Loading [MathJax]/jax/element/mml/optable/MathOperators.js

Algebraic Expressions And Identities - Class 8 Maths - Extra Questions

Find the product 4x×5y×7z



Find the product : (3pq)(15p3q2q3)



Find the product: 3(5x+8) 



Find the product (x+2) and (x+3).



Find the product of the binomials x+2,x+3 and x+4.



Find the common factors of the given terms: 
3a,21ab



40x2=(3.6x24.06x+8x3+0.432)×27x6



Multiply 4mn by (1)7p2q4mnp2q



Simplify (3x2+2x)(2x2+33)



Find out the product:
2a,33a2,5a4



Find the products:
(a) (27a2c)(1621dd2)
(b) (68x4y2)(24x2y2z3)



Find the following product.
99pqr×p3q2r 



Product of (5a3b)(5a3b)=



Multiply : (2x3)(54x)



Simplify the equation (2x+13x)2.



Find each of the following products.
7x×8



Simplify: (x+15)(x+5)



Simplify a2xa3xa5.



Expand (1+x3).4



Solve the following algebraic expressions by both trial and error method and balancing equation.
2x=5



Fill in the blanks:
6×3= ………. and 6x2×3x3= …………



Expand the brackets:
x(3x4)



Fill in the blanks:
6×3= . and 6x×3x=



Fill in the blanks:
4×7= . and 4ax×7x=



Fill in the blanks:
4x×6x×2=



Fill in the blanks:
3ab×6ax= ………



Find the value of:
5a2×7a7



Fill in the blanks:
6×6x2×6x2y2=



Fill in the blanks:
5×5a3=



Fill in the blanks:
x×2x2×3x3= ………



Fill in the blanks:
5×4= . and 5x×4y=



Find the value of:
3x3×5x4



Fill in the blanks:
6×2= . and 6xy×2xy=



Multiply:
4x+2y by 3xy



Multiply:
2xyz+3xy and 2y2z



Multiply:
(1+4x) by x



Multiply:
3xy2+4x2y and xy



Find the value of:
2x2y3×5x3y4



Find the value of:
a2b2×5a3b4



Find the value of:
3abc×6ac3



Multiply:
a+b by ab



Multiply:
3ab4b by 3ab



Multiply:
x+yz and 2x



Multiply: 
3x,5x2y and 2y



Multiply:
x+2andx+10



Fill in the blanks :
6xy2+9xy2 = ........



Multiply:
5,3a and 2ab2 



Simplify :
5m(2m+3n7p)



Multiply:
x+5andx3



Simplify :
9a(2b3a+7c)



Multiply:
x5andx+3



Multiply:
5xy and xy26x2y



Multiply:
4xy and x2y3x2y2



Copy and  complete the following multiplication :

1826900_a86324a2019244e3b9f7c838d8e428da.png



Evaluate: 
(3c5d)(4c6d)



Evaluate: 
(c+5)(c3)



Multiply:
 4a+5b and 4a5b



Multiply: 
5x+2y and 3xy



Copy and  complete the following multiplication :

1826897_19bb939b086d4b1c8c952fac36830397.png



Copy and  complete the following multiplication :

1826903_5010532f4db74dbf8f336fd4e112aaf1.png



Copy and  complete the following multiplication :

1826902_ee81de63bd784c5ea7b0225dfb8caa6f.png



Multiply:
6a5b and 2a



Copy and  complete the following multiplication :

1826906_7ae41a13a6de4dea9d4b95cee1871b4f.png



Multiplying: 
a34ab and 2a2b 



Multiplying:
pqpm and p2m 



Use direct method to evaluate :
(x+1)(x1)



Multiplying:
mn4,mn and 5m2n3



Use direct method to evaluate :
(2+a)(2a)



Use direct method to evaluate :
(2a+3)(2a-3)



Multiplying: 
2mnpq,4mnpq  and 5mnpq



Multiplying:
x^{3}-3y^{3} and 4x^{2}y^{2}



Use direct method to evaluate :
(4+5x)(4-5x)



Use direct method to evaluate :
(3b-1)(3b+1)



Use direct method to evaluate :
\left(\dfrac{a}{2}- \dfrac{2}{3} \right) \left(\dfrac{a}{2}+\dfrac{2}{3} \right)



Use direct method to evaluate :
\left(\dfrac{3}{5}a+\dfrac{1}{2}\right)\left(\dfrac{3}{5}a-\dfrac{1}{2}\right)



Use direct method to evaluate :
(xy+4)(xy-4)



Find the products
-x^{2}(x-15)



Use direct method to evaluate :
(3x^2+5y^2)(3x^2-5y^2)



Use direct method to evaluate :
\left(z-\dfrac{2}{3}\right)\left(z+\dfrac{2}{3}\right)



Find the products
(5 x+8) 3 x



Use direct method to evaluate :
(0.5-2a)(0.5+2a)



Use direct method to evaluate :
(ab+x^2)(ab-x^2)



Multiply:
-8x  and   4-2x-x^2 , then answer is  -32x+16x^2+8x^3
If true then enter 1 and if false then enter 0



Multiply the binomials
 \left( i \right)\,\left( {2x + 5} \right)\,and\,\left( {4x - 3} \right)
\left( {ii} \right)\,\left( {2.5l - 0.5m} \right)\,and\,\left( {2.2l + 0.5m} \right)



Find the square of: (x - 5)



obtain the product of 
\left( i \right)\,xy,\,yz,\,zx    \left( {ii} \right)\,a,\, - {a^2},{a^3}    \left( {iii} \right)\,2,\,4y,\,8{y^2},\,16{y^2}    \left( {iv} \right)\,a,\,2b,\,3c,\,6abc    \left( v \right)\,m,\, - mn,\,mnp



Multiply xy + 5x with y + 7x



Find the following product.
\dfrac{3}{5}ax^{3}\times \dfrac{1}{6}bx^{2}



Multiply {y^2} - 3y + 5 with 12{y^2} - 6y



Simplify
( x + y ) ( 2 y + 3 x ) + ( 3 x + y ) ( y + 2 x )



Multiple the binomials.
\left(\dfrac{3}{4}a^2+3b^2\right) and 4\left(a^2-\dfrac{2}{3}b^2\right) 



Multiple the binomials.
(y-8) and (3y-4)



Degree of the polynomial of (x^{2}+1)(x+2) is___________.



Multiple the binomials.
(2pq+3q^{2}) and (3pq-2q^{2})



Express the following product as a monomial and verify the result in case for x=1.
(4x^2)\times (-3x)\times \left(\dfrac{4}{5}x^3\right).



If the product of \left(\dfrac{4}{3}pq^2\right)\times \left(-\dfrac{1}{4}p^2r\right)\times (16p^2q^2r^2) is \dfrac{-a}{3}p^5q^4r^3, then value of a is 



Use suitable identities to find the following products:
\left ( x^{2} + \dfrac{3}{5} \right ) \left ( x^{2} - \dfrac{3}{5} \right )



Simplify: (y - 7) (y + 3)



Find and correct errors of the following mathematical expressions:
(2x)^{2}+4(2x)+7 = 2x^{2} +8x+7



Find and correct errors of the following mathematical expressions:
x(3x+2) = 3x^{2} +2  



Simplify:
(x+5) (x -2)

[Using (x + a) (x - b)=x^2+(a -b)x-ab]



Multiply the binomials
(2.5~l-0.5~m) and (2.5~l+0.5~m)



(a+b)^{2} =



If a=3,\,q=1 then find the value of 8{a}^{4}{q}^{5}



If a=6,\,p=4 find the value of ap



Multiply:
(3x - 5y + 7z) by - 3xyz 



Write the base and the exponent in each case. Also, write the term in the expanded from.
\left( 5ab \right) ^{ 3 }



Find the product of \left( x-2 \right) \left( x+2 \right) \left( { x }^{ 2 }+4 \right) \left( { x }^{ 4 }+16 \right)



Find the product of 6x and -7x^2y



What is the product 2l^2m\times 3lm^2?



Show that - 
(i) (2a+3b)^{2}-(2a-3b)^{2}=24ab
(ii) (4x+5)^{2}-80x=(4x-5)^{2}



Find the product : \dfrac{6x}{5}(a^3-b^3)



Expand the following using identities
(x + 7)(y + 5)



Expand the following using identities
(3x - 4y)^2



Expand:
{ a }^{ 4 }-16{ b }^{ 4 }



Verify the following : (-84)\times (25)=25\times (-84)



Simplify:
(x^2 + 3) (x - 3) + 9 



Multiply:
(ax + b) by (cx + d) 



Find the product of given monomials:
2a, 3a^{2} and 5a^{4}



Find the product of given monomials:
(a^{2}) \times (2a^{5})\times (4a^{15})



Find the product of given monomials:
xyz, y^{2}z and yx^{2}



Find the product of given monomials:
-2p, -3q, -5p^{2}



Find the product of given monomials:
2x, 4y, 9z



For the above expression, keeping a=2m and b = 3, we get
\left (\dfrac {3}{4} - x\right )\left (\dfrac {3}{4} +x\right )



Using a suitable identity, find the following product:
(5a - 3b)(5a - 3b)



If  x + y - 1 = 0, prove that x^3 + y^3 + 3xy = 1



(x-4)^{2}=



Find the product:\dfrac{m}{d}\times\dfrac{m}{l}



Find the product of  -4p, 7pq



Find the product of the following pairs of monomials $$4p^{3}, -3p$$



Simplify \displaystyle \sqrt{8a^{5}b}\times \sqrt{4a^{2}b^{2}}.



Simplify:
(x + 3)(x + 5)
 [Using (x+a) (x + b) = x^2+(a+ b)x +ab]



Multiply: \left(\displaystyle \frac{1}{5}  -\frac{1}{4}y \right) and (5x^2-4y^2)



Multiply: 2x and (3y+2)



Multiply: (3x^2+y^3) by (x^2+2y^2)



Simplify:
(x -5)(x -3)

[Using (x-a)(x-b)=x^2-(a+ b)x+ab]



Find the product \left( \sqrt { 3 } x+a \right) \left( 2+\pi x \right) .



Find the product: -x(x-15)



Find the product of (y - 1)(y - 1) using appropriate identity.



Find the product of (x + 5)(x + 5) using appropriate identity.



Find the product of (t + 2)(t + 4) using appropriate identity.



Find the product of (p - 3)(p + 3) using appropriate identity.



Find the product of 5x,6y and 7z



Factorise a^{3} - 8b^{3} - 64c^{3} - 24abc



Simplify: 4y(3y+4)



Find the product of given monomials:
abc, abc



Find the product of the following pairs of monomials:
5a^{2}, -4a



Find the product of the following pairs of monomials:
\dfrac {3}{7}x^{5}, \dfrac {14}{9}x^{2}



Find the product of the following pairs of monomials:
-3a, 5ab



Find the product of the following pairs of monomials:
-7x, 3y



Find the product of the following pairs of monomials:
3, 7x



Find the product of the following pairs of monomials:
xy^{2}, x^{2}y



Find the product of given monomials:
x^{3}y^{5}, xy^{2}



Find the product of given monomials:
m, 4m, 3m^{2} and -6m^{2}



Find the product of given monomials:
ab, bc and ca



Find the product of given monomials:
a^{2}b^{2}c^{3} and abc^{2}



Find the product of given monomials:
xyz and x^{2}yz



Find the product of given monomials:
lm^{2}, mn^{2} and ln^{2}



Simplify: 
21py^{2}-56py



Find the product of (x + y + z) and (x + y - z).



Find the product of (x + 3y) and (3x - y)



Using the identity (x + a)(x + b) = x^{2} + (a + b)x + ab, find out the following product:
(x + 4)(x + 7)



Using a suitable identity, find each of the following products:
\left (\dfrac {1}{x} + \dfrac {1}{y}\right )\left (\dfrac {1}{x} - \dfrac {1}{y}\right )



Find the product of (3x + 2) and (4x - 3).



Using a suitable identity, find each of the following products:
(100 + 3)(100 - 3)



Find out the product of:
\left (\dfrac {2}{3}ab\right ) and \left (\dfrac {-15}{8}a^{2}b^{2}\right )



Using the identity (x + a)(x + b) = x^{2} + (a + b)x + ab, find out the following products:
(2m + 3n)(2m + 4n)



Using the identity (x + a)(x + b) = x^{2} + (a + b)x + ab, find the product of (7x + 3y)(7x - 3y).



Using the identity (x + a)(x + b) = x^{2} + (a + b)x + ab, find the product of
(5x + 3)(5x + 4).



Simplify: (2x)\times (3x + 5)



Using the identity (x + a)(x + b) = x^{2} + (a + b)x + ab, find out the following product:
(8x - 5)(8x - 2)



Using the identity (x + a)(x + b) = x^{2} + (a + b)x + ab, find out the following product:
(xy - 3)(xy - 2)



Simplify: (-2x)\times (4 - 5y)



Simplify:
(a-b)(a^{2} +ab + b^{2})



Simplify 14\left( {12yz} \right) = \_\_\_\_\_



Solve 5x - ( 4x - 7 ) ( 3x - 5 ) =  6 - 3( 4x - 9 ) ( x - 1 )



Simplify \left(\dfrac{2}{x}-\dfrac{x}{2}\right)^{2}



Multiply \left( {a + 2} \right)\left( {a - 1} \right)



Expand (5x+3)(x-1)(3x-2)



Multiply : (a^2 + 2c^2) (3a - 3c)



Find \dfrac{1}{2}x(1+1\cdot 2).



Find the product of (7x - 4y) and (3x - 7y)



Multiply x\left[1+\dfrac {1}{x}\right]\left[1-\dfrac {1}{x}\right]



Solve:
(\sqrt x  - 3x)\left( {x + \frac{1}{x}} \right)



Multiply -a^2b by a^3 b^2 and verify your result for a = 2, b = 3.



Multiply: \left[ {x + \frac{2}{3}} \right]\left[ {x + \frac{3}{4}} \right]



Solve:
\sqrt {\{ \left( {x - 2} \right)\left( {4 - x} \right)\} }



Solve: \dfrac{x+1}{2}=12 find x



Solve the equation:-
\left ( x^{2}-5 \right )\left ( x+5 \right )+25=0



solve:
2x \times 3x



If * represent 7 mangoes and @ represents 4 apples, then what does " *@ *@ " represent?



Find the product of 3x(2y-3).



simplify: \left( x ^ { 3 } + \frac { 1 } { x ^ { 3 } } \right) \left( x ^ { 3 } - \frac { 1 } { x ^ { 3 } } \right)



Find the product:
\left( \frac { 4 x } { 5 } - \frac { 3 y } { 4 } \right) \left( \frac { 4 x } { 5 } + \frac { 3 y } { 4 } \right)



Solve: 2\times5x(10x^2y-100xy^2)



Obtain the product of x y , y z , z x 



Find the product of the following pairs of monomials:
( i )  \quad ( 2,4 x )
( i i )  ( - 3 x , 2 x )



If {\rm{A}} = xy,\,B = yz and C = zx, then find {\rm{ABC = }}.........



Find each of the following products.
6a \times 4b^{2}



Solve 
(i) \left( x+6 \right) \left( x+6 \right) 
(ii) \left( \dfrac { 2 }{ 3 } x+\dfrac { 4 }{ 5 } y \right) \left( \dfrac { 2 }{ 3 } x+\dfrac { 4 }{ 5 } y \right) 



Fill in the blank
5m^{2}\times 3m^{2}=\square



Fill in the blank
(3x^{2}+4y)(2x+3y)=\square



Simplify the following:
\left (i\right)\left (x+6\right)\left (x+4\right) \left(x-2\right)
\left(ii\right)\left (x-6\right)\left (x-4\right)\left (x+2\right)
\left(iii\right)\left (x+6\right) \left(x-4\right)\left (x-2\right)
\left(iv\right)\left (x+6\right)\left (x-4\right)\left (x-2\right) 



Simplify:
(a^{2}+5)(b^{3}+3)+5



Solve:
4a^{2}b^{2}-12abc+9c^{2}



Expand (3x+9)(3x-9)



Solve:
ab - {c^2} = \cfrac{(bc - a^2)^2}{ac - b^2}



Simplify:
25abc^{2}-15a^{2}b^{2}c



(a+b)^{2}=?



Multiply the binomials:
(2x+5) and (4x-3)



Complete the table of products
\displaystyle \underset{\downarrow Second monomial}{\xrightarrow{\displaystyle First monomial \rightarrow}}2x-5y3x^2-4xy7x^2y-9x^2y^2
2x4x^2-----
- 5y--- 15 x^2 y---
3x^2------
- 4xy------
7x^2 y------
- 9x^2 y^2------



Find and correct errors of the following mathematical expressions:
(a+4)(a+2) = a^{2} +8



Find and correct errors of the following mathematical expressions:
(2a+3b)(a-b) = 2a^{2} -3b^{2}  



Find areas of rectangles with following pairs of monomials as their length and breadth respectively.
(i) (p,\,q)
(ii) 10m,\,5n
(iii) 20x^2,\,5y^2
(iv) (4x,\,3x^2)
(v) 3mn,\,4np



Find product of following pairs of monomials
(i) 4,\,7p
(ii) -4p,\,7p
(iii) -4p,\,7pq
(iv) 4p^3,\,-3p
(v) 4p,\,0



Find and correct errors of the following mathematical expressions:
(a-4)(a-2) = a^{2} -8



Find the product.
(i) a^2\times(2a^{22})\times(4a^{26})

(ii) \left(\dfrac23xy\right)\times\left(-\dfrac9{10}x^2y^2\right)

(iii) \begin{pmatrix}\dfrac{-10}{3}pq^3\end{pmatrix}\times\begin{pmatrix}\dfrac{6}{5}p^3q\end{pmatrix}

(iv) x\times x^2\times x\times x^3\times x^4



Obtain the product of
(i) xy,\,yz,\,zx
(ii) a,\,-a^2,\,a^3
(iii) 2,\,4y,\,8y^2,\,16y^3
(iv) a,\,2b,\,3c,\,6abc
(v) m,\,-mn,\,mnp



Multiply the binomials
(i) (2x+5) and (4x-3)

(ii) (y-8) and (3y-4)

(iii) (2.5l-0.5m) and (2.5l+0.5m)

(iv) (a+3b) and (x+5)

(v) (2pq+3q^2) and (3pq-2q^2)

(vi) \begin{pmatrix}\dfrac{3}{4}a^2+3b^2\end{pmatrix} and \begin{pmatrix}a^2-\dfrac{2}{3}b^2\end{pmatrix}



Complete the table.

 First expression Second expression Product
 (i) a b+c+d.....
 (ii) x+y-5 5xy.....
 (iii) p 6p^2-7p+5.....
 (iv) 4p^2q^2 p^2-q^2..... 
 (v) a+b+c abc..... 



Find the products:
(i) (5-2x)\;(3+x)
(ii) (x+7y)\;(7x-y)
(iii) (a^2+b)\;(a+b^2)
(iv) (p^2-q^2)\;(2p+q)



Obtain the volume of rectangular boxes with following length, breadth and height given respectively.
(i) 5a,\,3a^2,\,7a^4
(ii) 2p,\,4q,\,8r
(iii) xy,\,2x^2y,\,2xy^2
(iv) a,\,2b,\,3c



Complete the table of products

 1st monomial \longrightarrow
2nd monomial \downarrow
 2x-5y 3x^2 -4xy 7x^2y -9x^2y^2 
 2x 4x^2 ........ .... .... .... 
 -5y .... ....  -15x^2y ........ ... 
 3x^2 .... .... .... ........ .... 
 -4xy .... .... .... .... .... .... 
 7x^2y .... .... .... .... .... .... 
 -9x^2y^2 .... .... .... ....  ........ 



Determine the product:
(8y + 3) \times 4x



Complete the following table of products of two monomials:
First \rightarrow
Second \downarrow
3x-6y4x^2-8xy9x^2y-11x^3y^2
3x
-6y
4x^2
-8xy
9x^2y
-11x^3y^2



Evaluate the following product of  a{ x }^{ 2 }(bx+c)



Multiply { c }^{ 2 }a and { b }^{ 2 }+2bc.



Expand { \left( x+\cfrac { 1 }{ x }  \right)  }^{ 2 } using appropriate identity



Expand { \left( 2a+3 \right)  }^{ 2 } using appropriate identity



Find the product of the pair of monomial: 4p^3, -3p



Simplify: { \left( x+\cfrac { 1 }{ x }  \right)  }^{ 2 }-{ \left( x-\cfrac { 1 }{ x }  \right)  }^{ 2 }



Expand (3x-5y)(3x+5y)



Expand (2x+3)(2x+5) using appropriate identity.



Evaluate the product of { b }^{ 4 }({ b }^{ 6 }+{ b }^{ 8 })



Evaluate the product of  { a }^{ 2 }{ b }^{ 2 }(a{ b }^{ 2 }+{ a }^{ 2 }b)



Evaluate the product of (x+3)(x+2)



Evaluate the product of ab(a+b)



Find the coefficients of {x}^{2} and x in (x+4)(x+1)(x+2)



Find the coefficients of {x}^{2} and x in (2x+1)(2x-2)(2x-5)



p(x) = {x^3} + 4{x^2} - 5x + 6
g(x) = x + 1
and verify with p(x)[g(x) \times q(x)] + r(x)



The length and breadth and height of a cuboid are (x+3),(x-2) and (x-1) respectively. Find its volume.



Solve (4x+5y)(4x-5y)



Complete the following table of products:
First monomial \rightarrow
Second Monomial \downarrow
2x-3y4x^{2}-5xy7x^{2}y-6x^{2}y^{2}
2x4x^{2}........
-3y
4x^{2}
-5xy25x^{2}y^{2}
7x^{2}y
-6x^{2}y^{2}18x^{2}y^{2}



Find the product of the following:
(m - n)(m^{2} + mn + n^{2})



Find out the following squares by using the identities:
0.54\times 0.54 - 0.46\times 0.46



Using the identity (x + a)(x + b) = x^{2} + (a + b)x + ab, find out the following products:
(2 + x)(2 - y)



Find out the following squares by using the identities:
(p - q)^{2}



Find out the following square by using the identity (a-b)^2=a^2+b^2-2ab:
(5x - 4)^{2}



If x and y are positive integers, and it x - y is even, show that x^{2} - y^{2} is divisible by 4.



Expand the following using standard identities:
(4x + 5y) (4x - 5y)



(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0



Solve
\left( x+\dfrac { 1 }{ x }  \right) \left( \sqrt { x } +\frac { 1 }{ \sqrt { x }  }  \right)



Find the product -3y(xy+y^2) and find its value at x=4 and y=5



Expand the following and collect like terms:
\begin{array}{l}\left( a \right)\,\,\,\,\left( {x + 5} \right)\left( {x + 5} \right)\\\left( b \right)\,\,\,\,\,\left( {x + 9} \right)\,\left( {x + 9} \right)\end{array}



Simplify \left(y^{2}+\dfrac {3}{2}\right) \left(y^{2}+\dfrac {3}{2}\right)



Find the expression for the product (x+a)(x+b)(x+c) using the identity (x+a)(x+b)=x^{2}+(a+b)x+ab



Find the product of the following pair of monomials.
4, 7p



Find the product of the following pair of monomials.
-4p, 7pq



(4x+5y)(4x+5y)



Find the product of the following pair of monomial.
-4p, 7p



Factorise: { a }^{ 3 }+{ b }^{ 3 }+{ c }^{ 3 }-3abc



(2x^2-5y^2)\times(x^2+3y^2).



Find the product of the following pair of monomials.
4p and 0



\left(\dfrac{3}{5}x+\dfrac{1}{2}y\right) by \left(\dfrac{5}{6}x+4y\right).



Solve : i) (z + 19 ) (z + 7)
ii) (9 + 4a) (7 + 4a)



Find: (x^{2}-y^{2})(x^{2}+y^{2})



Solve: (30x^{2}+15-10)\times (2x+3)



\left(y^2+\dfrac{3}{2}\right)\left(y^2-\dfrac{3}{2}\right)



Solve : (x^2 - y^2) \times (x + 2y)



If x:y=1:7 and y:z=4:5, find 
x:y:z



Find the product -5x^2y and 2xy^2.



Multiply the binomials.
(2x+5) and (4x-3)



a(3x - 2y) + b(2y - 3x)=?.



Find the product of :
\left( {3{x^2} - 4xy} \right)\left( {3{x^2} - 4xy} \right)



Multiply: 16xy\times 18xy



Find the product \left( {x + y - z} \right)\left( {{x^2} + {y^2} + {z^2} - xy + yz + zx} \right).



Multiply :
3{x^2} - {x^3} + x + 1 by (1+x)



Multiply  \left( 3p - q^ { 2 } \right) \left( 7 q + 4 p ^ { 4 } \right)



If the polynomial 6x^{4}+8x^{3}-5x^{2}+ax+b is exactly divisible by the polynomial 2x^{2}-5, then find the value of a and b.



Multiple the binomials.
(a+3b) and (x+5)



Form a cubic polynomial whose zeros are -3,-1 and 2.



Solve for x
\dfrac{1}{2(2x+3x)}+\dfrac{12}{7(3x-2x)}=\dfrac{1}{2}



Simplfy:
{ ax }^{ 2 }y+{ bxy }^{ 2 }+cxyz



Find the product of the following pairs of monomials.
i) - 4p, 7p  ii) 4p^3, - 3p



solve the equation by cross multiplication
x+ay=b 
ax-by=c



Evaluate the following product

(1)     \left( { X }^{ 2 }+3 \right) \left( { X }^{ 2 }+4 \right) 



Divide and write the quotient and the remainder.
(a^{3}+5)\div (a^{3}+2)



select a suitable identity and find the following products
(ax^{2}+by^{2})(ax^{2}+by^{2})



Prove that:
(a^{2}+b^{2})(a^{2}+b^{2})-(a^{2}-b^{2})(a^{2}-b^{2})=4{a}^{2}{b}^{2}



Multiply the binomials
(2pq+3q^{2}) and (2pq-2q^{2})



Expand:{ \left(x-\dfrac { 2 }{ 3 } y\right)}^{ 3 }



Find the product of \left(7x+3y\right)\left(7x-y\right)



Find cubic polynomial whose zeroes are 3, \dfrac { 1 }{ 2 } & -1



Evaluate: (x+2y)(-3x-y)-(x+y)(x-y)+(x-2y)(-2x+y)



Simplify:{\left({l}^{2}+{m}^{2}\right)}^{2}+{\left({l}^{2}-{m}^{2}\right)}^{2}



Simplify: 2{p}^{3}-3{p}^{2}+4p-5-6{p}^{3}+2{p}^{2}-8p-2+6p+8



Find the product of 2x and \left(x+y\right)



Write the base and the exponent in each case. Also, write the term in the expanded from.
\left( 7x \right) ^{ 2 }



Divide 2a^2+6ab by a+3b.



Solve : \dfrac { { x }^{ 2 }-5x-24 }{ (x+3)(x+8) } \times\dfrac { { x }^{ 2 }-64 }{ { (x-8) }^{ 2 } }



Simplify: 
\left( 1.5x-4y \right) \left( 1.5x+4y+3 \right) -4.5x



Evaluate:\left( x+y \right) \left( 2x+y \right) \left( 2x-y \right) \left( x-y \right)



Solve:
\dfrac{2}{5x}-\dfrac{5}{3x}=\dfrac{1}{15}



Solve:
\dfrac{x+2}{6}-\left(\dfrac{11-x}{3}-\dfrac{1}{4}\right)=\dfrac{3x-4}{12}



Simplify 
\left( x+y \right) \left( 2x+y \right) +\left( x+2y \right) \left( x-y \right)



Multiply : 3ab\times \left( { 5a }^{ 2 }+{ 4b }^{ 2 } \right)



Prove that : 
\left ( \dfrac{x^{a}}{x^{b}} \right )^{c}\times \left ( \dfrac{x^{b}}{x^{c}} \right )^{a}\times \left ( \dfrac{x^{c}}{x^{a}} \right )^{b} = 1  



Find the product of (7x+5) (2x-3)



Evaluate the following using identities
117\times 83



Find the following product:
\left( \cfrac { 3 }{ x } -\cfrac { 5 }{ y }  \right) \left( \cfrac { 9 }{ { x }^{ 2 } } +\cfrac { 25 }{ { y }^{ 2 } } +\cfrac { 15 }{ xy }  \right)



Find the product of the following:
\left( \cfrac { 3 }{ x } -2{ x }^{ 2 } \right) \left( \cfrac { 9 }{ { x }^{ 2 } } +4{ x }^{ 4 }-6x \right)



Find the product of the following:
(1+x)(1-x+{x}^{2})



Find the product of the following:
(1-x)(1+x+{x}^{2})



Evaluate the following using identities
991\times 1009



Evaluate the following using identities:
(2x+y)(2x-y)



Find the product of the following:
\left( \cfrac { 2 }{ x } +3x \right) \left( \cfrac { 4 }{ { x }^{ 2 } } +9{ x }^{ 2 }-6 \right)



Find the product of the following:
\left( 3+\cfrac { 5 }{ x }  \right) \left( 9-\cfrac { 15 }{ x } +\cfrac { 25 }{ { x }^{ 2 } }  \right)



Write the following in the expanded form:
{({a}^{2}+{b}^{2}+{c}^{2})}^{2}



If the product of \left(\dfrac{7}{9}ab^2\right)\times \left(\dfrac{15}{7}ac^2b\right)\times \left(-\dfrac{3}{5}a^2c\right) is \dfrac{-1}xa^4b^3c^3, then what is the value of x?



If the product of \left(-\dfrac{2}{7}a^4\right)\times \left(-\dfrac{3}{4}a^2b\right)\times \left(-\dfrac{14}{5}b^2\right)=\dfrac{-3}{z}a^6b^3, then value of z is



If the product of (-5a)\times (-10a^2)\times (-2a^3)=-100a^b, then what is the value of b?



If the product of (7ab)\times (-5ab^2c)\times (6abc^2)=-la^3b^4c^3, then what is the value of l?



If x=3 and y=-1, find the values of the following using in identity:
\left( \cfrac { 5 }{ x } +5x \right) \left( \cfrac { 25 }{ { x }^{ 2 } } -25+25{ x }^{ 2 } \right)



Find the product of the following:
({x}^{2}-1)({x}^{4}+{x}^{2}+1)



If x=3 and y=-1, find the values of the following using in identity:
\left( \cfrac { x }{ 4 } -\cfrac { y }{ 3 }  \right) \left( \cfrac { { x }^{ 2 } }{ 16 } +\cfrac { xy }{ 12 } +\cfrac { { y }^{ 2 } }{ 9 }  \right)



Find the product of the following:
({x}^{3}+1)({x}^{6}-{x}^{3}+1)



If the product of (-4x^2)\times (-6xy^2)\times (-3yz^2)=-kx^3y^3z^2, then value of k? 



If x=3 and y=-1, find the values of the following using in identity:
\left( \cfrac { x }{ 7 } -\cfrac { y }{ 3 }  \right) \left( \cfrac { { x }^{ 2 } }{ 49 } +\cfrac { { x }^{ 2 } }{ 9 } +\cfrac { xy }{ 21 }  \right)



Express the following product as a monomial and find the value of A. Also, verify the result in the case of x=1.
(3x)\times (4x)\times (-5x)=-Ax^3.



If the product of \left(\dfrac{4}{3}u^2vw\right)\times \left(-5uvw^2\right)\times \left(\dfrac{1}{3}v^2wu\right) is \dfrac{-20}{a}u^4v^4w^4, then what is the value of a?



If the product of (0.5x)\times \left(\dfrac{1}{3}xy^2z^4\right)\times (24x^2yz) is cx^4y^3z^5, then the value of c is 



Write down the product of -8x^2y^6 and -20xy. Verify the product for x=2.5, y=1.



Express the following product as a monomial and verify the result in case for x=1.
(x^2)^3\times (2x)\times (-4x)\times (5).



If the product of (2.3xy)\times (0.1x)\times (0.16) is 0.036bx^2y, then what is the value of b?



Evaluate (3.2x^6y^3)\times (2.1x^2y^2) when x=1 and y=0.5.



Evaluate (-8x^2y^6)\times (-20xy) for x=2.5 and y=1.



Multiply (2x^2y^2-5xy^2) by (x^2-y^2).



Find the following product.
0.1y(0.1x^5+0.1y)



Evaluate the following when x=2, y=-1.
(2xy)\times \left(\dfrac{x^2y}{4}\right)\times (x^2)\times (y^2).



Evaluate the following when x=y=-1.
\left(\dfrac{3}{5}x^2y\right)\times \left(-\dfrac{15}{4}xy^2\right)\times \left(\dfrac{7}{9}x^2y^2\right).



Find the following product.
2a^3(3a+5b).



Simplify the following using the identity.
1.73\times 1.73-0.27\times 0.27.



Find the following product.
(x+4)(x+7).



Find each of the following products:
(x^{4}+(1/x^{4})\times (x+(1/x))



Simplify the following using the identity.
178\times 178-22\times 22.



Simplify the following using the identity.
\dfrac{198\times 198-102\times 102}{96}.



Given that x^{2}-3 x+1=0,  then the value of the expression  y=x^{9}+x^{7}+x^{9}+x^{-7}  is divisible by prime number.



Find the following product.
(2x^2-3)(2x^2+5).



Show that if x^{2}+y^{2}=2z^{2}, where x, y, z integers then 2x=r(l^{2}+2lk -k^{2}), 2y=r(k^{2}+2lk-l^{2}), 2z=r(l^{2}+k^{2}) where r, l, and k are integers.



Simplify the following using the identity.
\dfrac{8.63\times 8.63-1.37\times 1.37}{0.726}.



Find the product of \dfrac{-1}{2}x^2,\  - \dfrac{3}{5}xy,\ \dfrac{2}{3}yz and \dfrac{5}{7}xyz 



Find product of the following expressions:
(x^{4}+y^{4}),  (x^{2}-y^{2})



Find the following product:
8a^2(2a+5b)



Find the following product:
9x^2(5x+7)



Find the following product:
\dfrac{2}{3}x^2y \times \dfrac{3}{5}xy^2



Find the following product:
(-4ab) \times (-3a^2bc)



Find the following product:
4a(3a+7b)



Find the product:
-6x^3 \times 5x^2



Find the following product:
5a(6a-3b)



Find the product:
3a^2 \times 8a^4



Find the following product:
(2a^2b^3) \times (-3a^3b)



Find the following product:
ab(a^2-b^2)



Simplify:  (- 4a 8a).



Find the following product:
\dfrac{-13}5ab^2c \times \dfrac73a^2 bc^2



Find the following product:
\dfrac72x^2(\dfrac47x+2)



Find the following product:
\dfrac35m^2n(m+5n)



Find the following product:
2x^2(3x-4x^2)



Find the following product:
(-1/27)a^2 b^2 \times (-9/2)a^3 bc^2



Find the following product:
\dfrac{-3}{4}ab^3 \times \dfrac{-2}3a^2 b^4



Find the following product:
-4x^2y(3x^2-5y)



Find the following product:
-17x^2(3x-4)



Find the following product:
\left(\dfrac{-18}{5}\right)x^2z \times \left(\dfrac{-25}{6}\right)xz^2y



Find the following product:
\dfrac{-4}{27}xyz(\dfrac92x^2yz-\dfrac34xyz^2)



Find the product:
2a^2b \times (-5)ab^2c \times (-6)bc^2



Volume of a rectangular box with length 2x, breadth 3y and height 4z is __________ .



Find the following product:
\left(\dfrac{-3}{14}\right)xy^4 \times \left(\dfrac76\right)x^3y



(x + a) (x +b) =x^{2}+(a+b) x+ __________ .



Find the product:
\left(\dfrac{-7}5\right)x^2y \times \left(\dfrac32\right)xy^2 \times \left(\dfrac{-6}5\right)x^3 y^3



Find the following product:
10a^2(0.1a-0.5b)



Find the following product:
9t^2(t+7t^3)



Volume of a rectangular box with l = b = h = 2x is __________ .



Area of a rectangular plot with sides 4x^{2} and 3y^{2} is __________ .



Multiply: -5a^{2}bc , 11ab and 13abc^{2}.



Multiply 15xy^{2} and 17yz^{2}



Multiply  -7pq^{2}r^{3} and -13p^{3}q^{2}r



Multiply 3x^{2}y^{2}z^{2} and 17xyz



Find the product of:
-7ab, -3a^3 and -(2/7)ab^2



Find the product of 4x^3 and -3xy



Multiply:
(4p - 7) by (2 - 3p)



Multiply:
(5x - 2) by (3x + 4) 



Multiply:
(2x^2 + 3) by (3x - 5)



Multiply: 
(2p^2 - 3pq + 5q^2 + 5) by - 2pq 



Find the product of:
2xyz and 0



Simplify:  12x (5x + 2x).



Find the product of -4.5xy, \ \dfrac{5}{7}yz  and -\dfrac{14}{9}zx.



Evaluate:  35b (16b + 9b).



Evaluate:  6m (4m m).



Find the product of
3x^2y and -4xy^2



6p 5x + q = 6p (.)



Multiply:
3a + 4b- 5c and 3 a



Simplify:  10m + (4n 3n) 5n.



Simplify:  x (x y) (- x + y).



Simplify:  2 (3a b) 5 (a 3b).



x 2y = - ()



Multiply:
xy- yz and x^2\,yz^2



Multiply:
3\,abc\,\, and\,\, - 5 a^2b^2c 



Simplify:  (15b 6b) (8b + 4b).



Evaluate:
\big (\dfrac{1}{2}a + \dfrac{1}{2} b \big) \big(\dfrac{1}{2} a- \dfrac{1}{2}b \big)



Multiply:
 x - y + z \,\,and\,\, -2x



Find the product: 
(a - 8)(a + 2)



Multiply:
 - 8xyz + 10 x^2yz^3 \,\,and\,\, xyz



\text { Complete the following table of products of two monomials }

1870403_a241967f5ed3420ba0fca8ca59f56f19.png



Multiply the given polynomial 
2x; x^{2} - 2x - 1



Find the product: (a - 6)(a - 2)



Multiply:
xyz\,\, and\,\, - 13 xy^2z + 15x^2yz - 6xyz^2



Multiply:
 2x -3y - 5z\,\, and\,\, -2y



Find the products
\dfrac{2 x}{5}\left(3 a^{3}-3 b^{3}\right)



Find the products
(-3 \mathrm{pq})\left(-15 \mathrm{p}^{3} \mathrm{q}^{2}-\mathrm{q}^{3}\right)



Use suitable identities to find the following products:
(x + 2)(x - 5)



Use suitable identities to find the following products:
(x - 5)(x + 8)



The base and altitutde of a triangle are (3 x-4 y) and (6 x+5 y) respectively. Find its area.



Use suitable identities to find the following products:
(x + 3)(x + 7)



Use suitable identities to find the following products:
(2x + 7)(3x - 5)



Use suitable identities to find the following products:
(5 - 3x)(3 + 2x)



Expand { \left( \pi +\cfrac { 22 }{ 7 }  \right)  }^{ 2 } using appropriate identity



Expand { \left( \sqrt { 12 } a+\sqrt { 6 } b \right)  }^{ 2 } using appropriate identity



Expand { \left( \pi -\cfrac { 22 }{ 7 }  \right)  }^{ 2 } using appropriate identity



Expand { \left( 3a-2b \right)  }^{ 2 } using appropriate identity



Expand (3x-3)(3x+4) using appropriate identity



Expand { \left( \sqrt { 10 } x-\sqrt { 5 } y \right)  }^{ 2 } using appropriate identity



Expand: \left( \cfrac { x }{ 3 } +\cfrac { y }{ 2 }  \right) \left( \cfrac { x }{ 3 } -\cfrac { y }{ 2 }  \right)



Expand \left( y-\cfrac { 1 }{ y }  \right) ^{ 2 } using appropriate identity



Expand: \left( { a }^{ 2 }+4{ b }^{ 2 } \right) \left( a+2b \right) \left( a-2b \right)



Expand \left( { x }^{ 2 }+{ y }^{ 2 } \right) \left( { x }^{ 2 }-{ y }^{ 2 } \right)



Simplify: { (4a-7b) }^{ 2 }-{ (3a) }^{ 2 }



Suppose x and y are positive real numbers such that x \sqrt x\,+\,y \sqrt y=\,183 and x \sqrt y\, =y \sqrt x=182 then value of \frac{18}{5}(x+y) is : 



Find the product : 6x^{2}\times 4xy



Simplify: \left( { m }^{ 2 }+2{ n }^{ 2 } \right) ^{ 2 }-4{ m }^{ 2 }{ n }^{ 2 }



Simplify: { \left( 3a-2 \right)  }^{ 2 }-{ \left( 2a-3 \right)  }^{ 2 }



{28x}^{4} by 56 x



Expand : ( x + a ) ( x + b )



Expand : ( a + b ) ( a - b )



Find the product of the following binomial.
(a+2b)(a-2b).



Find the product of the following binomial.
\left(x^3+\dfrac{1}{x^3}\right)\left(x^3-\dfrac{1}{x^3}\right).



Simplify.
6uw^{-3} \times 4uw^{6}



Find:
{(x^2-7x)(x+5)}



Find the following product.
\left(z+\dfrac{3}{4}\right)\left(z+\dfrac{4}{3}\right).



Class 8 Maths Extra Questions