Algebraic Expressions And Identities - Class 8 Maths - Extra Questions

Find the product $$4x \times 5y \times 7z$$



Find the product : $$(-3pq)(-15p^3q^2-q^3)$$



Find the product: $$3(5x+8)$$ 



Find the product $$(x+2)$$ and $$(x+3)$$.



Find the product of the binomials $$x+2,x+3$$ and $$x+4$$.



Find the common factors of the given terms: 
$$3a,21ab$$



$$40{x^2} = \left( {3.6{x^2} - 4.06x + 8{x^3} + 0.432} \right)\times 27x^{6}$$



Multiply $$4mn$$ by $${(-1)}^{7}{p}^{2}q-4mn{p}^{2}q$$



Simplify $$(3x^{2}+2x)(2x^{2}+33)$$



Find out the product:
$$2a,33a^{2},5a^{4}$$



Find the products:
(a) $$(-\cfrac{2}{7}{a}^{2}c)(\cfrac{16}{21}d{d}^{2})$$
(b) $$(-\cfrac{6}{8}{x}^{4}{y}^{2})(24{x}^{2}{y}^{2}{z}^{3})$$



Find the following product.
$$99pqr\times p^{3}q^{2}r$$ 



Product of $$(5a-3b)(5a-3b)=$$



Multiply : $$\left(2x-3\right)\left(5-4x\right)$$



Simplify the equation $$\left(2x + \dfrac{1}{3x}\right)^2$$.



Find each of the following products.
$$7x\times 8$$



Simplify: $$(x+\dfrac{1}{5})(x+5)$$



Simplify $$a^{2}x a^{3}x a^{-5}$$.



Expand $$(1+x^{3}).4$$



Solve the following algebraic expressions by both trial and error method and balancing equation.
$$2x=5$$



Fill in the blanks:
$$6 \times 3 =$$ ………. and $$6x^2 \times  3x^3 =$$ …………



Expand the brackets:
$$x(3x-4)$$



Fill in the blanks:
$$6 \times 3 =$$ . and $$6x \times  3x = $$



Fill in the blanks:
$$4 \times 7 =$$ . and $$4ax \times  7x =$$



Fill in the blanks:
$$4x \times 6x \times 2 =$$



Fill in the blanks:
$$3ab \times 6ax  =$$ ………



Find the value of:
$$5 a^2 \times 7 a^7$$



Fill in the blanks:
$$ 6  \times 6 x^2  \times 6 x^2 y^2 =$$



Fill in the blanks:
$$ 5   \times 5\, a^3=$$



Fill in the blanks:
$$ x   \times 2 x^2   \times 3 x^3 =$$ ………



Fill in the blanks:
$$5 \times 4 =$$ . and $$5x \times  4y =$$



Find the value of:
$$3 x^3 \times 5x^4$$



Fill in the blanks:
$$6 \times 2 =$$ . and $$6xy \times  2xy =$$



Multiply:
$$4 x + 2 y$$ by $$ 3\,xy$$



Multiply:
$$2 xyz + 3 xy$$ and $$- 2y^2z$$



Multiply:
$$(1 + 4 x)$$ by $$x$$



Multiply:
$$- 3 xy^2 + 4 x^2y$$ and $$ - xy$$



Find the value of:
$$2 x^2 y^3 \times 5 x^3 y^4$$



Find the value of:
$$a^2b^2 \times 5 a^3 b^4$$



Find the value of:
$$3 abc \times 6 ac^3$$



Multiply:
$$a + b$$ by $$ab$$



Multiply:
$$3\,ab - 4b$$ by $$3 \,ab$$



Multiply:
$$- x + y - z$$ and $$- 2\,x$$



Multiply: 
$$3x, 5x^{2}$$y and $$2 y $$



Multiply:
$$ x + 2\,\, and \,\,x + 10$$



Fill in the blanks :
$$ 6xy^{2}+9xy^{2} $$ = ........



Multiply:
$$5, 3a$$ and $$2ab^{2}$$ 



Simplify :
$$-5m (-2m + 3n - 7p)$$



Multiply:
$$ x + 5 \,\,and\,\, x - 3$$



Simplify :
$$9a (2b - 3a + 7c)$$



Multiply:
$$ x - 5 \,\,and\,\, x + 3$$



Multiply:
$$- 5xy$$ and $$ - xy^2 - 6x^2y$$



Multiply:
$$4\,xy$$ and $$- x^2y - 3x^2 \,y^2$$



Copy and  complete the following multiplication :

1826900_a86324a2019244e3b9f7c838d8e428da.png



Evaluate: 
$$(3c-5d) (4c-6d)$$



Evaluate: 
$$(c+5) ( c -3) $$



Multiply:
 $$4a + 5b$$ and $$4a - 5b$$



Multiply: 
$$5x + 2 y$$ and $$3 xy $$



Copy and  complete the following multiplication :

1826897_19bb939b086d4b1c8c952fac36830397.png



Copy and  complete the following multiplication :

1826903_5010532f4db74dbf8f336fd4e112aaf1.png



Copy and  complete the following multiplication :

1826902_ee81de63bd784c5ea7b0225dfb8caa6f.png



Multiply:
$$6a - 5 b$$ and $$- 2a$$



Copy and  complete the following multiplication :

1826906_7ae41a13a6de4dea9d4b95cee1871b4f.png



Multiplying: 
$$a^{3}-4ab$$ and $$ 2a^{2}b$$ 



Multiplying:
$$pq-pm$$ and $$p^{2}m$$ 



Use direct method to evaluate :
$$(x+1)(x-1)$$



Multiplying:
$$ mn^{4},mn$$ and $$5m^{2}n^{3}$$



Use direct method to evaluate :
$$(2+a)(2-a)$$



Use direct method to evaluate :
$$(2a+3)(2a-3)$$



Multiplying: 
$$2mnpq,4mnpq$$  and $$5mnpq$$



Multiplying:
$$x^{3}-3y^{3}$$ and $$4x^{2}y^{2}$$



Use direct method to evaluate :
$$(4+5x)(4-5x)$$



Use direct method to evaluate :
$$(3b-1)(3b+1)$$



Use direct method to evaluate :
$$\left(\dfrac{a}{2}- \dfrac{2}{3} \right) \left(\dfrac{a}{2}+\dfrac{2}{3} \right)$$



Use direct method to evaluate :
$$\left(\dfrac{3}{5}a+\dfrac{1}{2}\right)\left(\dfrac{3}{5}a-\dfrac{1}{2}\right)$$



Use direct method to evaluate :
$$(xy+4)(xy-4)$$



Find the products
$$ -x^{2}(x-15) $$



Use direct method to evaluate :
$$(3x^2+5y^2)(3x^2-5y^2)$$



Use direct method to evaluate :
$$\left(z-\dfrac{2}{3}\right)\left(z+\dfrac{2}{3}\right)$$



Find the products
$$ (5 x+8) 3 x $$



Use direct method to evaluate :
$$(0.5-2a)(0.5+2a)$$



Use direct method to evaluate :
$$(ab+x^2)(ab-x^2)$$



Multiply:
$$ -8x$$  and  $$ 4-2x-x^2 $$ , then answer is $$ -32x+16x^2+8x^3 $$
If true then enter $$1$$ and if false then enter $$0$$



Multiply the binomials
 $$\left( i \right)\,\left( {2x + 5} \right)\,and\,\left( {4x - 3} \right)$$
$$\left( {ii} \right)\,\left( {2.5l - 0.5m} \right)\,and\,\left( {2.2l + 0.5m} \right)$$



Find the square of: $$(x - 5)$$



obtain the product of 
$$\left( i \right)\,xy,\,yz,\,zx$$    $$\left( {ii} \right)\,a,\, - {a^2},{a^3}$$    $$\left( {iii} \right)\,2,\,4y,\,8{y^2},\,16{y^2}$$    $$\left( {iv} \right)\,a,\,2b,\,3c,\,6abc$$    $$\left( v \right)\,m,\, - mn,\,mnp$$



Multiply $$xy + 5x$$ with $$y + 7x$$



Find the following product.
$$\dfrac{3}{5}ax^{3}\times \dfrac{1}{6}bx^{2}$$



Multiply $${y^2} - 3y + 5$$ with $$12{y^2} - 6y$$



Simplify
$$( x + y ) ( 2 y + 3 x ) + ( 3 x + y ) ( y + 2 x )$$



Multiple the binomials.
$$\left(\dfrac{3}{4}a^2+3b^2\right)$$ and $$4\left(a^2-\dfrac{2}{3}b^2\right)$$ 



Multiple the binomials.
$$(y-8)$$ and $$(3y-4)$$



Degree of the polynomial of $$(x^{2}+1)(x+2)$$ is___________.



Multiple the binomials.
$$(2pq+3q^{2})$$ and $$(3pq-2q^{2})$$



Express the following product as a monomial and verify the result in case for $$x=1$$.
$$(4x^2)\times (-3x)\times \left(\dfrac{4}{5}x^3\right)$$.



If the product of $$\left(\dfrac{4}{3}pq^2\right)\times \left(-\dfrac{1}{4}p^2r\right)\times (16p^2q^2r^2)$$ is $$\dfrac{-a}{3}p^5q^4r^3$$, then value of $$a$$ is 



Use suitable identities to find the following products:
$$\left ( x^{2} + \dfrac{3}{5} \right ) \left ( x^{2} - \dfrac{3}{5} \right )$$



Simplify: $$(y - 7) (y + 3)$$



Find and correct errors of the following mathematical expressions:
$$ (2x)^{2}+4(2x)+7 = 2x^{2} +8x+7 $$



Find and correct errors of the following mathematical expressions:
$$x(3x+2) =$$ $$ 3x^{2} +2 $$ 



Simplify:
$$(x+5) (x -2)$$

[Using $$(x + a) (x - b)=x^2+(a -b)x-ab$$]



Multiply the binomials
$$(2.5~l-0.5~m)$$ and $$(2.5~l+0.5~m)$$



$$(a+b)^{2} = $$



If $$a=3,\,q=1$$ then find the value of $$8{a}^{4}{q}^{5}$$



If $$a=6,\,p=4$$ find the value of $$ap$$



Multiply:
$$(3x - 5y + 7z)$$ by $$- 3xyz$$ 



Write the base and the exponent in each case. Also, write the term in the expanded from.
$$\left( 5ab \right) ^{ 3 }$$



Find the product of $$\left( x-2 \right) \left( x+2 \right) \left( { x }^{ 2 }+4 \right) \left( { x }^{ 4 }+16 \right) $$



Find the product of $$6x$$ and $$-7x^2y$$



What is the product $$2l^2m\times 3lm^2$$?



Show that - 
(i) $$(2a+3b)^{2}-(2a-3b)^{2}=24ab$$
(ii) $$(4x+5)^{2}-80x=(4x-5)^{2}$$



Find the product : $$\dfrac{6x}{5}(a^3-b^3)$$



Expand the following using identities
$$(x + 7)(y + 5)$$



Expand the following using identities
$$(3x - 4y)^2$$



Expand:
$${ a }^{ 4 }-16{ b }^{ 4 }$$



Verify the following : $$(-84)\times (25)=25\times (-84)$$



Simplify:
$$(x^2 + 3) (x - 3) + 9$$ 



Multiply:
$$(ax + b)$$ by $$(cx + d)$$ 



Find the product of given monomials:
$$2a, 3a^{2}$$ and $$ 5a^{4}$$



Find the product of given monomials:
$$(a^{2}) \times (2a^{5})\times (4a^{15})$$



Find the product of given monomials:
$$xyz, y^{2}z$$ and $$ yx^{2}$$



Find the product of given monomials:
$$-2p, -3q, -5p^{2}$$



Find the product of given monomials:
$$2x, 4y, 9z$$



For the above expression, keeping $$a=2m$$ and $$b = 3$$, we get
$$\left (\dfrac {3}{4} - x\right )\left (\dfrac {3}{4} +x\right )$$



Using a suitable identity, find the following product:
$$(5a - 3b)(5a - 3b)$$



If  $$x + y - 1 = 0$$, prove that $$x^3 + y^3 + 3xy = 1$$



$$(x-4)^{2}=$$



Find the product:$$\dfrac{m}{d}\times\dfrac{m}{l}$$



Find the product of  $$-4p, 7pq$$



Find the product of the following pairs of monomials $$4p^{3}, -3p$$



Simplify $$\displaystyle \sqrt{8a^{5}b}\times \sqrt{4a^{2}b^{2}}$$.



Simplify:
$$(x + 3)(x + 5) $$
 [Using $$(x+a) (x + b) = x^2+(a+ b)x +ab$$]



Multiply: $$\left(\displaystyle \frac{1}{5}  -\frac{1}{4}y \right) $$ and $$(5x^2-4y^2)$$



Multiply: $$2x$$ and $$(3y+2)$$



Multiply: $$(3x^2+y^3)$$ by $$(x^2+2y^2)$$



Simplify:
$$(x -5)(x -3)$$

[Using $$(x-a)(x-b)=x^2-(a+ b)x+ab$$]



Find the product $$\left( \sqrt { 3 } x+a \right) \left( 2+\pi x \right) $$.



Find the product: $$-x(x-15)$$



Find the product of $$(y - 1)(y - 1)$$ using appropriate identity.



Find the product of $$(x + 5)(x + 5)$$ using appropriate identity.



Find the product of $$(t + 2)(t + 4)$$ using appropriate identity.



Find the product of $$(p - 3)(p + 3)$$ using appropriate identity.



Find the product of $$5x,6y$$ and $$7z$$



Factorise $$a^{3} - 8b^{3} - 64c^{3} - 24abc$$



Simplify: $$4y(3y+4)$$



Find the product of given monomials:
$$abc, abc$$



Find the product of the following pairs of monomials:
$$5a^{2}, -4a$$



Find the product of the following pairs of monomials:
$$\dfrac {3}{7}x^{5}, \dfrac {14}{9}x^{2}$$



Find the product of the following pairs of monomials:
$$-3a, 5ab$$



Find the product of the following pairs of monomials:
$$-7x, 3y$$



Find the product of the following pairs of monomials:
$$3, 7x$$



Find the product of the following pairs of monomials:
$$xy^{2}, x^{2}y$$



Find the product of given monomials:
$$x^{3}y^{5}, xy^{2}$$



Find the product of given monomials:
$$m, 4m, 3m^{2}$$ and $$ -6m^{2}$$



Find the product of given monomials:
$$ab, bc$$ and $$ca$$



Find the product of given monomials:
$$a^{2}b^{2}c^{3}$$ and $$ abc^{2}$$



Find the product of given monomials:
$$xyz$$ and $$ x^{2}yz$$



Find the product of given monomials:
$$lm^{2}, mn^{2}$$ and $$ ln^{2}$$



Simplify: 
$$21py^{2}-56py$$



Find the product of $$(x + y + z)$$ and $$(x + y - z)$$.



Find the product of $$(x + 3y)$$ and $$(3x - y)$$



Using the identity $$(x + a)(x + b) = x^{2} + (a + b)x + ab$$, find out the following product:
$$(x + 4)(x + 7)$$



Using a suitable identity, find each of the following products:
$$\left (\dfrac {1}{x} + \dfrac {1}{y}\right )\left (\dfrac {1}{x} - \dfrac {1}{y}\right )$$



Find the product of $$(3x + 2)$$ and $$(4x - 3)$$.



Using a suitable identity, find each of the following products:
$$(100 + 3)(100 - 3)$$



Find out the product of:
$$\left (\dfrac {2}{3}ab\right )$$ and $$\left (\dfrac {-15}{8}a^{2}b^{2}\right )$$



Using the identity $$(x + a)(x + b) = x^{2} + (a + b)x + ab$$, find out the following products:
$$(2m + 3n)(2m + 4n)$$



Using the identity $$(x + a)(x + b) = x^{2} + (a + b)x + ab$$, find the product of $$(7x + 3y)(7x - 3y)$$.



Using the identity $$(x + a)(x + b) = x^{2} + (a + b)x + ab$$, find the product of
$$(5x + 3)(5x + 4)$$.



Simplify: $$(2x)\times (3x + 5)$$



Using the identity $$(x + a)(x + b) = x^{2} + (a + b)x + ab$$, find out the following product:
$$(8x - 5)(8x - 2)$$



Using the identity $$(x + a)(x + b) = x^{2} + (a + b)x + ab$$, find out the following product:
$$(xy - 3)(xy - 2)$$



Simplify: $$(-2x)\times (4 - 5y)$$



Simplify:
$$(a-b)(a^{2} +ab + b^{2})$$



Simplify $$14\left( {12yz} \right) = \_\_\_\_\_$$



Solve $$5x - ( 4x - 7 ) ( 3x - 5 ) =  6 - 3( 4x - 9 ) ( x - 1 )$$



Simplify $$\left(\dfrac{2}{x}-\dfrac{x}{2}\right)^{2}$$



Multiply $$\left( {a + 2} \right)\left( {a - 1} \right)$$



Expand $$(5x+3)(x-1)(3x-2)$$



Multiply : $$(a^2 + 2c^2) (3a - 3c)$$



Find $$\dfrac{1}{2}x(1+1\cdot 2)$$.



Find the product of $$(7x - 4y)$$ and $$(3x - 7y)$$



Multiply $$x\left[1+\dfrac {1}{x}\right]\left[1-\dfrac {1}{x}\right]$$



Solve:
$$(\sqrt x  - 3x)\left( {x + \frac{1}{x}} \right)$$



Multiply $$-a^2b $$ by $$a^3 b^2 $$ and verify your result for $$a = 2, b = 3$$.



Multiply: $$\left[ {x + \frac{2}{3}} \right]\left[ {x + \frac{3}{4}} \right]$$



Solve:
$$\sqrt {\{ \left( {x - 2} \right)\left( {4 - x} \right)\} } $$



Solve: $$\dfrac{x+1}{2}=12$$ find x



Solve the equation:-
$$\left ( x^{2}-5 \right )\left ( x+5 \right )+25=0$$



solve:
$$2x \times 3x$$



If * represent 7 mangoes and @ represents 4 apples, then what does " *@ *@ " represent?



Find the product of $$3x(2y-3)$$.



simplify: $$\left( x ^ { 3 } + \frac { 1 } { x ^ { 3 } } \right) \left( x ^ { 3 } - \frac { 1 } { x ^ { 3 } } \right)$$



Find the product:
$$\left( \frac { 4 x } { 5 } - \frac { 3 y } { 4 } \right) \left( \frac { 4 x } { 5 } + \frac { 3 y } { 4 } \right)$$



Solve: $$2\times5x(10x^2y-100xy^2)$$



Obtain the product of $$x y , y z , z x$$ 



Find the product of the following pairs of monomials:
( i )  $$\quad ( 2,4 x )$$
( i i )  $$( - 3 x , 2 x )$$



If $${\rm{A}} = xy,\,B = yz$$ and $$C = zx,$$ then find $${\rm{ABC = }}.........$$



Find each of the following products.
$$6a \times 4b^{2}$$



Solve 
(i) $$\left( x+6 \right) \left( x+6 \right) $$
(ii) $$\left( \dfrac { 2 }{ 3 } x+\dfrac { 4 }{ 5 } y \right) \left( \dfrac { 2 }{ 3 } x+\dfrac { 4 }{ 5 } y \right) $$



Fill in the blank
$$5m^{2}\times 3m^{2}=\square$$



Fill in the blank
$$(3x^{2}+4y)(2x+3y)=\square$$



Simplify the following:
$$\left (i\right)\left (x+6\right)\left (x+4\right) \left(x-2\right)$$
$$\left(ii\right)\left (x-6\right)\left (x-4\right)\left (x+2\right)$$
$$\left(iii\right)\left (x+6\right) \left(x-4\right)\left (x-2\right)$$
$$\left(iv\right)\left (x+6\right)\left (x-4\right)\left (x-2\right)$$ 



Simplify:
$$(a^{2}+5)(b^{3}+3)+5$$



Solve:
$$4a^{2}b^{2}-12abc+9c^{2}$$



Expand $$(3x+9)(3x-9)$$



Solve:
$$ab - {c^2} = \cfrac{(bc - a^2)^2}{ac - b^2}$$



Simplify:
$$25abc^{2}-15a^{2}b^{2}c$$



$$(a+b)^{2}=?$$



Multiply the binomials:
$$(2x+5)$$ and $$(4x-3)$$



Complete the table of products
$$\displaystyle \underset{\downarrow Second monomial}{\xrightarrow{\displaystyle First monomial \rightarrow}}$$2x-5y$$3x^2$$-4xy$$7x^2y$$$$-9x^2y^2$$
2x$$4x^2$$-----
- 5y--$$- 15 x^2 y$$---
$$3x^2$$------
- 4xy------
$$7x^2 y$$------
$$- 9x^2 y^2$$------



Find and correct errors of the following mathematical expressions:
$$ (a+4)(a+2) = a^{2} +8 $$



Find and correct errors of the following mathematical expressions:
$$ (2a+3b)(a-b) = 2a^{2} -3b^{2} $$ 



Find areas of rectangles with following pairs of monomials as their length and breadth respectively.
(i) $$(p,\,q)$$
(ii) $$10m,\,5n$$
(iii) $$20x^2,\,5y^2$$
(iv) $$(4x,\,3x^2)$$
(v) $$3mn,\,4np$$



Find product of following pairs of monomials
(i) $$4,\,7p$$
(ii) $$-4p,\,7p$$
(iii) $$-4p,\,7pq$$
(iv) $$4p^3,\,-3p$$
(v) $$4p,\,0$$



Find and correct errors of the following mathematical expressions:
$$ (a-4)(a-2) = a^{2} -8 $$



Find the product.
(i) $$a^2\times(2a^{22})\times(4a^{26})$$

(ii) $$\left(\dfrac23xy\right)\times\left(-\dfrac9{10}x^2y^2\right)$$

(iii) $$\begin{pmatrix}\dfrac{-10}{3}pq^3\end{pmatrix}\times\begin{pmatrix}\dfrac{6}{5}p^3q\end{pmatrix}$$

(iv) $$x\times x^2\times x\times x^3\times x^4$$



Obtain the product of
(i) $$xy,\,yz,\,zx$$
(ii) $$a,\,-a^2,\,a^3$$
(iii) $$2,\,4y,\,8y^2,\,16y^3$$
(iv) $$a,\,2b,\,3c,\,6abc$$
(v) $$m,\,-mn,\,mnp$$



Multiply the binomials
(i) $$(2x+5)$$ and $$(4x-3)$$

(ii) $$(y-8)$$ and $$(3y-4)$$

(iii) $$(2.5l-0.5m)$$ and $$(2.5l+0.5m)$$

(iv) $$(a+3b)$$ and $$(x+5)$$

(v) $$(2pq+3q^2)$$ and $$(3pq-2q^2)$$

(vi) $$\begin{pmatrix}\dfrac{3}{4}a^2+3b^2\end{pmatrix}$$ and $$\begin{pmatrix}a^2-\dfrac{2}{3}b^2\end{pmatrix}$$



Complete the table.

 First expression Second expression Product
 (i) $$a$$ $$b+c+d$$.....
 (ii) $$x+y-5$$ $$5xy$$.....
 (iii) $$p$$ $$6p^2-7p+5$$.....
 (iv) $$4p^2q^2$$ $$p^2-q^2$$..... 
 (v) $$a+b+c$$ $$abc$$..... 



Find the products:
(i) $$(5-2x)\;(3+x)$$
(ii) $$(x+7y)\;(7x-y)$$
(iii) $$(a^2+b)\;(a+b^2)$$
(iv) $$(p^2-q^2)\;(2p+q)$$



Obtain the volume of rectangular boxes with following length, breadth and height given respectively.
(i) $$5a,\,3a^2,\,7a^4$$
(ii) $$2p,\,4q,\,8r$$
(iii) $$xy,\,2x^2y,\,2xy^2$$
(iv) $$a,\,2b,\,3c$$



Complete the table of products

 1st monomial $$\longrightarrow$$
2nd monomial $$\downarrow$$
 $$2x$$$$-5y$$ $$3x^2$$ $$-4xy $$$$7x^2y$$ $$-9x^2y^2$$ 
 $$2x$$ $$4x^2$$ ........ .... .... .... 
 $$-5y$$ .... ....  $$-15x^2y$$ ........ ... 
 $$3x^2$$ .... .... .... ........ .... 
 $$-4xy $$.... .... .... .... .... .... 
 $$7x^2y$$ .... .... .... .... .... .... 
 $$-9x^2y^2$$ .... .... .... ....  ........ 



Determine the product:
$$(8y + 3) \times 4x$$



Complete the following table of products of two monomials:
First $$\rightarrow$$
Second $$\downarrow$$
$$3x$$$$-6y$$$$4x^2$$$$-8xy$$$$9x^2y$$$$-11x^3y^2$$
$$3x$$
$$-6y$$
$$4x^2$$
$$-8xy$$
$$9x^2y$$
$$-11x^3y^2$$



Evaluate the following product of  $$a{ x }^{ 2 }(bx+c)$$



Multiply $${ c }^{ 2 }a$$ and $${ b }^{ 2 }+2bc$$.



Expand $${ \left( x+\cfrac { 1 }{ x }  \right)  }^{ 2 }$$ using appropriate identity



Expand $${ \left( 2a+3 \right)  }^{ 2 }$$ using appropriate identity



Find the product of the pair of monomial: $$4p^3, -3p$$



Simplify: $${ \left( x+\cfrac { 1 }{ x }  \right)  }^{ 2 }-{ \left( x-\cfrac { 1 }{ x }  \right)  }^{ 2 }$$



Expand $$(3x-5y)(3x+5y)$$



Expand (2x+3)(2x+5) using appropriate identity.



Evaluate the product of $${ b }^{ 4 }({ b }^{ 6 }+{ b }^{ 8 })$$



Evaluate the product of $$ { a }^{ 2 }{ b }^{ 2 }(a{ b }^{ 2 }+{ a }^{ 2 }b)$$



Evaluate the product of $$(x+3)(x+2)$$



Evaluate the product of $$ab(a+b)$$



Find the coefficients of $${x}^{2}$$ and $$x$$ in $$(x+4)(x+1)(x+2)$$



Find the coefficients of $${x}^{2}$$ and $$x$$ in $$(2x+1)(2x-2)(2x-5)$$



p(x) = $${x^3} + 4{x^2} - 5x + 6$$
g(x) = x + 1
and verify with $$p(x)[g(x) \times q(x)] + r(x)$$



The length and breadth and height of a cuboid are $$(x+3),(x-2)$$ and $$(x-1)$$ respectively. Find its volume.



Solve $$(4x+5y)(4x-5y)$$



Complete the following table of products:
First monomial $$\rightarrow$$
Second Monomial $$\downarrow$$
$$2x$$$$-3y$$$$4x^{2}$$$$-5xy$$$$7x^{2}y$$$$-6x^{2}y^{2}$$
$$2x$$$$4x^{2}$$........
$$-3y$$
$$4x^{2}$$
$$-5xy$$$$25x^{2}y^{2}$$
$$7x^{2}y$$
$$-6x^{2}y^{2}$$$$18x^{2}y^{2}$$



Find the product of the following:
$$(m - n)(m^{2} + mn + n^{2})$$



Find out the following squares by using the identities:
$$0.54\times 0.54 - 0.46\times 0.46$$



Using the identity $$(x + a)(x + b) = x^{2} + (a + b)x + ab$$, find out the following products:
$$(2 + x)(2 - y)$$



Find out the following squares by using the identities:
$$(p - q)^{2}$$



Find out the following square by using the identity $$(a-b)^2=a^2+b^2-2ab$$:
$$(5x - 4)^{2}$$



If $$x$$ and $$y$$ are positive integers, and it $$x - y$$ is even, show that $$x^{2} - y^{2}$$ is divisible by $$4$$.



Expand the following using standard identities:
$$(4x + 5y) (4x - 5y)$$



$$(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0$$



Solve
$$\left( x+\dfrac { 1 }{ x }  \right) \left( \sqrt { x } +\frac { 1 }{ \sqrt { x }  }  \right) $$



Find the product $$-3y(xy+y^2)$$ and find its value at $$x=4$$ and $$y=5$$



Expand the following and collect like terms:
$$\begin{array}{l}\left( a \right)\,\,\,\,\left( {x + 5} \right)\left( {x + 5} \right)\\\left( b \right)\,\,\,\,\,\left( {x + 9} \right)\,\left( {x + 9} \right)\end{array}$$



Simplify $$\left(y^{2}+\dfrac {3}{2}\right) \left(y^{2}+\dfrac {3}{2}\right)$$



Find the expression for the product $$(x+a)(x+b)(x+c)$$ using the identity $$(x+a)(x+b)=x^{2}+(a+b)x+ab$$



Find the product of the following pair of monomials.
$$4, 7p$$



Find the product of the following pair of monomials.
$$-4p, 7pq$$



$$(4x+5y)(4x+5y)$$



Find the product of the following pair of monomial.
$$-4p, 7p$$



Factorise: $${ a }^{ 3 }+{ b }^{ 3 }+{ c }^{ 3 }-3abc$$



$$(2x^2-5y^2)\times(x^2+3y^2)$$.



Find the product of the following pair of monomials.
$$4p$$ and $$ 0$$



$$\left(\dfrac{3}{5}x+\dfrac{1}{2}y\right)$$ by $$\left(\dfrac{5}{6}x+4y\right)$$.



Solve : i) (z + 19 ) (z + 7)
ii) (9 + 4a) (7 + 4a)



Find: $$(x^{2}-y^{2})(x^{2}+y^{2})$$



Solve: $$(30x^{2}+15-10)\times (2x+3)$$



$$\left(y^2+\dfrac{3}{2}\right)\left(y^2-\dfrac{3}{2}\right)$$



Solve : $$(x^2 - y^2) \times (x + 2y)$$



If $$x:y=1:7$$ and $$y:z=4:5$$, find 
$$x:y:z$$



Find the product $$-5x^2y$$ and $$2xy^2$$.



Multiply the binomials.
$$(2x+5)$$ and $$(4x-3)$$



$$a(3x - 2y) + b(2y - 3x)=?$$.



Find the product of :
$$\left( {3{x^2} - 4xy} \right)\left( {3{x^2} - 4xy} \right)$$



Multiply: $$16xy\times 18xy$$



Find the product $$\left( {x + y - z} \right)\left( {{x^2} + {y^2} + {z^2} - xy + yz + zx} \right)$$.



Multiply :
$$3{x^2} - {x^3} + x + 1$$ by $$(1+x)$$



Multiply  $$ \left( 3p - q^ { 2 } \right) \left( 7 q + 4 p ^ { 4 } \right)$$



If the polynomial $$6x^{4}+8x^{3}-5x^{2}+ax+b$$ is exactly divisible by the polynomial $$2x^{2}-5$$, then find the value of $$a$$ and $$b$$.



Multiple the binomials.
$$(a+3b)$$ and $$(x+5)$$



Form a cubic polynomial whose zeros are $$-3,-1$$ and $$2$$.



Solve for $$x$$
$$\dfrac{1}{2(2x+3x)}+\dfrac{12}{7(3x-2x)}=\dfrac{1}{2}$$



Simplfy:
$${ ax }^{ 2 }y+{ bxy }^{ 2 }+cxyz$$



Find the product of the following pairs of monomials.
i) - 4p, 7p  ii) 4p$$^3$$, - 3p



solve the equation by cross multiplication
$$x+ay=b$$ 
$$ax-by=c$$



Evaluate the following product

(1)     $$\left( { X }^{ 2 }+3 \right) \left( { X }^{ 2 }+4 \right) $$



Divide and write the quotient and the remainder.
$$(a^{3}+5)\div (a^{3}+2)$$



select a suitable identity and find the following products
$$(ax^{2}+by^{2})(ax^{2}+by^{2})$$



Prove that:
$$(a^{2}+b^{2})(a^{2}+b^{2})-(a^{2}-b^{2})(a^{2}-b^{2})=4{a}^{2}{b}^{2}$$



Multiply the binomials
$$(2pq+3q^{2})$$ and $$(2pq-2q^{2})$$



Expand:$${ \left(x-\dfrac { 2 }{ 3 } y\right)}^{ 3 }$$



Find the product of $$\left(7x+3y\right)\left(7x-y\right)$$



Find cubic polynomial whose zeroes are 3, $$\dfrac { 1 }{ 2 } $$ & $$-1$$



Evaluate: $$(x+2y)(-3x-y)-(x+y)(x-y)+(x-2y)(-2x+y)$$



Simplify:$${\left({l}^{2}+{m}^{2}\right)}^{2}+{\left({l}^{2}-{m}^{2}\right)}^{2}$$



Simplify: $$2{p}^{3}-3{p}^{2}+4p-5-6{p}^{3}+2{p}^{2}-8p-2+6p+8$$



Find the product of $$2x$$ and $$\left(x+y\right)$$



Write the base and the exponent in each case. Also, write the term in the expanded from.
$$\left( 7x \right) ^{ 2 }$$



Divide $$2a^2+6ab$$ by $$a+3b$$.



Solve : $$\dfrac { { x }^{ 2 }-5x-24 }{ (x+3)(x+8) } \times\dfrac { { x }^{ 2 }-64 }{ { (x-8) }^{ 2 } } $$



Simplify: 
$$\left( 1.5x-4y \right) \left( 1.5x+4y+3 \right) -4.5x$$



Evaluate:$$\left( x+y \right) \left( 2x+y \right) \left( 2x-y \right) \left( x-y \right) $$



Solve:
$$\dfrac{2}{5x}-\dfrac{5}{3x}=\dfrac{1}{15}$$



Solve:
$$\dfrac{x+2}{6}-\left(\dfrac{11-x}{3}-\dfrac{1}{4}\right)=\dfrac{3x-4}{12}$$



Simplify 
$$\left( x+y \right) \left( 2x+y \right) +\left( x+2y \right) \left( x-y \right) $$



Multiply : $$3ab\times \left( { 5a }^{ 2 }+{ 4b }^{ 2 } \right) $$



Prove that : 
$$ \left ( \dfrac{x^{a}}{x^{b}} \right )^{c}\times \left ( \dfrac{x^{b}}{x^{c}} \right )^{a}\times \left ( \dfrac{x^{c}}{x^{a}} \right )^{b} = 1 $$ 



Find the product of $$(7x+5) (2x-3)$$



Evaluate the following using identities
$$117\times 83$$



Find the following product:
$$\left( \cfrac { 3 }{ x } -\cfrac { 5 }{ y }  \right) \left( \cfrac { 9 }{ { x }^{ 2 } } +\cfrac { 25 }{ { y }^{ 2 } } +\cfrac { 15 }{ xy }  \right) $$



Find the product of the following:
$$\left( \cfrac { 3 }{ x } -2{ x }^{ 2 } \right) \left( \cfrac { 9 }{ { x }^{ 2 } } +4{ x }^{ 4 }-6x \right) $$



Find the product of the following:
$$(1+x)(1-x+{x}^{2})$$



Find the product of the following:
$$(1-x)(1+x+{x}^{2})$$



Evaluate the following using identities
$$991\times 1009$$



Evaluate the following using identities:
$$(2x+y)(2x-y)$$



Find the product of the following:
$$\left( \cfrac { 2 }{ x } +3x \right) \left( \cfrac { 4 }{ { x }^{ 2 } } +9{ x }^{ 2 }-6 \right) $$



Find the product of the following:
$$\left( 3+\cfrac { 5 }{ x }  \right) \left( 9-\cfrac { 15 }{ x } +\cfrac { 25 }{ { x }^{ 2 } }  \right) $$



Write the following in the expanded form:
$${({a}^{2}+{b}^{2}+{c}^{2})}^{2}$$



If the product of $$\left(\dfrac{7}{9}ab^2\right)\times \left(\dfrac{15}{7}ac^2b\right)\times \left(-\dfrac{3}{5}a^2c\right)$$ is $$\dfrac{-1}xa^4b^3c^3$$, then what is the value of $$x$$?



If the product of $$\left(-\dfrac{2}{7}a^4\right)\times \left(-\dfrac{3}{4}a^2b\right)\times \left(-\dfrac{14}{5}b^2\right)=\dfrac{-3}{z}a^6b^3$$, then value of $$z$$ is



If the product of $$(-5a)\times (-10a^2)\times (-2a^3)=-100a^b$$, then what is the value of $$b?$$



If the product of $$(7ab)\times (-5ab^2c)\times (6abc^2)=-la^3b^4c^3$$, then what is the value of $$l?$$



If $$x=3$$ and $$y=-1$$, find the values of the following using in identity:
$$\left( \cfrac { 5 }{ x } +5x \right) \left( \cfrac { 25 }{ { x }^{ 2 } } -25+25{ x }^{ 2 } \right) $$



Find the product of the following:
$$({x}^{2}-1)({x}^{4}+{x}^{2}+1)$$



If $$x=3$$ and $$y=-1$$, find the values of the following using in identity:
$$\left( \cfrac { x }{ 4 } -\cfrac { y }{ 3 }  \right) \left( \cfrac { { x }^{ 2 } }{ 16 } +\cfrac { xy }{ 12 } +\cfrac { { y }^{ 2 } }{ 9 }  \right) $$



Find the product of the following:
$$({x}^{3}+1)({x}^{6}-{x}^{3}+1)$$



If the product of $$(-4x^2)\times (-6xy^2)\times (-3yz^2)=-kx^3y^3z^2$$, then value of $$k?$$ 



If $$x=3$$ and $$y=-1$$, find the values of the following using in identity:
$$\left( \cfrac { x }{ 7 } -\cfrac { y }{ 3 }  \right) \left( \cfrac { { x }^{ 2 } }{ 49 } +\cfrac { { x }^{ 2 } }{ 9 } +\cfrac { xy }{ 21 }  \right) $$



Express the following product as a monomial and find the value of A. Also, verify the result in the case of $$x=1$$.
$$(3x)\times (4x)\times (-5x)=-Ax^3$$.



If the product of $$\left(\dfrac{4}{3}u^2vw\right)\times \left(-5uvw^2\right)\times \left(\dfrac{1}{3}v^2wu\right)$$ is $$\dfrac{-20}{a}u^4v^4w^4$$, then what is the value of $$a$$?



If the product of $$(0.5x)\times \left(\dfrac{1}{3}xy^2z^4\right)\times (24x^2yz)$$ is $$cx^4y^3z^5$$, then the value of $$c$$ is 



Write down the product of $$-8x^2y^6$$ and $$-20xy$$. Verify the product for $$x=2.5, y=1$$.



Express the following product as a monomial and verify the result in case for $$x=1$$.
$$(x^2)^3\times (2x)\times (-4x)\times (5)$$.



If the product of $$(2.3xy)\times (0.1x)\times (0.16)$$ is $$0.036bx^2y$$, then what is the value of $$b$$?



Evaluate $$(3.2x^6y^3)\times (2.1x^2y^2)$$ when $$x=1$$ and $$y=0.5$$.



Evaluate $$(-8x^2y^6)\times (-20xy)$$ for $$x=2.5$$ and $$y=1$$.



Multiply $$(2x^2y^2-5xy^2)$$ by $$(x^2-y^2)$$.



Find the following product.
$$0.1y(0.1x^5+0.1y)$$



Evaluate the following when $$x=2, y=-1$$.
$$(2xy)\times \left(\dfrac{x^2y}{4}\right)\times (x^2)\times (y^2)$$.



Evaluate the following when $$x=y=-1$$.
$$\left(\dfrac{3}{5}x^2y\right)\times \left(-\dfrac{15}{4}xy^2\right)\times \left(\dfrac{7}{9}x^2y^2\right)$$.



Find the following product.
$$2a^3(3a+5b)$$.



Simplify the following using the identity.
$$1.73\times 1.73-0.27\times 0.27$$.



Find the following product.
$$(x+4)(x+7)$$.



Find each of the following products:
$$(x^{4}+(1/x^{4})\times (x+(1/x))$$



Simplify the following using the identity.
$$178\times 178-22\times 22$$.



Simplify the following using the identity.
$$\dfrac{198\times 198-102\times 102}{96}$$.



Given that $$ x^{2}-3 x+1=0, $$ then the value of the expression $$ y=x^{9}+x^{7}+x^{9}+x^{-7} $$ is divisible by prime number.



Find the following product.
$$(2x^2-3)(2x^2+5)$$.



Show that if $$x^{2}+y^{2}=2z^{2}$$, where $$x, y, z$$ integers then $$2x=r(l^{2}+2lk -k^{2}), 2y=r(k^{2}+2lk-l^{2}), 2z=r(l^{2}+k^{2})$$ where $$r, l,$$ and $$k$$ are integers.



Simplify the following using the identity.
$$\dfrac{8.63\times 8.63-1.37\times 1.37}{0.726}$$.



Find the product of $$\dfrac{-1}{2}x^2,\  - \dfrac{3}{5}xy,\ \dfrac{2}{3}yz$$ and $$\dfrac{5}{7}xyz$$ 



Find product of the following expressions:
$$(x^{4}+y^{4}),  (x^{2}-y^{2})$$



Find the following product:
$$8a^2(2a+5b)$$



Find the following product:
$$9x^2(5x+7)$$



Find the following product:
$$\dfrac{2}{3}x^2y \times \dfrac{3}{5}xy^2$$



Find the following product:
$$(-4ab) \times (-3a^2bc)$$



Find the following product:
$$4a(3a+7b)$$



Find the product:
$$-6x^3 \times 5x^2$$



Find the following product:
$$5a(6a-3b)$$



Find the product:
$$3a^2 \times 8a^4$$



Find the following product:
$$(2a^2b^3) \times (-3a^3b)$$



Find the following product:
$$ab(a^2-b^2)$$



Simplify:  $$ (- 4a 8a)$$.



Find the following product:
$$\dfrac{-13}5ab^2c \times \dfrac73a^2 bc^2$$



Find the following product:
$$\dfrac72x^2(\dfrac47x+2)$$



Find the following product:
$$\dfrac35m^2n(m+5n)$$



Find the following product:
$$2x^2(3x-4x^2)$$



Find the following product:
$$(-1/27)a^2 b^2 \times (-9/2)a^3 bc^2$$



Find the following product:
$$\dfrac{-3}{4}ab^3 \times \dfrac{-2}3a^2 b^4$$



Find the following product:
$$-4x^2y(3x^2-5y)$$



Find the following product:
$$-17x^2(3x-4)$$



Find the following product:
$$\left(\dfrac{-18}{5}\right)x^2z \times \left(\dfrac{-25}{6}\right)xz^2y$$



Find the following product:
$$\dfrac{-4}{27}xyz(\dfrac92x^2yz-\dfrac34xyz^2)$$



Find the product:
$$2a^2b \times (-5)ab^2c \times (-6)bc^2$$



Volume of a rectangular box with length $$2x$$, breadth $$3y$$ and height $$4z$$ is __________ .



Find the following product:
$$\left(\dfrac{-3}{14}\right)xy^4 \times \left(\dfrac76\right)x^3y$$



$$(x + a) (x +b) =x^{2}+(a+b) x+$$ __________ .



Find the product:
$$\left(\dfrac{-7}5\right)x^2y \times \left(\dfrac32\right)xy^2 \times \left(\dfrac{-6}5\right)x^3 y^3$$



Find the following product:
$$10a^2(0.1a-0.5b)$$



Find the following product:
$$9t^2(t+7t^3)$$



Volume of a rectangular box with $$l = b = h = 2x$$ is __________ .



Area of a rectangular plot with sides $$4x^{2}$$ and $$3y^{2}$$ is __________ .



Multiply: $$-5a^{2}bc$$ , $$11ab$$ and $$13abc^{2}$$.



Multiply $$15xy^{2}$$ and $$17yz^{2}$$



Multiply  $$-7pq^{2}r^{3}$$ and $$-13p^{3}q^{2}r$$



Multiply $$3x^{2}y^{2}z^{2}$$ and $$17xyz$$



Find the product of:
$$-7ab, -3a^3$$ and $$-(2/7)ab^2$$



Find the product of $$4x^3$$ and $$-3xy$$



Multiply:
$$(4p - 7)$$ by $$(2 - 3p)$$



Multiply:
$$(5x - 2)$$ by $$(3x + 4)$$ 



Multiply:
$$(2x^2 + 3)$$ by $$(3x - 5)$$



Multiply: 
$$(2p^2 - 3pq + 5q^2 + 5)$$ by $$- 2pq$$ 



Find the product of:
$$2xyz$$ and $$0$$



Simplify:  $$12x (5x + 2x)$$.



Find the product of $$-4.5xy, \ \dfrac{5}{7}yz$$  and $$-\dfrac{14}{9}zx$$.



Evaluate:  $$35b (16b + 9b)$$.



Evaluate:  $$6m (4m m)$$.



Find the product of
$$3x^2y $$ and $$-4xy^2$$



$$6p 5x + q = 6p (.)$$



Multiply:
$$3a + 4b- 5c$$ and $$ 3 a$$



Simplify:  $$10m + (4n 3n) 5n$$.



Simplify:  $$x (x y) (- x + y)$$.



Simplify:  $$2 (3a b) 5 (a 3b)$$.



$$x 2y = - ()$$



Multiply:
$$xy- yz$$ and $$x^2\,yz^2$$



Multiply:
$$ 3\,abc\,\, and\,\, - 5 a^2b^2c$$ 



Simplify:  $$(15b 6b) (8b + 4b)$$.



Evaluate:
$$\big (\dfrac{1}{2}a + \dfrac{1}{2} b \big) \big(\dfrac{1}{2} a- \dfrac{1}{2}b \big)$$



Multiply:
$$ x - y + z \,\,and\,\, -2x$$



Find the product: 
(a - 8)(a + 2)



Multiply:
$$ - 8xyz + 10 x^2yz^3 \,\,and\,\, xyz$$



$$\text { Complete the following table of products of two monomials }$$

1870403_a241967f5ed3420ba0fca8ca59f56f19.png



Multiply the given polynomial 
$$2x; x^{2} - 2x - 1 $$



Find the product: (a - 6)(a - 2)



Multiply:
$$xyz\,\, and\,\, - 13 xy^2z + 15x^2yz - 6xyz^2$$



Multiply:
$$ 2x -3y - 5z\,\, and\,\, -2y$$



Find the products
$$ \dfrac{2 x}{5}\left(3 a^{3}-3 b^{3}\right) $$



Find the products
$$ (-3 \mathrm{pq})\left(-15 \mathrm{p}^{3} \mathrm{q}^{2}-\mathrm{q}^{3}\right) $$



Use suitable identities to find the following products:
$$(x + 2)(x - 5)$$



Use suitable identities to find the following products:
$$(x - 5)(x + 8)$$



The base and altitutde of a triangle are $$ (3 x-4 y) $$ and $$ (6 x+5 y) $$ respectively. Find its area.



Use suitable identities to find the following products:
$$(x + 3)(x + 7)$$



Use suitable identities to find the following products:
$$(2x + 7)(3x - 5)$$



Use suitable identities to find the following products:
$$(5 - 3x)(3 + 2x)$$



Expand $${ \left( \pi +\cfrac { 22 }{ 7 }  \right)  }^{ 2 }$$ using appropriate identity



Expand $${ \left( \sqrt { 12 } a+\sqrt { 6 } b \right)  }^{ 2 }$$ using appropriate identity



Expand $${ \left( \pi -\cfrac { 22 }{ 7 }  \right)  }^{ 2 }$$ using appropriate identity



Expand $${ \left( 3a-2b \right)  }^{ 2 }$$ using appropriate identity



Expand $$(3x-3)(3x+4)$$ using appropriate identity



Expand $${ \left( \sqrt { 10 } x-\sqrt { 5 } y \right)  }^{ 2 } $$ using appropriate identity



Expand: $$\left( \cfrac { x }{ 3 } +\cfrac { y }{ 2 }  \right) \left( \cfrac { x }{ 3 } -\cfrac { y }{ 2 }  \right) $$



Expand $$\left( y-\cfrac { 1 }{ y }  \right) ^{ 2 }$$ using appropriate identity



Expand: $$\left( { a }^{ 2 }+4{ b }^{ 2 } \right) \left( a+2b \right) \left( a-2b \right) $$



Expand $$\left( { x }^{ 2 }+{ y }^{ 2 } \right) \left( { x }^{ 2 }-{ y }^{ 2 } \right) $$



Simplify: $${ (4a-7b) }^{ 2 }-{ (3a) }^{ 2 }$$



Suppose $$x$$ and $$y$$ are positive real numbers such that $$x \sqrt x\,+\,y \sqrt y=\,183$$ and $$ x \sqrt y\, =y \sqrt x=182$$ then value of $$\frac{18}{5}(x+y)$$ is : 



Find the product : $$6x^{2}\times 4xy$$



Simplify: $$\left( { m }^{ 2 }+2{ n }^{ 2 } \right) ^{ 2 }-4{ m }^{ 2 }{ n }^{ 2 }$$



Simplify: $${ \left( 3a-2 \right)  }^{ 2 }-{ \left( 2a-3 \right)  }^{ 2 }$$



$$ {28x}^{4} by 56 x $$



Expand : $$( x + a ) ( x + b )$$



Expand : $$( a + b ) ( a - b )$$



Find the product of the following binomial.
$$(a+2b)(a-2b)$$.



Find the product of the following binomial.
$$\left(x^3+\dfrac{1}{x^3}\right)\left(x^3-\dfrac{1}{x^3}\right)$$.



Simplify.
$$6uw^{-3} \times 4uw^{6}$$



Find:
$${(x^2-7x)(x+5)}$$



Find the following product.
$$\left(z+\dfrac{3}{4}\right)\left(z+\dfrac{4}{3}\right)$$.



Class 8 Maths Extra Questions