { 3 } } & { 3 n ^ { 2 } - 3 n } \end{array} \right| .$$ then  $$\sum _ { n = 1 } ^ { n } \Delta _ { r }$$ is



Construct a $$2\times 3$$ matrix $$A=\left[{a}_{ij}\right]$$ whose elements are given by $${a}_{ij}=\begin{cases} i-j\,\,\,\,i\ge j \\ i+j\,\,\,\,i<j  \end{cases}$$



Show that $$\left( {\begin{array}{*{20}{c}}{a - b - c}&{2a}&{2a}\\{2b}&{b - c - a}&{2b}\\{2c}&{2c}&{c - a - b}\end{array}} \right) = {(a + b + c)^3}$$



Construct a $$2\times 3$$ matrix $$A=\left[{a}_{ij}\right]$$ whose elements are given by $${a}_{ij}=\left[\dfrac{i}{j}\right]$$, where $$\left[.\right]$$ denotes the greatest integer function.



Find the value of a, b, c and d if
$$\left[ \begin{matrix} a+b & 3 \\ a+c & b \end{matrix} \right] =\left[ \begin{matrix} 6 & d \\ -1 & 8 \end{matrix} \right] $$



If A = $$\left( \begin{matrix} a & b \\ c & -a \end{matrix} \right) $$ such that $${ A }^{ 2 }-I$$ then,



If $$A = \left| \begin{matrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r \end{matrix} \right| $$ and $$I$$ is the identity matrix of order $$3$$, then show that$$A^{ 3 } = pI + qA + rA^{ 2 }$$.



If matrix A = $$[aij] _{3\times2},$$ and $$aij =  (3i-2j)^2$$, then find the matrix A.  



Express $$A = \begin{bmatrix} 2 & 5 & -1 \\ 3 & 1 & 5 \\ 7 & 6 & 9 \end{bmatrix}$$as sum of symmetric and skew- symmetric matrices.



Express$$\begin{bmatrix} 6 & -4 & 5 \\ 1 & 4 & -2 \\ 7 & 5 & 9 \end{bmatrix}$$ as a sum of a symmetric matrix and a skew-symmetric matrix.



Construct a $$2\times 2$$ matrix $$A = [a_{ij}]$$, whose element $$a_{ij}$$ is $$a_{ij} = \dfrac {|2i - 3j|}{2}$$.



Construct a $$2\times 2$$ matrix $$A = [a_{ij}]$$, whose element $$a_{ij}$$ is $$a_{ij} = \dfrac {(i - 2j)^{2}}{2}$$.



Construct a $$2\times 2$$ matrix $$A = [a_{ij}]$$, whose element $$a_{ij}$$ is $$a_{ij} = \dfrac {(i - j)^{2}}{2}$$.



Construct a $$2\times 2$$ matrix $$A = [a_{ij}]$$ whose elements $$a_{ij}$$ are given by:

$$a_{ij}=\left|{\dfrac{3i-j}{2}}\right|$$



Construct a $$2\times 3$$ matrix $$A = [a_{ij}]$$, whose element $$a_{ij}$$ is $$a_{ij} = 2i - j$$.



Construct a $$2\times 2$$ matrix $$A = [a_{ij}]$$, whose element $$a_{ij}$$ is $$\dfrac {(i +j)^{2}}{2}$$.



Construct a $$2\times 2$$ matrix $$A = [a_{ij}]$$, whose element $$a_{ij}$$ is $$a_{ij} = e^{2ix} \sin xj$$.



Construct a $$2\times 2$$ matrix $$A = [a_{ij}]$$, whose element $$a_{ij}$$ is $$a_{ij} = \dfrac {(2i + j)^{2}}{2}$$.



Construct a $$2\times 2$$ matrix $$A = [a_{ij}]$$, whose element $$a_{ij}$$ is $$a_{ij} = \dfrac {(i + j)^{2}}{2}$$. .



Construct a $$4\times 3$$ matrix $$A =[a_{ij}]$$, whose element $$a_{ij}$$ is $$a_{ij} = 2i + \dfrac {i}{j}$$.



If $$A = \begin{bmatrix}2 & 4\\ 3 & 2\end{bmatrix}, B = \begin{bmatrix} 1& 3\\ -2 & 5\end{bmatrix}$$, then find the value of $$2A - 3B$$.



IF $$B = \begin{bmatrix} 1& 3\\ -2 & 5\end{bmatrix}$$ and $$C = \begin{bmatrix} -2& 5\\ 3 & 4\end{bmatrix}$$, then find the value of $$B - 4C$$.



If $$A = \begin{bmatrix} 3& -4\\ 1 & -1\end{bmatrix}$$, then prove that $$A - A^{T}$$ is a skew-symmetric matrix.



If $$A = \begin{bmatrix}2 & 4\\ 3 & 2\end{bmatrix}$$ and $$B = \begin{bmatrix} -2& 5\\ 3 & 4\end{bmatrix}$$, then find the value of $$3A - B$$.



Construct a $$4\times 3$$ matrix $$A =[a_{ij}]$$, whose element $$a_{ij}$$ is $$a_{ij} = \dfrac {i - j}{i + j}$$.



Express the matrix $$A = \begin{bmatrix} 4& 2 &-1 \\ 3 & 5 & 7\\ 1 & -2 & 1\end{bmatrix}$$ as the sum of symmetric and a skew-symmetric matrix.



Write matrix $$A$$ satisfying $$A + \begin{bmatrix} 2& 3\\ -1 & 4\end{bmatrix} = \begin{bmatrix}3 & -6\\ -3 & 8\end{bmatrix}$$.



Express the square matrix $$A$$ as the sum of a symmetric and a skew-symmetric matrix.



If $$A = [a_{ij}]$$ is a skew-symmetric matrix, then write a value of $$\displaystyle \sum_{i} \displaystyle \sum_{j} a_{ij}$$.



If $$A$$ and $$B$$ are symmetric matrices of the same order, write whether $$AB - BA$$ is symmetric or skew-symmetric or neither of the two.



If $$\begin{bmatrix} 9& -1 & 4\\ -2 & 1 & 3\end{bmatrix} = A + \begin{bmatrix} 1& 2 & -1\\ 0 &4  &9 \end{bmatrix}$$, then find matrix $$A$$.



For what value of $$x$$, is the matrix $$A = \begin{bmatrix}0 & 1 & -2\\ -1 & 0 & 3\\ x & -3 & 0\end{bmatrix}$$ a skew-symmetric matrix?



Construct a $$2\times 2$$ matrix $$A = [a_{ij}]$$, whose elements $$a_{ij}$$ are given by $$a_{ij} = \left\{\begin{matrix}\dfrac {|-3i + j|}{2}, & \ \text{if}\ i\neq j\\ (i + j)^{2}, & \ \text{if}\ i = j\end{matrix}\right.$$



If $$A = \begin{bmatrix}-1 & 1 & -1\\ 3 & -3 & 3\\ 5 & 5 & 5\end{bmatrix}$$ and $$B = \begin{bmatrix}0 & 4 & 3\\ 1 & -3 & -3\\ -1 & 4 & 4\end{bmatrix}$$, then find $$A^{2} - B^{2}$$.



If $$A=\begin{bmatrix} 3 & 1 & 2 \\ 1 & 2 & -3 \end{bmatrix}$$ and $$B=\begin{bmatrix} -2 & 0 & 4 \\ 5 & -3 & 2 \end{bmatrix}$$, find $$(2A-B)$$.



Let $$A=\begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}, B=\begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$$ and $$C=\begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix}$$. Find:
$$A-2B+3C$$



Find matrices $$A$$ and $$B$$, if 
$$2A-B=\begin{bmatrix} 6 & -6 & 0 \\ -4 & 2 & 1 \end{bmatrix}$$ and $$2B+A=\begin{bmatrix} 3 & 2 & 5 \\ -2 & 1 & -7 \end{bmatrix}$$.



Express the matrix $$A=\begin{bmatrix} 3 & 2 & 5 \\ 4 & 1 & 3 \\ 0 & 6 & 7 \end{bmatrix}$$ as sum of two matrices such that one is symmetric and the other is skew-symmetric.



If $$A=\begin{bmatrix} 1 & 0 & -2 \\ 3 & -1 & 0 \\ -2 & 1 & 1 \end{bmatrix},B=\begin{bmatrix} 0 & 5 & -4 \\ -2 & 1 & 3 \\ -1 & 0 & 2 \end{bmatrix}$$ and $$C=\begin{bmatrix} 1 & 5 & 2 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$ verify that $$A(B-C)=(AB-AC)$$.



Construct a $$2\times 3$$ matrix whose elements are given by 
$$a_{ij}=\dfrac{1}{2}|-3i+j|$$.



Construct a $$3\times 2$$ matrix whose elements are given by $$a_{ij}=(2i -j)$$



Construct a $$3\times 2$$ matrix whose elements are given by 
$$a_{ij}=\dfrac{1}{2}(i-2j)^2$$.



Construct a $$3\times 4$$ matrix whose elements are given by $$a_{ij}=\dfrac {1}{2}|-3i+j\ |$$.



Construct a $$4\times 3$$ matrix whose elements are given by $$a_{ij}=\dfrac {i}{j}$$.



Construct a $$2\times 3$$ matrix whose elements are $$a_{ij}=\dfrac {(i-2j)^2}{2}$$.



Construct a $$2\times 2$$ matrix whose elements are $$a_{ij}=\dfrac {(i+2j)^2}{2}$$.



Express the matrix $$A$$ as the sum of a symmetric and a skew symmetric matrix, where
$$A= \begin{bmatrix} 2 & 4 & -6 \\ 7 & 3 & 5 \\ 1 & -2 & 4 \end{bmatrix}$$



Prove that every square matrix can be uniquely expressed as the sum of a symmetric matrix and skew-symmetric matrix.



Construct $$a_{2 \times 2}$$ matrix, where $$a_v=\dfrac{(i-2j)^2}{2}$$



Construct a $$3 \times 2$$ matrix whose elements are given by $$a_v=e^{ix}.\sin \ jx$$.



Construct $$a_{2 \times 2}$$ matrix, where $$a_v=|-2i+3j|$$



Sum of two skew symmetric matrices is always ______ matrix.



If the matrix $$\begin{bmatrix} 0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0 \end{bmatrix}$$ is a skew symmetric matrix, then find the values of $$a,\ b$$ and $$c$$.



Construct a matrix $$A=[a_{i}]_{2\times 2}$$ whose elements $$a_{ij}$$ are given by $$a_{ij}=e^{2ix}\sin jx$$



Express the matrix $$\begin{bmatrix} 2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2 \end{bmatrix}$$ as the sum of a symmetric and a skew-symmetric matrix.



Show with the usual notation that for any matrix 
$$A = [a_{ij}]_{3 \times 3} $$ is $$  a_{11} A_{21} + a_{12} A_{22} + a_{13} A_{23} = 0 $$ 



Show with the usual notation that for any matrix 
$$A = [a_{ij}]_{3 \times 3} $$ is $$  a_{11} A_{11} + a_{12} A_{12} + a_{13} A_{13} = |A| $$ 



Construct a $$ 3 \times 4 $$ matrix, whose elements are given by:
(i) $$ a_{ij}=\frac{1}{2} \left| -3i+j \right|  $$
(ii) $$ a_{ij}=2i-j $$



If $$ A= \left[ \begin{matrix} \frac { 2 }{ 3 }  & 1 & \frac { 5 }{ 3 }  \\ \frac { 1 }{ 3 }  & \frac { 2 }{ 3 }  & \frac { 4 }{ 3 }  \\ \frac { 7 }{ 3 }  & 2 & \frac { 2 }{ 3 }  \end{matrix} \right] and\quad B=\left[ \begin{matrix} \frac { 2 }{ 5 }  & \frac { 3 }{ 5 }  & 1 \\ \frac { 1 }{ 5 }  & \frac { 2 }{ 5 }  & \frac { 4 }{ 5 }  \\ \frac { 7 }{ 5 }  & \frac { 6 }{ 5 }  & \frac { 2 }{ 5 }  \end{matrix} \right] ,then $$
compute $$ 3A-5B $$



Express matrix $$A$$ as the sum of symmetric and skew symmetric matrices, where $$A=\begin{bmatrix} 6 & 2 \\ 5 & 4 \end{bmatrix}$$. 



Construct a matrix $$B=[b_{ij}]$$ of the order $$2\times 3$$, whose elements are $$b_{ij}=(i+2j)^2 /2$$.



$$ A = \left[ \begin{matrix} 6 & 8 & 7 \\ 4 & 2 & 3 \\ 9 & 7 & 1 \end{matrix} \right]  $$ is the sum of symmentric and skew symmentric matrix , find B 



Explain the following matrices as the sum of symmetric and a skew symmetric matrix : 
$$ \begin{bmatrix} 3\quad  & 5 \\ 1 & -1 \end{bmatrix} $$



Explain the following matrices s the sum of symmetric and a skew symmetric matrix : 
$$ \left[ \begin{matrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{matrix} \right]  $$



Construct a matrix of order $$3\times 3, B=[b_{ij}]$$, whose elements are $$b_{ij}=(i)\ (j)$$.



Explain the following matrices s the sum of symmetric and a skew symmetric matrix : 
$$ \left[ \begin{matrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{matrix} \right]  $$



Construct a $$2 \times 2$$ matrix $$A=\left[a_{ij}\right] $$, where elements are given by:
$$ a_{ij} = \dfrac {\left(i+2i\right)^{2}}{2i}$$



Construct a $$2 \times 2$$ matrix $$A=\left[a_{ij}\right] $$, where elements are given by:
$$a_{ij} =2i-3j$$



Fill in the blanks : 
A square matrix $$A$$ is said to be skew -symmetric, if ________.



If $$A=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$ and $$B=\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$, then find the matrix from of the following $$(aA+bB) \ (aA-bB)$$.



Construct a $$2 \times 2$$ matrix $$A=\left[a_{ij}\right] $$, where elements are given by:
$$ a_{ij} = \dfrac{2i-j}{3i+j}$$



The rates for the entrance tickets at a water theme park are listed below:
Week Days
rates (Rs.)
Week End
rates (Rs.)
Adult400500
Children200250
Senior Citizen300400
Write down the matrices for the rates of entrance tickets for adults, children and senior citizens. Also find the dimensions of the matrices.



There are 6 Higher Secondary Schools, 8 High Schools and 13 Primary Schools in a town. Represent these data in the form of $$3 \times 1$$ and $$1 \times 3$$ matrices.



Construct a $$3 \times 2$$ matrix $$ A = [a_{ij}]$$ whose elements are given by $$a_{ij} = \dfrac{i}{j}$$



Prove that $$A= \bigl(\begin{smallmatrix} 5&  2\\ 7 & 3\end{smallmatrix}\bigr)$$ and $$B = \bigl(\begin{smallmatrix} 3& -2 \\ -7 & 5\end{smallmatrix}\bigr)$$ are inverses to each other under matrix multiplication.



Construct a $$2\times 3$$ matrix $$A=\left[{a}_{ij}\right]$$ whose elements are given by $${a}_{ij}=\left(\dfrac{3i+4j}{2}\right)$$, where $$\left(.\right)$$ denotes the least integer function.



If $$A=\begin{bmatrix} 0 & {-1} \\ 4 & {-3} \end{bmatrix}$$, $$B=\begin{bmatrix} {-5} \\ 6 \end{bmatrix}$$ and $$3A \times M = 2B$$
find matrix $$M.$$



If A be any  $$m \, \times  \, n$$ matrix and both AB and BA are defined prove that B should be  $$m \, \times  \, n$$ matrix 



 If A = $$\begin{bmatrix} 2&  3& 4\\  1&  2& 3\\  -1&  1& 2\end{bmatrix}$$, B = $$\begin{bmatrix} 1&  3& 0\\  -1&  2& 1\\  0&  0& 2\end{bmatrix}$$ 
Show that AB $$\neq$$ BA.



If A = $$\begin{bmatrix} 1& 2\\  3& 0\\  4& 1\end{bmatrix}$$ and B = $$\begin{bmatrix} 0&  1& 0\\  0&  2& 1\\  2&  3& 1\end{bmatrix}$$ find BA. Can we find AB also?

 



Show that product of two given matrices can be a zero matrix without either of the matrices begins a zero matrix.



Find the values of $$x, y, a$$ and $$b$$ if $$\begin{bmatrix} 3x+4y & 2 & x-2y \\ a+b & 2a-b & -1 \end{bmatrix}=\begin{bmatrix} 2 & 2 & 4 \\ 5 & -5 & -1 \end{bmatrix}$$.



For any square matrix $$A$$ with real numbers,
$$A + A ^ { \prime }$$ is a symmetric and
$$A - A ^ { \prime }$$ is a skew-symmetric 



If $$A=\begin{bmatrix} 8 & 0 \\ 4 & -2 \\ 3 & 6 \end{bmatrix}\ and \ B=\begin{bmatrix} 2 & -2 \\ 4 & 2 \\ -5 & 1 \end{bmatrix}$$, then find the matrix $$X$$, such that $$2A+3X=5B$$.



Construct a $$2\times 3$$ matrix $$A=\left[{a}_{ij}\right]$$ whose elements are given by $${a}_{ij}=\dfrac{1}{2}\left|2i-3j\right|$$



Express the matrix  $$\left[ \begin{array} { c c c } { 1 } & { - 2 } & { 3 } \\ { 3 } & { 4 } & { 5 } \\ { 5 } & { 7 } & { 9 } \end{array} \right]$$   as the sum of a symmetric and a skew-symmetric  matrix.



Construct a $$ 2 \times 3 $$ matrix whose elements are given by $$ {a}_{ij} =|i-j| $$



If $$A=\left[ \begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix} \right] ,B\left[ \begin{matrix} 3 & 8 \\ 7 & 2 \end{matrix} \right] \quad $$ and $$2x+A=B$$ then find $$x$$



Construct a $$2\times 3$$ matrix $$A=\left[{a}_{ij}\right]$$ whose elements are given by $${a}_{ij}=\left\{\dfrac{2\,i}{3\,j}\right\}$$, where $$\left\{.\right\}$$ denotes the fractional part function.



If $$A=\left[ \begin{matrix} 3 &  2 & 0 \\ 1 & 4  & 0 \\ 0 & 0  & 5 \end{matrix} \right]$$.Show that $${A}^{2}-7A+10=0$$



Let $$A = \begin{bmatrix} 3 & 2 & 5 \\ 4 & 1 & 3 \\ 0 & 6 & 7 \end{bmatrix}$$ , express A as a sum of two matrices such that one is symmetric & other is skew symmetric.



Express the following matrix as the sum of a symmetric and skew symmetric matrix, & verify your result.
$$\begin{bmatrix} 3 &-2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix}$$



Express the following matrix as the sum of a symmetric and a skew- symmetric matrix.
$$ \begin{bmatrix} 1 & 3 & 5 \\ -6 & 8 & 3 \\ -4 & 6 & 5 \end{bmatrix}$$



Let $$A=\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix},B=\begin{bmatrix} 4 & 0 \\ 1 & 5 \end{bmatrix},C=\begin{bmatrix} 2 & 0 \\ 1 & -2 \end{bmatrix},a=4,b=-2,$$ then show that:
$$(a+b)B=aB+bB$$



Class 12 Commerce Applied Mathematics Extra Questions