Determinants - Class 12 Commerce Maths - Extra Questions
If A is 2×2 matrix, detA=4 then find the product of det(3A) and det(A−1)
Write the value of the determinant [pp+1p−1p] when p=1342
Using the properties of determinants, find the value of
|0a−b−a0−cbc0|
Evaluate the determinants |24−5−1|
If A=[1002345−6x] and detA=45; then find x.
Find adjoint of matrix A=[1234]
Show that the points A(2,3),B(4,0) and C(6,−3) are collinear.
Write the value of △=|x+yy+zz+xzxy−3−3−3|.
The area of a triangle is zero, then the three points are said to be ______ points.
Find the value of the determinant: |5−2−31|
If for any 2×2 square matrix A, A(adjA)=[8008], them write the value of det[A].
Find a value of x if |x218x|=|62186|
|111abca2b3c3| Prove that : = (a−b)(b−c)(c−a)(a+b+c).
Find the values of x for which |3xx1|=|3241|.
Evaluate the following deteminants : i)|x−7x5x+1|
ii)|cos15∘sin15∘sin75∘cos75∘|
If 3n is a factor of the determinant |111nC1n+3C1n+6C2nC2n+3C2n+6C2|, then the maximum value of n is ____.
Find the determinant in following case: A=[52002]
Find if the points (0, 8/3), (1/3) , and (82, 30) are collinear.
Prove the following : |y+zzyzz+xxyxx+y|=4xyz
Prove that the points (a , b), (c , d) and (a - c, b - d) are collinear if ad = bc. Also show that the straight line passing through these points passes through origin.
Show that |sin10∘−cos10∘sin80∘cos80∘|=1
Find the value of K, for which the given points are collinear: A(7,−2)B(5,1)C(3,K)
In each of the following find the value of k, for which the points are collinear.. (ii) (8,1),(k,−4),(2,−5)
Let A=[58813] then show that A satisfies the equation x2−18x+1=0.
In each of the following find the value of k, for which the points are collinear.(i) (7,−2),(5,1),(3,k)
Find the value of x if the points (x,5),(2,3) and (−2,−11) are collinear.
If the minor of three-one element (i.e M31) in the determinant |01secαtanα−secαtanα101| is 1 then find the value of α. (0≤α≤π)
Show that △ABC is an isosceles triangle, if the determinant
If A,B and C are the angles of non-right angles triangle ABC, then find the value of \begin{vmatrix} \tan { A } & 1 & 1 \\ 1 & \tan { B } & 1 \\ 1 & 1 & \tan { C } \end{vmatrix}
If the value of \begin{vmatrix} 1 & 2 & 4 \\ -1 & 3 & 0 \\ 4 & 1 & 0 \end{vmatrix} is k, then find \dfrac{-k}{13}.
The absolute value of the determinant \begin{vmatrix} -1 & 2 & 1 \\ 3+2\sqrt { 2 } & 2+2\sqrt { 2 } & 1 \\ 3-2\sqrt { 2 } & 2-2\sqrt { 2 } & 1 \end{vmatrix} is \displaystyle\frac { k }{ \sqrt { 2 } } then k=
If \begin{vmatrix} x & x+y & x+y+z \\ 2x & 3x+2y & 4x+3y+2z \\ 3x & 6x=3y & 10x+6y+3z \end{vmatrix}=64, then the real value of x is .........
The value of \begin{vmatrix} 2{ x }_{ 1 }{ y }_{ 1 } & { x }_{ 1 }{ y }_{ 2 }+{ x }_{ 2 }{ y }_{ 1 } & { x }_{ 1 }{ y }_{ 3 }+{ x }_{ 3 }{ y }_{ 1 } \\ { x }_{ 1 }{ y }_{ 2 }+{ x }_{ 2 }{ y }_{ 1 } & 2{ x }_{ 2 }{ y }_{ 2 } & { x }_{ 2 }{ y }_{ 3 }+{ x }_{ 3 }{ y }_{ 2 } \\ { x }_{ 1 }{ y }_{ 3 }+{ x }_{ 3 }{ y }_{ 1 } & { x }_{ 2 }{ y }_{ 3 }+{ x }_{ 3 }{ y }_{ 2 } & 2{ x }_{ 3 }{ y }_{ 3 } \end{vmatrix} is ........
The constant k is such that the following system of equations posses a non-trivial(i.e., not all zero) solution over the set of rationals Q x+ky+3z=0,\quad 3x+ky-2z=0\quad 2x+3y-4z=0 Then \displaystyle \frac{2k}{11} is equal to
If A + B + C = \pi, then \begin{vmatrix} sin (A + B + C)& sin B & cos C\\ - sin B & 0 & tan A\\ cos (A + B) &- tan A &0 \end{vmatrix} = .............
If (1,2), \displaystyle \left(\frac{1}{2} , 3 \right) and (0, k) are collinear points, find the value of k.
State whether True or False
(-1, 8), (9, -2), (3,4) are collinear points.
Let f\left ( x \right )=\begin{vmatrix} 2\cot x & -1 & 0\\ 1 & \cot x & -1\\ 0 & 1 & 2\cot x \end{vmatrix} then
A_{3 \times 3} is a matrix such that |A|=a, \:B = (adj \:A) such that |B|= b. Find the value of \dfrac{(ab^2 + a^2b + 1)S}{25} where \displaystyle \frac{1}{2}S=\frac{a}{b}+\frac{a^2}{b^3}+\frac{a^3}{b^5} + \:......... \:up \:to \:\infty , and a = 3.
Find the value of x for which the points (x, -1), (2,1) and (4, 5) are collinear.
Find the values of x, if (i)\begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix}=\begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix} (ii)\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix}=\begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}
Write minors and cofactors of the elements of following determinants (i)\begin{vmatrix} 2 & -4 \\ 0 & 3 \end{vmatrix} (ii)\begin{vmatrix} a & c \\ b & d \end{vmatrix}
Find the Minors and Cofactors of the elements of the following determinants:
If A_{ij} is the cofactor of the element a_{ij} of the determinant \begin{bmatrix}2&-3&5\\6&0&4\\1&5&-7 \end{bmatrix} then write the value of a_{32}.A_{32}.
If \triangle = \begin{vmatrix} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{vmatrix}, white the cofactor of the element a_{32}.
If \Delta = \begin{vmatrix} 5& 3 & 8\\ 2 & 0 & 1\\ 1 & 2 & 3\end{vmatrix}, write the cofactor of the element a_{32}
If \Delta = \begin{vmatrix}1 & 2 & 3\\ 2 & 0 & 1\\ 5 & 3 & 8\end{vmatrix}, write the minor of the elements a_{22}
If \Delta = \begin{vmatrix} 5 & 3 & 8\\ 2 & 0 &1 \\ 1 & 2 & 3\end{vmatrix}, write the minor of the element a_{23}.
Find the relation between x and y if the points A(x, y), B(-5, 7) and C(-4, 5) are collinear.
For how many real values of 'm' the points A (m + 1, 1), B (2m + 1, 3) and C (2m + 2, 2m) are collinear.
Show that the adjoint of A = \begin{bmatrix}-4 & -3 & -3\\ 1 & 0 & 1\\ 4 & 4 & 3\end{bmatrix} is A itself
Find the value of k if A (4, 11), B (2, 5), C (6, k) are collinear points.
Find the value of a for which the following points A (a, 3), B(2, 1) and C(5, a) are collinear. Hence find the equation of the line.
A, B, and C are three collinear points. The coordinates of A and B are (3, 4) and (7, 7) respectively and AC =10 units. Find sum of co-ordinates of C.
Using determinants show that points A (a, b + c), B(b, c + a) and C (c, a + b) are collinear.
find the value of k for which the points (k,-1)(2,1) and (4,5)are collinear.
Show that the points A(-3,3), B(0,0), C(3,-3) are collinear.
If A=\begin{bmatrix}1&2\\3&4\end{bmatrix}, find |2A|.
Find the equation of line joining (1, 2) and (3, 6) using determinants.
Calculate the values of the determinants: \begin{vmatrix}a & h & g\\ h& b & f\\ g & f & c\end{vmatrix}.
For what values of m will the expression {y}^{2}+2xy+2x+my-3 be capable of resolution into two rational factors?
Calculate the values of the determinants: \begin{vmatrix}1 & 1 & 1\\ 1& 1 + x & 1\\ 1 & 1 & 1 + y\end{vmatrix}.
Calculate the values of the determinants: \begin{vmatrix}1 & z & -y\\ -z& 1 & x\\ y & -x & 1\end{vmatrix}.
Solve for \lambda if \begin{vmatrix} a^2+\lambda & ab & ac\\ ab & b^2+\lambda & bc\\ ac & bc & c^2+\lambda\end{vmatrix}=0.
Calculate the values of the determinants: \begin{vmatrix}b + c & a & a\\ b& c + a & b\\ c & c & a + b\end{vmatrix}.
Find the area of \triangle PQR whose vertices are P(2,1),Q(3,4) and R(5,2).
Find the equation of the line joining A(1,3) and B(0,0) using determine and find k of D(k,0) is a point such that area of \triangleABD is 3 sq. units.
If points \left( a,0 \right) ,\left( 0,b \right) and \left( x,y \right) are collinear, prove that \cfrac { x }{ a } +\cfrac { y }{ b } =1.
If the points A(-2, 1), B(a, b) and C(4, -1) are collinear and a-b=1, find the values of a and b.
Find the ratio in which the line segment joining the points P(x, 2) divides the line segment joining the points A (12, 5) and B(4,-3). Also find the value of x.
If three points \left( { x }_{ 1 },{ y }_{ 1 } \right) ,\left( { x }_{ 2 },{ y }_{ 2 } \right) ,\left( { x }_{ 3 },{ y }_{ 3 } \right) lie on the same line, prove that \cfrac { { y }_{ 2 }-{ y }_{ 3 } }{ { x }_{ 2 }{ x }_{ 3 } } +\cfrac { { y }_{ 3 }-{ y }_{ 1 } }{ { x }_{ 3 }{ x }_{ 1 } } +\cfrac { { y }_{ 1 }-{ y }_{ 2 } }{ { x }_{ 1 }{ x }_{ 2 } } =0
Show that the following set of points are collinear. (2,5), (4,6) and (8,8)
If a\ne b\ne c, prove that the points \left( a,{ a }^{ 2 } \right) ,\left( b,{ b }^{ 2 } \right) ,\left( c,{ c }^{ 2 } \right) can never be collinear.
Find the value of k if points (k,3),(6,-2) and (-3,4) are collinear.
For what value of a the point (a,1),(1,-1) and (11,4) are collinear?
Prove that the points \left( ab, \right) ,\left( { a }_{ 1 },{ b }_{ 1 } \right) and \left( a-{ a }_{ 1 },b-{ b }_{ 2 } \right) are collinear if a{ b }_{ 1 }={ a }_{ 1 }b
Prove that the points (a,0),(0,b) and (1,1) are collinear if \left ( \cfrac { 1 }{ a } +\cfrac { 1 }{ b } =1 \right )
Prove that the points (2,3), (-4,-6) and 1,3/2) do not form a triangle.
Find the value of \lambda if the following equations are consistent x + y - 3 = 0 (1 + \lambda) x + (2 + \lambda) y - 8 = 0 x - (1 + \lambda) y + (2 + \lambda) = 0
Find cofactors of the elements of the matrix A = \begin{bmatrix} -1 & 2 \\ -3 & 4 \end{bmatrix}
Find the value of k, if the points A(8,1),B(3,-4) and C(2,k) are collinear.
If the points A(-1,-4),B(b,c) and C(5,-1) are collinear and 2b+c=4, find the values of b and c.
Find the value(s) of k for which the points (3k-1,k-2),(k,k-7) and (k-1,-k-2) are collinear.
Find the value of k, if the points A(7,-2),B(5,1) and C(3,2k) are collinear.
Prove the following : \left| \begin{matrix} ax & by & cz \\ { x }^{ 2 } & { y }^{ 2 } & { z }^{ 2 } \\ 1 & 1 & 1 \end{matrix} \right| =\left| \begin{matrix} a & b & c \\ x & y & z \\ yz & zx & xy \end{matrix} \right|
Without expanding prove that the determinant \left | \begin{array}{111} sinA & CosA & sin(A+\theta) \\ sin B & cos B & sin(B+\theta) \\ sin C & CosC & sin (c+\theta) \\ \end {array} \right | =0
A, B , C are the points (a, p), (b,q) and (c,r) respectively such that a, b, c are in A. P. and p, q ,r in G.P. If the points are collinear then prove that p = q = r
If A = diag (a, b, c) = \begin{bmatrix} a & 0 & 0 \\[0.3em] 0 & b & 0 \\[0.3em] 0 & 0 & c \end{bmatrix} such that abc \neq 0 then A^{-1} = diag (\frac{1}{a}, \frac{1}{b}, \frac{1}{c}) = \begin{bmatrix} \frac{1}{a} & 0 & 0 \\[0.3em] 0 & \frac{1}{b} & 0 \\[0.3em] 0 & 0 & \frac{1}{c} \end{bmatrix}
If where r = 1,2,3 be the co-ordinates of the points A, B, C respectively, then prove the following: The equation of internal bisector of angel A is b \, \begin{vmatrix} x & y & 1\\ x_1 & y_1 & 1\\ x_2 & y_2 & 1 \end{vmatrix} \, + \, c \, \begin{vmatrix} x & y & 1\\ x_1 & y_1 & 1\\ x_3 & y_3 & 1 \end{vmatrix} \, = \, 0 where b = AC and c = AB.
If A is a matrix of order 3 \times 3 then find \left| adj\ A \right| where \left| A \right| =2
Find a if \begin{vmatrix} i & -2i & -1\\ 3i & i^{3} & -2\\ 1& -3 & -i\end{vmatrix} = ai, where i =\sqrt{-1}
Find the non-zero roots of the equation, \Delta = \begin{vmatrix} a & b & ax + b \\ b & c & bx + c \\ ax + b & bx + c & c\end{vmatrix} = 0
Solve: \begin{vmatrix} 3x+4 & x+2 & 2x+3 \\ 4x+5 & 2x+3 & 3x+4 \\ 10x+17 & 3x+5 & 5x+8 \end{vmatrix}=0. The value of the determinant at x=-1is:
By using properties of determinants prove that \begin{vmatrix} (y+z)^{2}&xy& zx\\ xy&(x+z)^{2} & yz\\ xz & yz & (x+y)^{2}\end{vmatrix} is divisible by (x+ y + z)^{n}. Find n .
If x, y, z are non-zero real numbers and \begin{vmatrix} 1+x & 1 & 1 \\ 1+y & 1+2y & 1 \\ 1+z & 1+z & 1+3z \end{vmatrix}=0 then -\left( \dfrac { 1 }{ x } +\dfrac { 1 }{ y } +\dfrac { 1 }{ z } \right) is equal to________
Find x if \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 4 \\ 5 & -6 & x \end{bmatrix}=45
Show that \begin{vmatrix} b+c & c+a & a+b \\ a+b & b+c & c+a \\ a & b & c \end{vmatrix} = a^3 + b^3 +c^3 - 3abc
If a \ne p, b \ne q and c \neq r\begin{vmatrix} p & b & c \\ a & q & c \\ a & b & r \end{vmatrix}= 0 then, find the value of :- \dfrac{p}{p-a} + \dfrac{q}{q-b} + \dfrac{r}{r-c} = ?
Find the value of following determinant. \begin{vmatrix} -1 & 7\\ 2 & 4\end{vmatrix}.
Find the value of the following determinant. \begin{vmatrix} 2i & -3i \\ { i }^{ 3 } & -2{ i }^{ 3 } \end{vmatrix}, where i=\sqrt {-1}.
If f\left( x \right) = a + bx + c{x^2} and \alpha ,\beta ,\gamma are the roots of the equation {x^3} = 1, then \left| {\begin{array}{*{20}{c}}a & b & c\\b & c & a\\c & a & b\end{array}} \right| is equal to
If A is a skew-symmetric matrix of order 3 then find \left| A \right|
Evaluate \left| \begin{matrix} 1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b \end{matrix} \right| without direct expansion.
Find the value of the determinant: \begin{vmatrix} \sqrt{2} & 2\sqrt{3}\\ 3\sqrt{2} & \sqrt{3}\end{vmatrix}.
If \vec { a } =\tilde { i } +\tilde { j } +\tilde { k } ,\vec { b } =\tilde { i } -\tilde { j } +\tilde { k } ,\vec { c } =\tilde { i } +2\tilde { j } -\tilde { k } , then the value of \left| \begin{matrix} \overrightarrow { a } .\overrightarrow { a } & \overrightarrow { a } .\overrightarrow { b } & \overrightarrow { a } .\overrightarrow { c } \\ \overrightarrow { b } .\overrightarrow { a } & \overrightarrow { b } .\overrightarrow { b } & \overrightarrow { b } .\overrightarrow { c } \\ \overrightarrow { c } .\overrightarrow { a } & \overrightarrow { c } .\overrightarrow { b } & \overrightarrow { c } .\overrightarrow { c } \end{matrix} \right| =
If \Delta=\left| \begin{matrix} { a }_{ 11 } & { a }_{ 12 } & { a }_{ 13 } \\ { a }_{ 21 } & { a }_{ 22 } & { a }_{ 23 } \\ { a }_{ 31 } & { a }_{ 32 } & { a }_{ 33 } \end{matrix} \right| and A_{IJ} is cofactors of a_{ij} then the value of \Delta is given by
\left| \begin{matrix} 1 & w & { w }^{ 2 } \\ w & { w }^{ 2 } & 1 \\ { w }^{ 2 } & w & 1 \end{matrix} \right| Where w is a complex cube root of unity.
Find the value of k if points \left (k,3\right),\left (6,-2\right)\ and \left (-3,4\right) are collinear.
Find the value of \begin{vmatrix} 53 & 106 & 159 \\ 52 & 65 & 91 \\ 102 & 153 & 221 \end{vmatrix}
Find the value of K if the point A (2,3) ,B (4,K) and C( 6,-3) are collinear?
Find the values of the following determinants \begin{vmatrix} 1+3i & i-2 \\ { -i-2 } & 1-3{ i } \end{vmatrix} where i=\sqrt{-1}.
If \left| \begin{matrix} a & b & a\alpha +b \\ b & c & b\alpha +c \\ a\alpha +b & b\alpha +c & 0 \end{matrix} \right| =0. Prove that a,b,c are in G.P. or \alpha is a root of ax^{2}+2bx+c=0
Without expanding , find the value of \begin{vmatrix} a+b & 2a+b & 3a+b \\ 2a+b & 3a+b & 4a+b \\ 4a+b & 5a+b & 6a+b \end{vmatrix}
\left| \begin{array} { c c c } { a ^ { 2 } } & { b ^ { 2 } } & { c ^ { 2 } } \\ { a } & { b } & { c } \\ { 1 } & { 1 } & { 1 } \end{array} \right| = - ( a - b ) ( b - c ) ( c - a )
If \Delta=\begin{vmatrix} 1 & \sin{\theta} & 1\\ -\sin{\theta} & 1 & \sin{\theta} \\ -1 & -\sin{\theta} & 1 \end{vmatrix} then prove that 2\le \Delta\le 4
Prove that \begin{vmatrix} bc & a & { a }^{ 2 } \\ ca & b & { b }^{ 2 } \\ ab & c & { c }^{ 2 } \end{vmatrix}=\begin{vmatrix} 1 & { a }^{ 2 } & { a }^{ 3 } \\ 1 & { b }^{ 2 } & { b }^{ 3 } \\ 1 & { c }^{ 2 } & { c }^{ 3 } \end{vmatrix}
Find the value of k so that point colinear(7,-2)(5,1)(3,k).
Given that matrix A=\left[ \begin{matrix} x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & z \end{matrix} \right]. If xyz=2013 and 8x+4y+3z=2012 then A(adj A) is equal to
If f(x)=\left| \begin{matrix} 2x & { x }^{ 2 } & { x }^{ 3 } \\ { x }^{ 2 }+2x & 1 & 3x+1 \\ 2x & 1-3{ x }^{ 2 } & 5x \end{matrix} \right| , then find f'(1)
Show that the points A(1,2,7),\ B(2,6,3) and C(3,10,-1) are collinear.
(k,k ), (2,3) and (4,-1) are collimear. So find the value of k.
Solve the matrix \left| {\begin{array}{*{20}{c}}{\frac{1}{b}{b^2}} & {ca}\\{\frac{1}{c}{c^2}} & {ab}\end{array}} \right|
Prove that point (1,1),(-2,7) and (3,-3) are collinear.
If the points ( a,0),(0,b)and (3,2) are col linear, prove that \dfrac { 2 }{ b } +\dfrac { 3 }{ a } =1
Find the value of \lambda for which the points (6,-1,2),(8,-7,\lambda) and (5,2,4) are collinear.
Find the value of the following determinants. \begin{vmatrix} -1 & 7 \\ 2 & 4 \end{vmatrix}
Find the value of the following determinants. \begin{vmatrix} 5 & 3 \\ -7 & 0 \end{vmatrix}
If A=[aij] is a matrix of order 2x2 such that |A|=15 and cij represents the co factor of aij then find { a }_{ 21 }{ c }_{ 21 }+{ a }_{ 22 }{ c }_{ 22 }.
A square matrix \mathrm { B } of order 3 , has | B | = 7 , find | B adjB |
A. square matrix A of order 3 , has | A | = 5 , find | A adja|
Find equation of line joining (1,2) and (3,6) using determinants.
Prove that \begin {vmatrix} a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2 \end {vmatrix} = 4a^2b^2c^2
Prove that \begin{vmatrix} a & a & a \\ a & b & b \\ a & b & c \end{vmatrix}=a(b-c)(a-b), Hence find the value of \begin{vmatrix} 3 & 3 & 3 \\ 3 & 5 & 5 \\ 3 & 5 & 7 \end{vmatrix}.
A point P\left(2,-1\right) is equidistant from points \left(a,7\right) and \left(-3,a\right). Find a.
Prove that : \begin {vmatrix} a & c & a + c \\ a + b & b & a \\ b & b + c & c \end {vmatrix} = 4abc
Prove that: \begin{vmatrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2b \end{vmatrix}=2{ \left( a+b+c \right) }^{ 3 }
Fill in the blanks with correct number \left| \begin{matrix} 3 \\ 4 \end{matrix}\begin{matrix} 2 \\ 5 \end{matrix} \right| =3\times \Box -\Box \times 4=\Box -8=\Box
Using properties of determinant solve :- \left| \begin{matrix} 1 & a & { a }^{ 2 }-bc \\ 1 & b & { b }^{ 2 }-ac \\ 1 & c & { c }^{ 2 }-ab \end{matrix} \right| =
Find the adjoint of the following matrice: \begin{bmatrix} \cos\,\alpha & \sin\,\alpha \\ \sin\,\alpha & \cos\,\alpha \end{bmatrix} Verify that (adj A ) A = |A| I = A (adj A) for the above matrice.
If A = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix},show that adj A = 3A^{T}.
Solve:
\begin{vmatrix} x+2 & 1 \\ -1 & x\end{vmatrix}=0
If A is a square matrix of order n, prove that \left | A\: adj \: A \right |= \left | A \right |^{n}.
Find the values of x, if \begin{vmatrix} 2x & 5 \\ 8 & x \end{vmatrix}=\begin{vmatrix} 6 & 5 \\ 8 & 3 \end{vmatrix}
\begin{vmatrix} x+\lambda & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda \end{vmatrix}
Evaluate the following :
\begin{vmatrix} x+\lambda & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda \end{vmatrix}
Evaluate the following determinant :
\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix}
If a,b,c are real numbers such that \begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix}= 0, then show that either a+b+c=0 or, a=b=c.
Evaluate the following :
\begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix}
Find the adjoint of the given matrix and verify in each case that A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I. \begin{bmatrix} 3& -1 & 1\\ -15 & 6 & -5 \\ 5 & -2 & 2\end{bmatrix}
If a, b, c are p^{th}, q^{th} and r^{th} terms respectively of a G.P, then prove that \begin{vmatrix}\log a& p & 1 \\ \log b& q & 1\\ \log c &r & 1 \end{vmatrix} =0
Find the cofactors of all the elements of \begin{bmatrix}1&-2 \\ 4 & 3 \end{bmatrix}
Find the adjoint of the given matrix and verify in each case that A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I. \begin{bmatrix} 0& 1 & 2\\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}
Find the adjoint of the given matrix and verify in each case that A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I. \begin{bmatrix} 2& 3\\ 5 & 9\end{bmatrix}
Find the adjoint of the given matrix and verify in each case that A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I. \begin{bmatrix} \cos \alpha& \sin \alpha\\ \sin \alpha & \cos \alpha\end{bmatrix}
Find the adjoint of the given matrix and verify in each case that A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I. \begin{bmatrix} 9& 7 & 3\\ 5 & -1 & 4 \\ 6 & 8 & 2\end{bmatrix}
If A and B are square matrices each of order 3 and |A|= 5, \, |B| = 3, then the value of |3AB| is ______
Find the adjoint of the given matrix and verify in each case that A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I. \begin{bmatrix} 1& -1 & 2\\ 3 & 1 & -2 \\ 1 & 0 & 3\end{bmatrix}
Find the adjoint of the given matrix and verify in each case that A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I. \begin{bmatrix} 3& -5\\ -1 & 2\end{bmatrix}
Let A be a square matrix of order 3, write the value of |2A|, where |A|=4.
If A=\begin{vmatrix} 3 & 4 \\ 1 & 2 \end{vmatrix}, find the value of 3|A|.
Find the adjoint of the given matrix and verify in each case that A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I. \begin{bmatrix} 4& 5 & 3\\ 1 & 0 & 6 \\ 2 & 7 & 9\end{bmatrix}
If A is a 2\times 2 matrix such that |A|\neq 0 and |A|=5, write the value of |4A|.
If A is a 3\times 3 matrix such that |A|\neq 0 and |3A|=k|A|, then write the value of k.
Evaluate \begin{vmatrix} \sin { { 60 }^{ o } } & \cos { { 60 }^{ o } } \\ -\sin { { 30 }^{ o } } & \cos { { 30 }^{ o } } \end{vmatrix}.
Find the adjoint of the given matrix and verify in each case that A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I. \begin{bmatrix} \cos \alpha& -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}
Prove that the three straight lines whose equations are 15x - 18y + 1 = 0, 12x + 10y -3 = 0, and 6x + 66y - 11 = 0 all meet in a point. Show also that the third line bisects the angle between the other two.
Prove that the following sets of three lines meet in a point. 2x - 3y = 7, 3x - 4y = 13, and 8x - 11y = 33.
Given A=\begin{vmatrix} a & b & 2c \\ d & e & 2f \\ l & m & 2n \end{vmatrix};B=\begin{vmatrix} f & 2d & e \\ 2n & 4l & 2m \\ c & 2a & b \end{vmatrix}, then the value of \dfrac{B}{A} is ________.
Find the minor of the element of second row and third column ( a 23 ) in the following determinant: \left|\begin{array}{ccc}2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7\end{array}\right|
If A is an invertible metrix of order 3 and |A| = 5, then find |adj \ A|.
If \Delta=\left|\begin{array}{lll}5 & 3 & 8 \\2 & 0 & 1 \\1 & 2 & 3\end{array}\right| \text { , then write the minor of the element } a_{23}
What positive value of x makes the following pair of determinants equal? \left|\begin{array}{cc}2 x & 3 \\ 5 & x\end{array}\right|,\left|\begin{array}{cc}16 & 3 \\ 5 & 2\end{array}\right|
Find the cofactor of a_{12} in the following: \left|\begin{array}{ccc}1 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7\end{array}\right|
If A is idempotent matrix satisfying ( I - 0.4 A)^{-1} = I - \alpha A where I is the unit matrix of the same order as that of A then find the value of | 9 \alpha | .
Find the equation of line joining (1,2) and (3,6) using determinants.
Find the value of \left|\begin{array}{cccc}\sin A & -\sin B \\\cos A & \cos B\end{array}\right|\text { where } A=53^{\circ}, B=37^{\circ}
If A = \begin{bmatrix} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha \end{bmatrix}, find the value of |adj \ A|.
If \Delta= \left| \begin{matrix} 0 & b-a & c-a \\ a-b & 0 & c-b \\ a-c & b-c & 0 \end{matrix} \right| then show that \Delta is equal to zero.
Write the adjoint of the following matrix: \Big[\begin{matrix} 2 & -1 \\ 4 & 3 \end{matrix}\Big]
If \left|\begin{array}{ll}x & x \\1 & x\end{array}\right|=\left|\begin{array}{ll}3 & 4 \\1 & 2\end{array}\right| , then write the positive value of x
Find the equation of the line joining A(1,3) and B(0,0) using determinants and find k if D(k, 0) is a point such that the area of \Delta A B D is 3 sq units.
Show that if the determinant \Delta = \left| \begin{matrix} 3 & -2 & sin\quad 3\quad \theta \\ -7 & 8& cos \quad 2 \theta \\ -11 & 14 & 2 \end{matrix} \right| = 0 then Sin \theta = 0 or \frac {1}{2}
Write the value of \left|\begin{array}{cc}\sin 20^{\circ} & -\cos 20^{\circ} \\ \sin 70^{\circ} & \cos 70^{\circ}\end{array}\right|
Evaluate : \left| \begin{matrix} y+z & z & y \\ z & z+x & x \\ y & x & x+y \end{matrix} \right| =\quad 4xyz
If A is a matrix or order 3 \times 3 then number of minors in determinant of A are__________
Fill in the blank.
If A is matrix of order 3 \times 3 then |3A| is equal to_________
If x+y+z = 0 prove that \left| \begin{matrix} xa & yb & zc \\ yc & za & xb \\ zb & xc & ya \end{matrix} \right| \quad =\quad xyz\quad \left| \begin{matrix} a & b & c \\ c & a & b \\ b & c & a \end{matrix} \right|
If A +B +C = 0 then prove that \left| \begin{matrix} 1 & cos\quad C & cos\quad B \\ cos\quad C & 1 & cos\quad A \\ cos\quad B\quad & cos\quad A\quad & 1 \end{matrix} \right| =0
If Cos 2 \theta = 0 then \left| \begin{matrix} 0 & cos \theta &sin \theta \\ cos \theta & sin \theta & 0 \\ sin \theta & 0 & cos \theta \end{matrix} \right|^2 = _________
If a+ b +c \neq 0 and \left| \begin{matrix} a & b & c \\ b & c & a \\ c & a & b \end{matrix} \right| = 0 then prove that a = b = c .
Find the value of the following determinant \begin{vmatrix} 5 & {-2}\\{-3} & 1\end{vmatrix}.
Find the value of the following determinant \begin{vmatrix} 3 & {-1}\\{1} & 4 \end{vmatrix}.
Find the adjoint of the matrix A = \begin{bmatrix} 1 & 2\\ 3 & -5\end{bmatrix} and verify the result A(adj \,A) = (adj \,A) = A |A| \cdot I.
Find the adjoint of the following matrix. \begin{bmatrix} 1& -1 & 2 \\ -2 & 3 & 5 \\ -2 & 0 & -1 \end{bmatrix}
The sum if the products of element of any row with the co-factors of corresponding elements is equal to __________
Find the adjoint of the following matrix. \begin{bmatrix} 2 & -3 \\ 3 & 5 \end{bmatrix}
A = \begin{bmatrix}1 & \tan x\\ -\tan x & 1\end{bmatrix} and f(x) is defined as f(x) = det. (A^T A^{-1}) then find the value of \underset{\text{n times}}{\underbrace{f(f(f(f.......f(x))))}} is (n \geq 2).
If A is a square matrix of order 3, then find |(A - A^T)^{2011}|.
Match the statements in Column I with statements in column II
Prove that \begin{vmatrix} bc & bc'+b'c & b'c'\\ ca & ca'+c'a & c'a'\\ ab & ab'+a'b & a'b' \end{vmatrix}=(ab'-a'b)(bc-b'c)(ca'-c'a)
If ax_1^2+by_1^2+cz_1^2=ax_2^2+by_2^2+cz_2^2=ax_3^2+by_3^2+cz_3^2=d and ax_2x_3+by_2y_3+cz_2z_3=ax_3x_1+by_3y_1+cz_3z_1=ax_1x_2+by_1y_2+cz_1z_2=f, then prove that \begin{vmatrix} x_1 & y_1 & z_1\\ x_2 & y_2 & z_2\\ x_3 & y_3 & z_3 \end{vmatrix}=(d-f)\left [\frac {d+2f}{abc}\right ]^{1/2}(a, b, c\neq 0)
Are the three points A(2,3),B(5,6) and C(0,2) collinear?
Find the maximum value of \begin{vmatrix} 1& 1 & 1\\ 1 & 1 +\sin \theta & 1\\ 1 & 1 & 1 + \cos \theta\end{vmatrix}
If a^2+b^2+c^2=1 then is the value of the determinant \begin{vmatrix} a^2+(b^2+c^2)cos\theta & ba(1-cos\theta) & ca(1-cos\theta)\\ ab(1-cos\theta) & b^2(c^2+a^2)cos\theta & cb(1-cos\theta)\\ ac(1-cos\theta) & bc(1-cos\theta) & c^2+(a^2+b^2)cos\theta \end{vmatrix} independent of a,b,c? If yes enter 1 else enter 0.
A line of slope 2 passes through the point A(1,3). a) Check whether B(3,7) is a point on this line. b) Write down the equation of this line. c) Find the coordinates of a point C on the line such that BC = 2AB.
If \begin{vmatrix}x+1&x-1\\x-3&x+2\end{vmatrix}=\begin{vmatrix}4&-1\\1&3\end{vmatrix}, then write the value of x.
For what values of p and q, the system of equations 2x + py + 6z = 8, x + 2y + qz = 5, x + y + 3z = 4 has (i) no solution (ii) a unique solution (iii) infinitely many solutions.
The straight lines \displaystyle \imath_1, \imath_2 \, and \, \imath_3 are parallel and lie in the same plane. A total of m points are taken on the line \displaystyle \imath_1, n points on \displaystyle \imath_2, and k points on \displaystyle \imath_3. How many triangles are there whose vertices are at these points?
Write minors and cofactors of the elements of the following determinants: (i) \begin{vmatrix} 2 & -4 \\ 0 & 3 \end{vmatrix} (ii) \begin{vmatrix} a & c \\ b & d \end{vmatrix} (iii) \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{vmatrix} (iv) \begin{vmatrix} 1 & 0 & 4 \\ 3 & 5 & -1 \\ 0 & 1 & 2 \end{vmatrix}
ax + by + cz = k a^2x + b^2y + c^2z = k^2 a^3x + b^3y + c^3z = k^3 Solve by Crammer's rule
Using properties of determinants, find the value of n in the following. \left | \begin{array}{111} 3x & -x+y & -x+z \\ x-y & 3y & z-y \\ x-z & y-z & 3z \\ \end {array} \right | = n( x+y + z)(xy + yz + zx)
The value of determinant \begin{vmatrix} 2 & 7 & 65\\ 3 & 8 & 75 \\ 5 & 9 & 86\end{vmatrix} equals .
\left| \begin{matrix} { a }^{ 2 }+1 & ab & ac \\ ab & { b }^{ 2 }+1 & bc \\ ca & cb & { c }^{ 2 }+1 \end{matrix} \right| =1+{ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }
Using cofactor elements of 2nd row, find the value of determinant, \Delta =\begin{vmatrix} -3 & 0 & 2\\ 4 & -1 & 3\\ 5 & 0 & -2\end{vmatrix}.
Show that the points are collinear (-5, 1) (5, 5) (10, 7)
Find the value of determinant \begin{vmatrix} 5 & -3 \\ -7 & -4 \end{vmatrix}
Find the relation between x and y, if the points x,y i.e (1,2) and (7,0) are collinears.
If A =\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}, then verify that A(adjA)=(adjA)A= I \left| A \right|.
Find the value of a if the points P ( 1,5 ) , Q ( a , 1 ) and R ( 4,11 ) are collinear .
Find the largest value of a third order determinant whose elements are 1 or -1
Find the cofactor matrix of the determinant \begin{vmatrix} 1 & 2 & 3\\ -4 & 3 & 6 \\ 2 & -7 & 9 \end{vmatrix}
If the points (x_{1},\ y_{1}),\ (x_{2},\ y_{2}) and (x_{3},\ y_{3}) are collinear, show that \displaystyle \sum { \left( \frac { { y }_{ 1 }-{ y }_{ 2 } }{ { x }_{ 1 }{ x }_{ 2 } } \right) } =0, i.e \dfrac {y_{1}-y_{2}}{x_{1}x_{2}}+\dfrac {y_{2}-y_{3}}{x_{2}x_{3}}+\dfrac {y_{3}-y_{1}}{x_{3}x_{1}}=0
If A = \left[ {\begin{array}{*{20}{c}}1 & { - 2} & 3\\4 & 0 & { - 1}\\{ - 3} & 1 & 5\end{array}} \right], then {\left( {adj\,A} \right)} is equal to
Find the largest value of a third order determinant whose elements are 0 or 1
Using properties of determinant, prove that \begin{vmatrix} b+c & a-b & a \\ c+a & b-c & b \\ a+b & c-a & c \end{vmatrix}=3abc-{ a }^{ 3 }-{ b }^{ 3 }-{ c }^{ 3 }
Compute the adjoint of the following matrice: \begin{bmatrix} 2 & -1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & -1 \end{bmatrix} Verify that (adj A)A = |A|I = A(adj A) for the above matrice.
Compute the adjoint of the following matrice: \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}
Verify that (adj A)A = |A|I = A(adj A) for the above matrice.
Compute the adjoint of the following matrice: \begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \end{bmatrix} Verify that (adj A)A = |A|I = A(adj A) for the above matrice.
Find the adjoint of the following matrice: \begin{bmatrix} -3 & 5 \\ 2 & 4 \end{bmatrix} Verify that (adj A ) A = |A| I = A (adj A) for the above matrice.
Verify that (adj A ) A = |A| I = A (adj A) for the above matrice.
Find A (adj A) for the matrix A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 2 & 1 \\ -4 & 5 & 2 \end{bmatrix}.
Find the adjoint of the matrix A= \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix} and hence show that A(adj\: A)= \left | A \right |I_{3}.
Compute the adjoint of the following matrice: \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 1 & 1 & 3 \end{bmatrix} Verify that (adj A)A = |A|I = A(adj A) for the above matrice.