Explanation
We know that,
Potential energy,
$$U=-\dfrac{G{{M}_{e}}m}{{{R}_{e}}}$$
Where,
$${{M}_{e}}=$$Mass of the earth
$$m=$$Mass of satellite
$${{R}_{e}}=$$ Radius of the earth
$$G=$$ Gravitational constant
Now,
$$|U|=\dfrac{G{{M}_{e}}m}{{{R}_{e}}}$$
Now, kinetic energy
$$K=\dfrac{1}{2}\dfrac{G{{M}_{e}}m}{{{R}_{e}}}$$
$$ \dfrac{K}{|U|}=\dfrac{1}{2}\dfrac{G{{M}_{e}}m}{{{R}_{e}}}\times \dfrac{{{R}_{e}}}{G{{M}_{e}}m} $$
$$ \dfrac{K}{|U|}=\dfrac{1}{2} $$
Hence, the ratio of kinetic energy to potential energy is $$\dfrac{1}{2}$$
Please disable the adBlock and continue. Thank you.