Loading [MathJax]/extensions/TeX/boldsymbol.js

Determinants - Class 12 Commerce Maths - Extra Questions

If A is 2×2 matrix, detA=4 then find the product of det(3A) and det(A1)



Write the value of the determinant [pp+1p1p]
when p=1342



Using the properties of determinants, find the value of 

|0aba0cbc0|



Evaluate the determinants
|2451|



If A=[10023456x] and detA=45; then find x.



Find adjoint of matrix    A=[1234]



Show that the points A(2,3),B(4,0) and C(6,3) are collinear.



Write the value of =|x+yy+zz+xzxy333|.



The area of a triangle is zero, then the three points are said to be ______ points.



Find the value of the determinant:
|5231|



If for any 2×2 square matrix A, A(adjA)=[8008], them write the value of det[A].



Find a value of x if |x218x|=|62186|



|111abca2b3c3|
Prove that : = (ab)(bc)(ca)(a+b+c).



Find the values of x for which |3xx1|=|3241|.



Evaluate the following deteminants :
i)|x7x5x+1|

ii)|cos15sin15sin75cos75|



If 3n is a factor of the determinant
|111nC1n+3C1n+6C2nC2n+3C2n+6C2|,
then the maximum value of n is ____.



Find the determinant in following case:
A=[52002]



Find if the points (0, 8/3), (1/3) , and (82, 30) are collinear.



Prove the following :
|y+zzyzz+xxyxx+y|=4xyz



Prove that the points (a , b), (c , d) and (a - c, b - d) are collinear if ad = bc. Also show that the straight line passing through these points passes through origin.



Show that
|sin10cos10sin80cos80|=1



Find the value of K, for which the given points are collinear:
A(7,2)B(5,1)C(3,K)



In each of the following find the value of k, for which the points are collinear..
(ii) (8,1),(k,4),(2,5)



Let A=[58813] then show that A satisfies the equation x218x+1=0.



In each of the following find the value of k, for which the points are collinear.(i) (7,2),(5,1),(3,k)



Find the value of x if the points (x,5),(2,3) and (2,11) are collinear.



If the minor of three-one element (i.e M31) in the determinant |01secαtanαsecαtanα101| is 1 then find the value of α. (0απ)



Show that ABC is an isosceles triangle, if the determinant
|1111+cosA1+cosB1+cosCcos2A+cosAcos2B+cosBcos2C+cosC|=0



Using properties of determinants, prove the following
|1+a2b22ab2b2ab1a2+b22a2b2a1a2b2|=(1+a2+b2)3.



Solve:
|03xx+131415| =0



If A=|1111|, then show that A2=2A&A3=4A



 Find  |462309715|



Show that the point P(a,b+c), Q(b,c+a) and R(c,a+b) are collinear.



Find the adjoint of |112302103|



Find the value of following determinant.
|73533212|.



If A=[1121], find |A|



If A is a square matrix of order 3 such |A|=5, then find the value of |adjA| ?



If three points (x1,y1),(x2,y2) and (x3,y3) lie on the same line, prove that 
y2y3x2x3+y3y1x3x1+y1y2x1x2=0



Evaluate |abc111111|.



Find the values of the following determinants 
|2i3ii32i5| where i=1.



A=[2468] find det(A)



Compute the following determinant :

|a2ababb2|



Show that |111abca2b2c2|=(ab)(bc)(ca).



Compute the following determinant :

|3526|



Find value of the determinant
A=|3257|



Prove that |1ωω2ωω21ω21ω|=0



For what value of p are the points (2,1),(p,1) and (1,3) collinear.



Using determinants show that points A(a,b+c),B(b,c+a) and C(c,a+b) are col-linear.



Prove that the adjoint of a symmetric matrix is also a symmetric matrix.



Find deteminant [1002]



Prove that: 2|8526|=|14246|



In the diagram on a lunar eilpse, if the positions od sun,Earth and moon are shown by (4,6),(k,2)and(5,6) respectively, then find the value of k.



If the points (3,2),(x,2) and (8,8) are collinear find 10x using determinant.



If the value of determinant |m654| is 58, then find the value of m.



If A(x1,y1),B(x2,y2),C(x3,y3) are vertices of an equilateral triangle whose each side is equal to a, then prove that |x1y12x2y22x3y32|=3a4.



Find the value of k if det |K+312321433|=0 



Using the method of slope, show that the following points are collinear : 
(i)A(4,8),B(5,12),C(9,28) 
(ii)A(16,18),B(3,6),C(10,6)



Show that the points P(2,3,5),Q(1,2,3) and R(7,0,1) are collinear.



Show that the points P(-2, 3, 5), Q(1, 2, 3) and R(7, 0, -1) are collinear.



Solve:
\left[ \begin{matrix} 1 & 4 & 2 \\ 2 & -1 & 4 \\ -3 & 7 & 6 \end{matrix} \right]



If A= \left[ {\matrix{10 & 0 \cr 4 & 10\cr } } \right], then find \left| A \right|.



Construct a 3\times 2 matrix whose elements are given by a_{1}=\dfrac{1}{2}|i-3j|.



Write the value of the determinant   \left| \begin{array}{cc}{3} & {-1} \\ {2} & {1}\end{array}\right|



\left| \begin{matrix} 1 & a & { a }^{ 2 } \\ 1 & b & { b }^{ 2 } \\ 1 & c & { c }^{ 2 } \end{matrix} \right| =(a-b)(b-c)(c-a)



Solve:
\left| \begin{matrix} 0 & a & -b \\ -a & 0 & -c \\ b & c & 0 \end{matrix} \right| =0



Find the value of x for which |_{ x }^{ 3 }\quad _{ 1 }^{ x }|=|_{ 8 }^{ 3 }\quad _{ 1 }^{ 2 }|.



If the points (-3,6), (-9,a) and (0,15) are collinear, then find a.



Convert \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} into an identify matrix by suitable row transformations.



If A = \left| \begin{array} { c c } { 2 } & { 3 } \\ { - 1 } & { 2 } \end{array} \right| Find A.



Evaluate  \Delta = \begin{vmatrix} \cos 2\alpha & \sin 2\alpha \\-\sin 3\alpha & \cos 3\alpha    \end{vmatrix}



The value of  \begin{vmatrix} \cos15^{\circ}  & \sin15^{\circ}  \\ \sin75^{\circ}  & \cos75^{\circ}   \end{vmatrix}  is



Find the value of x, if 
\begin{vmatrix} x+2 & x \\ x-4 & x+3 \end{vmatrix}=\begin{vmatrix} 4 & 2 \\ -2 & 5 \end{vmatrix}



Evaluate:\begin{vmatrix} \cos30^{\circ}  & \sin30^{\circ}  \\ \sin105^{\circ}  & \cos105^{\circ}   \end{vmatrix}



Evaluate the determinant :
\begin{vmatrix} \cos\theta  & -\sin\theta  \\ \sin\theta  & \cos\theta   \end{vmatrix}



Find the determinant of the matrix A
A=\begin{bmatrix} -1 & 4 \\ 2 & 3 \end{bmatrix}



Show that the points A(-7, 4, -2), B(-2, 1, 0) and C(3, -2, 2) are collinear. 



Find the coordinates of a point A, where AB is diameter of a circle whose centre is (2, -3) and B is the point (1, 4).



Evaluate the following determinants :
\begin{vmatrix} \cos15^{\circ}  & \sin15^{\circ}  \\ \sin75^{\circ}  & \cos75^{\circ}   \end{vmatrix}



Find the values of x, if 
\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix}= \begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}



Are the following pairs of sets equal? Give reasons.
A=\{x : x is a letter of the word "WOLF"\},
B=\{x : x is a letter of the word "FOLLOW"\}.



The value of the determinant  \begin{vmatrix} \cos30^{\circ}  & \sin60^{\circ}  \\ \sin30^{\circ}  & \cos60^{\circ}   \end{vmatrix} is



Evaluate \begin{bmatrix} 14 & 9 \\ -8 & -7 \end{bmatrix}.



Find the adjoint of the following matrice:
\begin{bmatrix} a & b \\ c & d \end{bmatrix}



The value of the determinant  \begin{vmatrix} \cos15^{\circ}  & \sin15^{\circ}  \\ \sin75^{\circ}  & \cos75^{\circ}   \end{vmatrix}  is______



If { e }^{ i\theta  }=\cos { \theta  } +i\sin { \theta  } , find the value of -\begin{vmatrix} 1 & { e }^{ i\pi /3 } & { e }^{ i\pi /4 } \\ { e }^{ -i\pi /3 } & 1 & { e }^{ i2\pi /3 } \\ { e }^{ -i\pi /4 } & { e }^{ -i2\pi /3 } & 1 \end{vmatrix}\quad-{2}^{\frac{1}{2}}



Evaluate \begin{vmatrix} \cos { \alpha  } \cos { \beta  }  & \cos { \alpha  } \sin { \beta  }  & -\sin { \alpha  }  \\ -\sin { \beta  }  & \cos { \beta  }  & 0 \\ \sin { \alpha  } \cos { \beta  }  & \sin { \alpha  } \sin { \beta  }  & \cos { \alpha  }  \end{vmatrix}



If A,B and C are the angles of non-right angles triangle ABC, then find the value of \begin{vmatrix} \tan { A }  & 1 & 1 \\ 1 & \tan { B }  & 1 \\ 1 & 1 & \tan { C }  \end{vmatrix}



If the value of \begin{vmatrix} 1 & 2 & 4 \\ -1 & 3 & 0 \\ 4 & 1 & 0 \end{vmatrix} is k, then find \dfrac{-k}{13}.



The absolute value of the determinant \begin{vmatrix} -1 & 2 & 1 \\ 3+2\sqrt { 2 }  & 2+2\sqrt { 2 }  & 1 \\ 3-2\sqrt { 2 }  & 2-2\sqrt { 2 }  & 1 \end{vmatrix} is \displaystyle\frac { k }{ \sqrt { 2 }  } then k=



If \begin{vmatrix} x & x+y & x+y+z \\ 2x & 3x+2y & 4x+3y+2z \\ 3x & 6x=3y & 10x+6y+3z \end{vmatrix}=64, then the real value of x is .........



The value of \begin{vmatrix} 2{ x }_{ 1 }{ y }_{ 1 } & { x }_{ 1 }{ y }_{ 2 }+{ x }_{ 2 }{ y }_{ 1 } & { x }_{ 1 }{ y }_{ 3 }+{ x }_{ 3 }{ y }_{ 1 } \\ { x }_{ 1 }{ y }_{ 2 }+{ x }_{ 2 }{ y }_{ 1 } & 2{ x }_{ 2 }{ y }_{ 2 } & { x }_{ 2 }{ y }_{ 3 }+{ x }_{ 3 }{ y }_{ 2 } \\ { x }_{ 1 }{ y }_{ 3 }+{ x }_{ 3 }{ y }_{ 1 } & { x }_{ 2 }{ y }_{ 3 }+{ x }_{ 3 }{ y }_{ 2 } & 2{ x }_{ 3 }{ y }_{ 3 } \end{vmatrix} is ........



The constant k is such that the following system of equations posses a non-trivial(i.e., not all zero) solution over the set of rationals Q  
x+ky+3z=0,\quad 3x+ky-2z=0\quad 2x+3y-4z=0
Then \displaystyle \frac{2k}{11} is equal to



If A + B + C = \pi, then \begin{vmatrix} sin (A + B + C)& sin  B & cos   C\\ - sin  B & 0 & tan  A\\ cos  (A + B) &- tan  A  &0 \end{vmatrix} = .............



If (1,2), \displaystyle \left(\frac{1}{2} , 3 \right) and (0, k) are collinear points, find the value of k.



State whether True or False
(-1, 8), (9, -2), (3,4) are collinear points.



Let
f\left ( x \right )=\begin{vmatrix} 2\cot x & -1 & 0\\ 1 & \cot x & -1\\ 0 & 1 & 2\cot x \end{vmatrix}
then



Let f\left ( \theta  \right )=\begin{vmatrix} \cos ^{2}\theta  & \cos \theta \sin \theta  & -\sin \theta \\ \cos \theta \sin \theta  & \sin ^{2}\theta  & \cos \theta \\ \sin \theta  & -\cos \theta  & 0 \end{vmatrix}
find f\left ( \pi /3 \right ).



A_{3 \times 3} is a matrix such that |A|=a, \:B = (adj \:A) such that |B|= b. Find the value of \dfrac{(ab^2 + a^2b + 1)S}{25} where \displaystyle \frac{1}{2}S=\frac{a}{b}+\frac{a^2}{b^3}+\frac{a^3}{b^5} + \:......... \:up \:to \:\infty , and a = 3.



Find the value of x for which the points (x, -1), (2,1) and (4, 5) are collinear.



Find the values of x, if
(i)\begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix}=\begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix}       (ii)\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix}=\begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}



Using the properties of determinants, show that:

(i)\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}=(a+b+{ c) }^{ 2 }

(ii)\begin{vmatrix} x+y+2z & x & y \\ z & y+z+2x & y \\ z & x & z+x+2y \end{vmatrix}=2(x+y+{ z) }^{ 3 }



Using the properties of determinants, show that:

(i)\begin{vmatrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix}=(5x+4)(4-{ x) }^{ 2 }

(ii)\begin{vmatrix} y+k & y & y \\ y & y+k & y \\ y & y & y+k \end{vmatrix}={ k }^{ 2 }(3y+k)



Find the value of determinant.
(i) \begin{vmatrix} \cos\theta  & -\sin\theta  \\ \sin\theta  & \cos\theta  \end{vmatrix}
(ii) \begin{vmatrix} { x }^{ 2 }-x+1 & x-1 \\ x+1 & x+1 \end{vmatrix}



(i) Find equation of line joining (1, 2) and (3, 6) using determinants
(ii) Find equation of line joining (3, 1) and (9, 3) using determinants.



Find co-factors of the matrix,
A=\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}



Write minors and cofactors of the elements of following determinants
(i)\begin{vmatrix} 2 & -4 \\ 0 & 3 \end{vmatrix}
(ii)\begin{vmatrix} a & c \\ b & d \end{vmatrix}



Find the Minors and Cofactors of the elements of the following determinants:
(i)\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}
(ii)\begin{vmatrix} 1 & 0 & 4 \\ 3 & 5 & -2 \\ 0 & 1 & 2 \end{vmatrix}



Find the adjoint of matrix \ \ \ \ A= \begin{bmatrix} 1 & 1 & 2 \\ 2 & 3 & 5 \\ 2 & 0 & 1 \end{bmatrix}



Find co-factors of the matrix,
A= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\alpha  & \sin\alpha  \\ 0 & \sin\alpha  & -\cos\alpha  \end{bmatrix}



Using properties of determinants, prove that:
\begin{vmatrix} \alpha  & { \alpha  }^{ 2 } & \beta +\gamma  \\ \beta  & { \beta  }^{ 2 } & \gamma +\alpha  \\ \gamma  & { \gamma  }^{ 2 } & \alpha +\beta  \end{vmatrix} =(\alpha- \beta)(\beta- \gamma)(\gamma-\alpha)(\alpha +\beta +\gamma )



Evaluate  \begin{vmatrix} \cos\alpha \cos\beta  & \cos\alpha \sin\beta  & -\sin\alpha  \\ -\sin\beta  & \cos\beta  & 0 \\ \sin\alpha \cos\beta  & \sin\alpha \sin\beta  & \cos\alpha  \end{vmatrix}



If true Enter '1' else '0'.
\begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix}=-2(x+y)(x^2+y^2-xy) 



Evaluate \begin{vmatrix} 1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y \end{vmatrix}



Find cofactors of A=\begin{bmatrix} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{bmatrix}



If A_{ij} is the cofactor of the element a_{ij} of the determinant \begin{bmatrix}2&-3&5\\6&0&4\\1&5&-7 \end{bmatrix} then write the value of a_{32}.A_{32}.



If \triangle = \begin{vmatrix} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{vmatrix}, white the cofactor of the element a_{32}.



If \Delta = \begin{vmatrix} 5& 3 & 8\\ 2 & 0 & 1\\ 1 & 2 & 3\end{vmatrix}, write the cofactor of the element a_{32}



If \Delta = \begin{vmatrix}1 & 2 & 3\\ 2 & 0 & 1\\ 5 & 3 & 8\end{vmatrix}, write the minor of the elements a_{22}



If \Delta = \begin{vmatrix} 5 & 3 & 8\\ 2 & 0 &1 \\ 1 & 2 & 3\end{vmatrix}, write the minor of the element a_{23}.



Find the relation between x and y if the points A(x, y), B(-5, 7) and C(-4, 5) are collinear.



For how many real values of 'm' the points A (m + 1, 1), B (2m + 1, 3) and C (2m + 2, 2m) are collinear.



Show that the adjoint of A = \begin{bmatrix}-4 & -3 & -3\\ 1 & 0 & 1\\ 4 & 4 & 3\end{bmatrix} is A itself



Find the value of k if A (4, 11), B (2, 5), C (6, k) are collinear points.



Find the value of a for which the following points A (a, 3), B(2, 1) and C(5, a) are collinear. Hence find the equation of the line.



A, B, and C are three collinear points. The coordinates of A and B are (3, 4) and (7, 7) respectively and AC =10 units. Find sum of co-ordinates of C.



Using determinants show that points A (a, b + c), B(b, c + a) and C (c, a + b) are collinear.



find the value of k for which the points (k,-1)(2,1) and (4,5) are collinear.



Show that the points A(-3,3), B(0,0), C(3,-3) are collinear.



If A=\begin{bmatrix}1&2\\3&4\end{bmatrix}, find |2A|.



Find the equation of line joining (1, 2) and (3, 6) using determinants.



Calculate the values of the determinants:
\begin{vmatrix}a & h & g\\ h& b & f\\ g & f & c\end{vmatrix}.



For what values of m will the expression {y}^{2}+2xy+2x+my-3 be capable of resolution into two rational factors?



Calculate the values of the determinants:
\begin{vmatrix}1 & 1 & 1\\ 1& 1 + x & 1\\ 1 & 1 & 1 + y\end{vmatrix}.



Calculate the values of the determinants:
\begin{vmatrix}1 & z & -y\\ -z& 1 & x\\ y & -x & 1\end{vmatrix}.



Solve for \lambda if \begin{vmatrix} a^2+\lambda & ab & ac\\ ab & b^2+\lambda & bc\\ ac & bc & c^2+\lambda\end{vmatrix}=0.



Calculate the values of the determinants:
\begin{vmatrix}b + c & a & a\\ b& c + a & b\\ c & c & a + b\end{vmatrix}.



Prove that \begin{vmatrix} 1+a & 1 & 1\\ 1& 1+b & 1\\ 1& 1& 1+c\end{vmatrix} =abc\displaystyle (1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}).



Find the area of \triangle PQR whose vertices are P(2,1),Q(3,4) and R(5,2).



Find the equation of the line joining A(1,3) and B(0,0) using determine and find k of D(k,0) is a point such that area of \triangle ABD is 3 sq. units.



If points \left( a,0 \right) ,\left( 0,b \right) and \left( x,y \right) are collinear, prove that \cfrac { x }{ a } +\cfrac { y }{ b } =1.



If the points A(-2, 1), B(a, b) and C(4, -1) are collinear and a-b=1, find the values of a and b.



Find the ratio in which the line segment joining the points P(x, 2) divides the line segment joining the points A (12, 5) and B(4,-3). Also find the value of x.



Evaluate :
\begin{vmatrix} 2& 3 & -5\\ 7 &1 & -2\\ -3 & 4 &1 \end{vmatrix} 



If three points \left( { x }_{ 1 },{ y }_{ 1 } \right) ,\left( { x }_{ 2 },{ y }_{ 2 } \right) ,\left( { x }_{ 3 },{ y }_{ 3 } \right) lie on the same line, prove that
\cfrac { { y }_{ 2 }-{ y }_{ 3 } }{ { x }_{ 2 }{ x }_{ 3 } } +\cfrac { { y }_{ 3 }-{ y }_{ 1 } }{ { x }_{ 3 }{ x }_{ 1 } } +\cfrac { { y }_{ 1 }-{ y }_{ 2 } }{ { x }_{ 1 }{ x }_{ 2 } } =0



Show that the following set of points are collinear.
(2,5), (4,6) and (8,8) 



If a\ne b\ne c, prove that the points \left( a,{ a }^{ 2 } \right) ,\left( b,{ b }^{ 2 } \right) ,\left( c,{ c }^{ 2 } \right) can never be collinear.



Find the value of k if points (k,3),(6,-2) and (-3,4) are collinear.



For what value of a the point (a,1),(1,-1) and (11,4) are collinear?



Evaluate :
\Delta=\begin{vmatrix} \cos \alpha \cos \beta& \cos \alpha \sin \beta & -\sin \alpha\\ -\sin \beta &\cos \beta & 0\\ \sin \alpha \cos \beta & \sin \alpha \sin \beta &\cos \alpha \end{vmatrix}



Prove that the points \left( ab, \right) ,\left( { a }_{ 1 },{ b }_{ 1 } \right) and \left( a-{ a }_{ 1 },b-{ b }_{ 2 } \right)  are collinear if a{ b }_{ 1 }={ a }_{ 1 }b



Prove that the points (a,0),(0,b) and (1,1) are collinear if \left ( \cfrac { 1 }{ a } +\cfrac { 1 }{ b } =1 \right )



Prove that the points (2,3), (-4,-6) and 1,3/2) do not form a triangle.



Find the value of \lambda if the following equations are consistent
x + y - 3 = 0
(1 + \lambda) x + (2 + \lambda) y - 8 = 0
x - (1 + \lambda) y + (2 + \lambda) = 0



Find cofactors of the elements of the matrix A = \begin{bmatrix} -1 & 2 \\ -3 & 4 \end{bmatrix}



Find the value of k, if the points A(8,1),B(3,-4) and C(2,k) are collinear.



If the points A(-1,-4),B(b,c) and C(5,-1) are collinear and 2b+c=4, find the values of b and c.



Find the value(s) of k for which the points (3k-1,k-2),(k,k-7) and (k-1,-k-2) are collinear.



Find the value of k, if the points A(7,-2),B(5,1) and C(3,2k) are collinear.



Let a > 0,\ d > 0. Find the value of the determinant
\left| \begin{matrix} \dfrac { 1 }{ a }  & \dfrac { 1 }{ a\left( a+d \right)  }  & \dfrac { 1 }{ \left( a+d \right) \left( a+2d \right)  }  \\ \dfrac { 1 }{ \left( a+d \right)  }  & \dfrac { 1 }{ \left( a+d \right) \left( a+2d \right)  }  & \dfrac { 1 }{ \left( a+2d \right) \left( a+3d \right)  }  \\ \dfrac { 1 }{ \left( a+2d \right)  }  & \dfrac { 1 }{ \left( a+2d \right) \left( a+3d \right)  }  & \dfrac { 1 }{ \left( a+3d \right) \left( a+4d \right)  }  \end{matrix} \right|



Prove the following :
\left| \begin{matrix} ax & by & cz \\ { x }^{ 2 } & { y }^{ 2 } & { z }^{ 2 } \\ 1 & 1 & 1 \end{matrix} \right| =\left| \begin{matrix} a & b & c \\ x & y & z \\ yz & zx & xy \end{matrix} \right|



Without expanding prove that the determinant \left | \begin{array}{111} sinA & CosA & sin(A+\theta) \\ sin B & cos B & sin(B+\theta) \\ sin C & CosC & sin (c+\theta) \\ \end {array} \right | =0



A, B , C are the points (a, p), (b,q) and (c,r) respectively such that a, b, c are in A. P. and p, q ,r in G.P. If the points are collinear then prove that p = q = r



If x,y,z \in R then find Determinant
\left( {\matrix{    {{{({2^x} + {2^{ - x}})}^2}} & {{{({2^x} - {2^{ - x}})}^2}} & 1  \cr    {{{({3^x} + {3^{ - x}})}^2}} & {{{({3^x} - {3^{ - x}})}^2}} & 1  \cr    {{{({4^x} + {4^{ - x}})}^2}} & {{{({4^x} - {4^{ - x}})}^2}} & 1  \cr  } } \right)





If A = diag (a, b, c) = \begin{bmatrix}               a & 0 & 0 \\[0.3em]               0 & b & 0 \\[0.3em]               0 & 0 & c               \end{bmatrix} such that abc \neq 0
then A^{-1} = diag (\frac{1}{a}, \frac{1}{b}, \frac{1}{c}) = \begin{bmatrix}               \frac{1}{a} & 0 & 0 \\[0.3em]               0 & \frac{1}{b} & 0 \\[0.3em]               0 & 0 & \frac{1}{c}               \end{bmatrix}




If  where r = 1,2,3 be the co-ordinates of the points A, B, C respectively, then prove the following:
The equation of internal bisector of angel A is 
b \, \begin{vmatrix} x & y & 1\\ x_1 & y_1 & 1\\ x_2 & y_2 & 1 \end{vmatrix} \, + \, c \, \begin{vmatrix} x & y & 1\\ x_1 & y_1 & 1\\ x_3 & y_3 & 1 \end{vmatrix} \, = \, 0
where b = AC and c = AB.



If A is a matrix of order 3 \times 3 then find \left| adj\ A \right| where \left| A \right| =2



Find a if  \begin{vmatrix} i & -2i & -1\\ 3i & i^{3} & -2\\ 1& -3 & -i\end{vmatrix} = ai, where i =\sqrt{-1}



Find the non-zero roots of the equation,
\Delta = \begin{vmatrix} a & b & ax + b \\ b & c & bx + c \\ ax + b & bx + c & c\end{vmatrix} = 0



Solve: \begin{vmatrix} 3x+4 & x+2 & 2x+3 \\ 4x+5 & 2x+3 & 3x+4 \\ 10x+17 & 3x+5 & 5x+8 \end{vmatrix}=0. The value of the determinant at x=-1is:



By using properties of determinants prove that \begin{vmatrix} (y+z)^{2}&xy& zx\\ xy&(x+z)^{2} & yz\\ xz & yz & (x+y)^{2}\end{vmatrix} is divisible by (x+ y + z)^{n}. Find n .



Find n if: \begin{vmatrix} 1+a^{ 2 }-b^{ 2 } & 2ab & -2b \\ 2ab & 1-a^{ 2 }+b^{ 2 } & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix} = (1 + a^2 + b^2)^n



\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix}=abc\left(1+ \dfrac { 1 }{ a } +\dfrac { 1 }{ b } +\dfrac { 1 }{ c }  \right)



Evaluate:
\begin {vmatrix} x^{2} -x +1 & x-1\\ x+1 & x+1\end{vmatrix}



Prove that \begin{vmatrix} \left( \beta +\gamma -\alpha -\delta  \right) ^{ 4 } & \left( \beta +\gamma -\alpha -\delta  \right) ^{ 2 } & 1 \\ \left( \gamma +\alpha -\beta -\delta  \right) ^{ 4 } & \left( \gamma +\alpha -\beta -\delta  \right) ^{ 2 } & 1 \\ \left( \alpha +\beta -\gamma -\delta  \right) ^{ 4 } & \left( \alpha +\beta -\gamma -\delta  \right) ^{ 2 } & 1 \end{vmatrix}=-64\left( \alpha -\beta  \right) \left( \alpha -\gamma  \right) \left( \alpha -\delta  \right) \left( \beta -\gamma  \right) \left( \beta -\delta  \right) \left( \gamma -\delta  \right)



Minor m_{33} of the determinant \begin{vmatrix} 2 & 3 & 5 \\ 2 & -1 & 8 \\ 1 & 2 & 4 \end{vmatrix} is 



Prove \begin{vmatrix} x+4 & 2x & 2x\\ 2x & x+4 & 2x \\ 2x & 2x & x+4\end{vmatrix}=(5x+4)(4-x)^2.



Find the adjoint of matrix A =\begin{bmatrix}2&0&1\\3&1&2\\-1&1&2\end{bmatrix}



Find the adjoint of { \left( \dfrac { { 7 }^{ -4 } }{ { 4 }^{ -2 } }  \right)  }^{ \dfrac { 1 }{ 4 }  }\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}



If x, y, z are non-zero real numbers and \begin{vmatrix} 1+x & 1 & 1 \\ 1+y & 1+2y & 1 \\ 1+z & 1+z & 1+3z \end{vmatrix}=0 then -\left( \dfrac { 1 }{ x } +\dfrac { 1 }{ y } +\dfrac { 1 }{ z }  \right) is equal to________



Find x if \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 4 \\ 5 & -6 & x \end{bmatrix}=45



Find the adjoint of \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}



Prove that \begin{vmatrix}ax & by & cz\\x^{2}& y^{2}& z^{2}\\ 1&1&1 \end{vmatrix} = \begin{vmatrix}a&b&c\\x&y&z\\yz&xz&xy \end{vmatrix}



Solve for x:
\begin{vmatrix}1&5&2\\2&6&4\\3&7&x\end{vmatrix}=0



Prove that \triangle =\begin{vmatrix} a & b & a\alpha +b \\ b & c & b\alpha +c \\ a\alpha +b & b\alpha +c & 0 \end{vmatrix}=0 if a,b,c are in G.P.



Show that:
\left| \begin{matrix} 1 & { a }^{ 2 } & { a }^{ 3 } \\ 1 & { b }^{ 2 } & { b }^{ 3 } \\ 1 & { c }^{ 2 } & { c }^{ 3 } \end{matrix} \right| =(a-b)(b-c)(c-a)(ab+bc+ca)



show that \left| \begin{matrix} 1 & a & { a }^{ 2 } \\ 1 & b & b^{ 2 } \\ 1 & c & c^{ 2 } \end{matrix} \right| =\left( a-b \right) \left( b-c \right) \left( c-a \right)



Find the solution set of \left| {\begin{array}{*{20}{c}}x&5&9\\{16}&{3x\, + \,8}&{36}\\3&1&7\end{array}} \right|\, = \,0.



Solve:
\left| {\begin{array}{*{20}{c}}1&1&1\\1&{1 + \sin \theta }&1\\{1 + \cos \theta }&1&1\end{array}} \right|



Solve:
\begin{vmatrix} 1 & 1 & 2 \\ 1 & -2 & 3 \\ 1 & (x+1) & x \end{vmatrix}=0



Find the area of quadrilateral ABCD, the co ordinates of whose vertices are A(-3,2), B(5,4), C(7,-6), D(-5,-4)



Prove that, \left| \begin{matrix} x+\lambda  & 2x & 2x \\ 2x & x+\lambda  & 2x \\ 2x & 2x & x+\lambda  \end{matrix} \right| =(5x+\lambda)( \lambda -x)^{2}.



Show that \begin{vmatrix} b+c & c+a & a+b \\ a+b & b+c & c+a \\ a & b & c \end{vmatrix} = a^3 + b^3 +c^3 - 3abc



If a \ne p, b \ne q and c \neq r \begin{vmatrix} p & b & c \\ a & q & c \\ a & b & r \end{vmatrix}= 0 then, find the value of :-
\dfrac{p}{p-a} + \dfrac{q}{q-b} + \dfrac{r}{r-c}  = ?



Find the value of following determinant.
\begin{vmatrix} -1 & 7\\ 2 & 4\end{vmatrix}.



Find the value of the following determinant.
\begin{vmatrix} 2i & -3i \\ { i }^{ 3 } & -2{ i }^{ 3 } \end{vmatrix}, where i=\sqrt {-1}.



If f\left( x \right) = a + bx + c{x^2} and \alpha ,\beta ,\gamma are the roots of the equation {x^3} = 1, then \left| {\begin{array}{*{20}{c}}a & b & c\\b & c & a\\c & a & b\end{array}} \right| is equal to



If A is a skew-symmetric matrix of order 3 then find \left| A \right|



Evaluate \left| \begin{matrix} 1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b \end{matrix} \right| without direct expansion.



Find the value of the determinant: \begin{vmatrix} \sqrt{2} & 2\sqrt{3}\\ 3\sqrt{2} & \sqrt{3}\end{vmatrix}.



\begin{vmatrix}1 & 2 & 3\\ 0 & 2 & 4\\ 0 & 0 & 5\end{vmatrix}.



If \vec { a } =\tilde { i } +\tilde { j } +\tilde { k } ,\vec { b } =\tilde { i } -\tilde { j } +\tilde { k } ,\vec { c } =\tilde { i } +2\tilde { j } -\tilde { k } , then the value of  \left| \begin{matrix} \overrightarrow { a } .\overrightarrow { a }  & \overrightarrow { a } .\overrightarrow { b }  & \overrightarrow { a } .\overrightarrow { c }  \\ \overrightarrow { b } .\overrightarrow { a }  & \overrightarrow { b } .\overrightarrow { b }  & \overrightarrow { b } .\overrightarrow { c }  \\ \overrightarrow { c } .\overrightarrow { a }  & \overrightarrow { c } .\overrightarrow { b }  & \overrightarrow { c } .\overrightarrow { c }  \end{matrix} \right| =



Prove that \left| \begin{matrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{matrix} \right| =(a+b+c)^3



If \Delta=\left| \begin{matrix} { a }_{ 11 } & { a }_{ 12 } & { a }_{ 13 } \\ { a }_{ 21 } & { a }_{ 22 } & { a }_{ 23 } \\ { a }_{ 31 } & { a }_{ 32 } & { a }_{ 33 } \end{matrix} \right|  and A_{IJ} is cofactors of a_{ij} then the value of \Delta is given by



\left| \begin{matrix} 1 & w & { w }^{ 2 } \\ w & { w }^{ 2 } & 1 \\ { w }^{ 2 } & w & 1 \end{matrix} \right| Where w is a complex cube root of unity.



Find the value of k if points \left (k,3\right),\left (6,-2\right)\ and \left (-3,4\right) are collinear. 



Find the value of \begin{vmatrix} 53 & 106 & 159 \\ 52 & 65 & 91 \\  102 & 153 & 221 \end{vmatrix}



Solve \left| \begin{matrix} x & -4 & -4 \\ 3 & 2 & 1 \\ -2 & 4 & 1 \end{matrix} \right| =0



Find the value of K if the point A (2,3) ,B (4,K) and C( 6,-3) are collinear?



Find the values of the following determinants 
\begin{vmatrix} 1+3i & i-2 \\ { -i-2 } & 1-3{ i } \end{vmatrix}
where i=\sqrt{-1}.



If \left| \begin{matrix} a & b & a\alpha +b \\ b & c & b\alpha +c \\ a\alpha +b & b\alpha +c & 0 \end{matrix} \right| =0. Prove that a,b,c are in G.P. or \alpha is a root of ax^{2}+2bx+c=0



Without expanding , find the value of \begin{vmatrix} a+b & 2a+b & 3a+b \\ 2a+b & 3a+b & 4a+b \\ 4a+b & 5a+b & 6a+b \end{vmatrix}



Find the roots of equation \left| {\begin{array}{*{20}{c}}1 & 4 & {20}\\1 & { - 2} & 5\\1 & {2x} & {5{x^2}}\end{array}} \right| = 0.



Solve 
\left| {\begin{array}{*{20}{c}}1&1&{ - 1}\\6&4&{ - 5}\\{ - 4}&{ - 2}&3\end{array}} \right|



Verify whether the points (1,5),(2,3),and(-2,-1) are collinear or not.



Solve D = \left| \begin{array} { c c c } { 1 } & { - 2 } & { 1 } \\ { 2 } & { 1 } & { - 1 } \\ { 1 } & { 3 } & { 1 } \end{array} \right]



\left| \begin{matrix} 0 \\ -a \\ b \end{matrix}\begin{matrix} a \\ 0 \\ c \end{matrix}\begin{matrix} -b \\ -c \\ 0 \end{matrix} \right| =0



Prove that points (2,-2),(-3,8),(-1,4) are collinear.



If the points A\ (x,2),B\ (-3,-4),C\ (7,-5) are collinear, then find the value of x.



Evaluate : 
  \left| { \begin{array} { *{ 20 }{ c } }3 & { -1 } & { -2 } \\ 0 & 0 & { -1 } \\ 3 & { -5 } & 0 \end{array} } \right| 



Find minor & cofactors of elements '6', '5', '0' & '4' of the determinant \begin{vmatrix} 2 & 1 & 3 \\ 6 & 5 & 7 \\ 3 & 0 & 4 \end{vmatrix}



Solve:
\left| \begin{matrix} 1 & xy & xy(x+y) \\ 1 & yz & yz(y+z) \\ 1 & zx & zx(2+x) \end{matrix} \right|



\left| {\begin{array}{*{20}{c}}2&1&1\\1&{ - 2}&{ - 3}\\3&2&4\end{array}} \right| = ?



Find x if:\left| \begin{matrix} 2 & 1 & x+1 \\ -1 & 3 & -4 \\ 0 & -5 & 3 \end{matrix} \right|   = 1



Show that:

\left| \begin{array} { c c c } { a ^ { 2 } } & { b ^ { 2 } } & { c ^ { 2 } } \\ { a } & { b } & { c } \\ { 1 } & { 1 } & { 1 } \end{array} \right| = - ( a - b ) ( b - c ) ( c - a )



If \Delta=\begin{vmatrix} 1 & \sin{\theta} & 1\\ -\sin{\theta} & 1 & \sin{\theta} \\ -1 & -\sin{\theta} & 1 \end{vmatrix} then prove that 2\le \Delta\le 4



Expand:\begin{vmatrix} 3 & 2 & 5\\ 9 & -1 & 4 \\ 2 & 3 & -5 \end{vmatrix} 



Expand:\begin{vmatrix} 1 & 2 & 3\\ 4 & 6 & 2 \\ 5 & 9 & 4 \end{vmatrix} 



Prove that 
\begin{vmatrix} bc & a & { a }^{ 2 } \\ ca & b & { b }^{ 2 } \\ ab & c & { c }^{ 2 } \end{vmatrix}=\begin{vmatrix} 1 & { a }^{ 2 } & { a }^{ 3 } \\ 1 & { b }^{ 2 } & { b }^{ 3 } \\ 1 & { c }^{ 2 } & { c }^{ 3 } \end{vmatrix}



Find the value of k so that point colinear(7,-2)(5,1)(3,k).



Solve
\left| \begin{matrix} 4 \\ 3 \end{matrix}\begin{matrix} x+1 \\ x \end{matrix} \right| =5 



If for any 2 x 2 square matrix A, A(adj A) = \left[ \begin{array}{l}8\,\,0\\0\,\,8\end{array} \right],then write the value of \left| A \right| .



Find the value of the determinant \begin{vmatrix} -1 & 2 & 1\\ 3+2\sqrt{2} & 2+2\sqrt{2} & 1 \\ 3-2\sqrt{2} & 2-2\sqrt{2} & 1 \end{vmatrix} 



Show that \begin{vmatrix} a & \quad a+b & \quad a+b+c\quad  \\ 2a & 3a+2b & 4a+3b+2c \\ 3a\quad  & 6a+3b & 10a+6b+3c \end{vmatrix}={ a }^{ 3 }



Prove that \begin{vmatrix} {a}^{2}+1 & ab & ac\\ ab & {b}^{2}+1 & bc \\ ac & bc & {c}^{2}+1 \end{vmatrix}=1+{a}^{2}+{b}^{2}+{c}^{2}



Solve for x
\begin{vmatrix} 4x & 6x+2 & 8x+1\\ 6x+2 & 9x+3 & 12x \\ 8x+1 & 12x & 16x+2 \end{vmatrix}=0



Given that matrix A=\left[ \begin{matrix} x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & z \end{matrix} \right]. If xyz=2013 and 8x+4y+3z=2012 then A(adj A) is equal to 



If f(x)=\left| \begin{matrix} 2x & { x }^{ 2 } & { x }^{ 3 } \\ { x }^{ 2 }+2x & 1 & 3x+1 \\ 2x & 1-3{ x }^{ 2 } & 5x \end{matrix} \right| , then find f'(1)



Show that the points A(1,2,7),\ B(2,6,3) and C(3,10,-1) are collinear.



(k,k ), (2,3) and (4,-1) are collimear. So find the value of k.



Solve the matrix
\left| {\begin{array}{*{20}{c}}{\frac{1}{b}{b^2}} & {ca}\\{\frac{1}{c}{c^2}} & {ab}\end{array}} \right|



Prove that point (1,1),(-2,7) and (3,-3) are collinear.



If the points ( a,0),(0,b)and (3,2) are col linear, prove that \dfrac { 2 }{ b } +\dfrac { 3 }{ a } =1



Evaluate \left| \begin{matrix} x & x^{ 2 } & x^{ 2 } \\ y & y^{ 2 } & y^{ 2 } \\ z & z^{ 2 } & z^{ 3 } \end{matrix} \right| 



Prove that.\left| \begin{matrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{matrix} \right| (a-b)(b-c)(c-a)



Prove that :
\begin{vmatrix} 0 & a & -b \\ -a & 0 & -c \\ b & c & 0 \end{vmatrix}=0.



Find the value of the following determinants.
\begin{vmatrix} \dfrac { 7 }{ 3 }  & \dfrac { 5 }{ 3 }  \\ \dfrac { 3 }{ 2 }  & \dfrac { 1 }{ 2 }  \end{vmatrix}



Given \begin{bmatrix} 2 & 1 \\ -3 & 4 \end{bmatrix} X=\begin{bmatrix} 7 \\ 6 \end{bmatrix}. Write :
the order of the matrix X
the matrix X.



If A=\begin{bmatrix} \cos { \theta  }  & \sin { \theta  }  \\ -\sin { \theta  }  & \cos { \theta  }  \end{bmatrix} the A^{n}=



Find the value of \lambda for which the points (6,-1,2),(8,-7,\lambda) and (5,2,4) are collinear.



Find the value of the following determinants.
\begin{vmatrix} -1 & 7 \\ 2 & 4 \end{vmatrix}



Find the value of the following determinants.
\begin{vmatrix} 5 & 3 \\ -7 & 0 \end{vmatrix}



If A=[aij] is a matrix of order 2x2 such that |A|=15 and cij represents the co factor of aij then find { a }_{ 21 }{ c }_{ 21 }+{ a }_{ 22 }{ c }_{ 22 }.



A square matrix \mathrm { B } of order 3 , has | B | = 7 , find | B adjB |



A. square matrix A of order 3 , has | A | = 5 , find | A adja|



Find equation of line joining (1,2) and (3,6) using determinants.



Prove that  \begin {vmatrix} a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2 \end {vmatrix} = 4a^2b^2c^2



Prove that \begin{vmatrix} a & a & a \\ a & b & b \\ a & b & c \end{vmatrix}=a(b-c)(a-b), Hence find the value of \begin{vmatrix} 3 & 3 & 3 \\ 3 & 5 & 5 \\ 3 & 5 & 7 \end{vmatrix}.



A point P\left(2,-1\right) is equidistant from points \left(a,7\right) and \left(-3,a\right). Find a.



Prove that :  \begin {vmatrix} a & c & a + c \\ a + b & b & a \\ b & b + c & c \end {vmatrix} = 4abc



Prove that:
\begin{vmatrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2b \end{vmatrix}=2{ \left( a+b+c \right)  }^{ 3 }



Fill in the blanks with correct number 
\left| \begin{matrix} 3 \\ 4 \end{matrix}\begin{matrix} 2 \\ 5 \end{matrix} \right| =3\times \Box -\Box \times 4=\Box -8=\Box



Using properties of determinant solve :-
\left| \begin{matrix} 1 & a & { a }^{ 2 }-bc \\ 1 & b & { b }^{ 2 }-ac \\ 1 & c & { c }^{ 2 }-ab \end{matrix} \right| =



Find the values of x, if 
\begin{vmatrix} 2x & 5 \\ 8 & x \end{vmatrix}=\begin{vmatrix} 6 & 5 \\ 8 & 3 \end{vmatrix}



Prove that \left| \begin{matrix} cos\theta  & cos\phi  \\ sin\theta  & sin\phi  \end{matrix} \right| =-sin\left( \theta -\phi  \right)



Find the cofactors of the elements of the following matrices :
(i) \begin{bmatrix} -1 & 2 \\ -3 & 4 \end{bmatrix} 

(ii) \left[ \begin{matrix} 1 & -1 & 2 \\ -2 & 3 & 5 \\ -2 & 0 & -1 \end{matrix} \right]



Find the minor of  \begin{bmatrix} 2 & 7 & 3  \\ -4 & 3 & -1  \\ 0 & -3 & 7  \end{bmatrix}.



Prove that \left| \begin{matrix} \sin\alpha  & \cos\alpha  & \cos(a+\delta ) \\ \sin\beta  & \cos\beta  & cos(\beta +\delta ) \\ \sin\gamma  & \cos\gamma  & \cos(\gamma +\delta ) \end{matrix} \right| =0.



For the matrix A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 3 & 0 \\ 18 & 2 & 10 \end{bmatrix}, show that A (adj A) = 0 .




Find the values of x, if 
\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix}= \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}




Solve:
\begin{bmatrix} 1 & 5 & -2 \\ 3x & 2 & 4 \\ 5 & -1 & 0 \end{bmatrix}=0



If A = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}, show that adj A = A .



Find the values of x, if 
\begin{vmatrix} 4 & x+1 \\ x+2 & 2 \end{vmatrix}= \begin{vmatrix} 4 & 4 \\ 5 & 2 \end{vmatrix}



Find the adjoint of the following matrice:
\begin{bmatrix} \cos\,\alpha  & \sin\,\alpha  \\ \sin\,\alpha  & \cos\,\alpha  \end{bmatrix}
Verify that (adj A ) A = |A| I = A (adj A) for the above matrice.



If A = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix},show that adj A = 3A^{T}.  



Solve:
\begin{vmatrix} x+2  & 1  \\ -1 & x\end{vmatrix}=0



If A is a square matrix of order n, prove that \left | A\: adj \: A \right |= \left | A \right |^{n}.



Find the values of x, if 
\begin{vmatrix} 2x & 5 \\ 8 & x \end{vmatrix}=\begin{vmatrix} 6 & 5 \\ 8 & 3 \end{vmatrix}



Evaluate the following determinant : 

\begin{vmatrix} 1 & -3 & 2 \\ 4 & -1 & 2 \\ 3 & 5 & 2 \end{vmatrix}



Evaluate the following determinant : =\begin{vmatrix} 67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26 \end{vmatrix}



Find the integral value of x, if \begin{vmatrix} x^{2} & x & 1\\ 0 & 2 & 1 \\ 3 & 1 & 4 \end{vmatrix}= 28



Evaluate the following determinant : 

\begin{vmatrix} 1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38 \end{vmatrix}



Evaluate the following :

\begin{vmatrix} x+\lambda  & x & x \\ x & x+\lambda  & x \\ x & x & x+\lambda  \end{vmatrix}



Evaluate the following :
\begin{vmatrix} x+\lambda  & x & x \\ x & x+\lambda  & x \\ x & x & x+\lambda  \end{vmatrix}



Evaluate the following determinant : 

\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix}



If a,b,c are real numbers such that \begin{vmatrix} b+c & c+a & a+b  \\ c+a & a+b & b+c  \\ a+b & b+c & c+a  \end{vmatrix}= 0, then show that either a+b+c=0 or, a=b=c.



Evaluate the following :

\begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix}



Evaluate the following determinant : 

\begin{vmatrix} 15 & 11 & 7 \\ 11 & 17 & 14 \\ 10 & 16 & 13 \end{vmatrix}



Find the adjoint of the given matrix and verify in each case that A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I.
\begin{bmatrix} 3& -1 & 1\\ -15 & 6 & -5 \\ 5 & -2 & 2\end{bmatrix}



If a, b, c are p^{th}, q^{th} and r^{th} terms respectively of a G.P, then prove that 
\begin{vmatrix}\log a& p & 1  \\ \log b& q &  1\\ \log c &r & 1 \end{vmatrix} =0



Find the cofactors of all the elements of \begin{bmatrix}1&-2  \\ 4 & 3 \end{bmatrix}



Find the adjoint of the given matrix and verify in each case that A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I.
\begin{bmatrix} 0& 1 & 2\\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}



Find the adjoint of the given matrix and verify in each case that A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I.
\begin{bmatrix} 2& 3\\ 5 & 9\end{bmatrix}



Find the adjoint of the given matrix and verify in each case that A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I.
\begin{bmatrix} \cos \alpha& \sin \alpha\\ \sin \alpha & \cos \alpha\end{bmatrix}



Find the adjoint of the given matrix and verify in each case that A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I.
\begin{bmatrix} 9& 7 & 3\\ 5 & -1 & 4 \\ 6 & 8 & 2\end{bmatrix}



If A and B are square matrices each of order 3 and |A|= 5, \, |B| = 3, then the value of |3AB| is ______  



Find the adjoint of the given matrix and verify in each case that A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I.
\begin{bmatrix} 1& -1 & 2\\ 3 & 1 & -2 \\ 1 & 0 & 3\end{bmatrix}



Find the adjoint of the given matrix and verify in each case that A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I.
\begin{bmatrix} 3& -5\\ -1 & 2\end{bmatrix}



Let A be a square matrix of order 3, write the value of |2A|, where |A|=4.



Evaluate \begin{vmatrix} \sqrt { 6 }  & \sqrt { 5 }  \\ \sqrt { 20 }  & \sqrt { 24 }  \end{vmatrix}.



If A=\begin{vmatrix} 3 & 4 \\ 1 & 2 \end{vmatrix}, find the value of 3|A|.



Find the adjoint of the given matrix and verify in each case that A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I.
\begin{bmatrix} 4& 5 & 3\\ 1 & 0 & 6 \\ 2 & 7 & 9\end{bmatrix}



If A is a 2\times 2 matrix such that |A|\neq 0 and |A|=5, write the value of |4A|.



If A is a 3\times 3 matrix such that |A|\neq 0 and |3A|=k|A|, then write the value of k.



Evaluate \begin{vmatrix} \sin { { 60 }^{ o } }  & \cos { { 60 }^{ o } }  \\ -\sin { { 30 }^{ o } }  & \cos { { 30 }^{ o } }  \end{vmatrix}.



Find the adjoint of the given matrix and verify in each case that A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I.
\begin{bmatrix} \cos \alpha& -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}



Evaluate \begin{vmatrix} 2\cos { \theta  }  & -2\sin { \theta  }  \\ \sin { \theta  }  & \cos { \theta  }  \end{vmatrix}.



Evaluate \begin{vmatrix} \cos { \alpha  }  & -\sin { \alpha  }  \\ \sin { \alpha  }  & \cos { \alpha  }  \end{vmatrix}.



Evaluate \begin{vmatrix} \cos { { 65 }^{ o } }  & \sin { { 65 }^{ o } }  \\ \sin { 25^{ o } }  & \cos { 25^{ o } }  \end{vmatrix}.



Evaluate \begin{vmatrix} \cos { { 15 }^{ o } }  & \sin { { 15 }^{ o } }  \\ \sin { 75^{ o } }  & \cos { 75^{ o } }  \end{vmatrix}.



Evaluate \begin{bmatrix} \sqrt { 3 }  & \sqrt { 5 }  \\ -\sqrt { 5 }  & 3\sqrt { 3 }  \end{bmatrix}.



Prove that the three straight lines whose equations are 
15x - 18y + 1 = 0, 12x + 10y -3 = 0, and 6x + 66y - 11 = 0 
all meet in a point.
Show also that the third line bisects the angle between the other two.



Prove that the following sets of three lines meet in a point.
2x - 3y = 7, 3x - 4y = 13, and 8x - 11y = 33.



If \begin{vmatrix} { \left( \beta +\gamma -\alpha -\delta  \right)  }^{ 4 } & { \left( \beta +\gamma -\alpha -\delta  \right)  }^{ 2 } & 1 \\ { \left( \gamma +\alpha -\beta -\delta  \right)  }^{ 4 } & { \left( \gamma +\alpha -\beta -\delta  \right)  }^{ 2 } & 1 \\ { \left( \alpha +\beta -\gamma -\delta  \right)  }^{ 4 } & { \left( \alpha +\beta -\gamma -\delta  \right)  }^{ 2 } & 1 \end{vmatrix}=k\left( \alpha -\beta  \right) \left( \alpha -\gamma  \right) \left( \alpha -\delta  \right) \left( \beta -\gamma  \right) \left( \beta -\delta  \right) \left( \gamma -\delta  \right) \quad then the value of {(k)}^{1/2} is



Given A=\begin{vmatrix} a & b & 2c \\ d & e & 2f \\ l & m & 2n \end{vmatrix};B=\begin{vmatrix} f & 2d & e \\ 2n & 4l & 2m \\ c & 2a & b \end{vmatrix}, then the value of \dfrac{B}{A} is ________.



Find the minor of the element of second row and third column ( a 23 ) in the following determinant:
\left|\begin{array}{ccc}2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7\end{array}\right|



If A is an invertible metrix of order 3 and |A| = 5, then find |adj \ A|.



If \Delta=\left|\begin{array}{lll}5 & 3 & 8 \\2 & 0 & 1 \\1 & 2 & 3\end{array}\right| \text { , then write the minor of the element } a_{23}



What positive value of x makes the following pair of determinants equal?
\left|\begin{array}{cc}2 x & 3 \\ 5 & x\end{array}\right|,\left|\begin{array}{cc}16 & 3 \\ 5 & 2\end{array}\right|



Find the cofactor of a_{12} in the following:
\left|\begin{array}{ccc}1 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7\end{array}\right|



\begin{aligned}& \\&\text { Evaluate: }\left|\begin{array}{ll}\cos 15^{\circ} & \sin 15^{\circ} \\\sin 75^{\circ} & \cos 75^{\circ}\end{array}\right|\end{aligned}



If A is idempotent matrix satisfying ( I - 0.4 A)^{-1} = I  - \alpha A where I is the unit matrix of the same order as that of A then find the value of | 9 \alpha | .



Find the equation of line joining (1,2) and (3,6) using determinants.



Find the value of \left|\begin{array}{cccc}\sin A & -\sin B \\\cos A & \cos B\end{array}\right| \text { where } A=53^{\circ}, B=37^{\circ}



If A = \begin{bmatrix} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha \end{bmatrix}, find the value of |adj \ A|.



If \Delta= \left| \begin{matrix} 0 & b-a & c-a \\ a-b & 0 & c-b \\ a-c & b-c & 0 \end{matrix} \right|  then show that \Delta is equal to zero.



Write the adjoint of the following matrix:
\Big[\begin{matrix} 2 & -1 \\ 4 & 3 \end{matrix}\Big]



If \left|\begin{array}{ll}x & x \\1 & x\end{array}\right|=\left|\begin{array}{ll}3 & 4 \\1 & 2\end{array}\right| , then write the positive value of x



Find the equation of the line joining A(1,3) and B(0,0) using determinants and find k if D(k, 0) is a point such that the area of \Delta A B D is 3 sq units.



The determinant \Delta =  \left| \begin{matrix} \sqrt {23} + \sqrt {3}  & \sqrt {5}  & \sqrt {5} \\ \sqrt {15} + \sqrt {46} & 5 & \sqrt {10}  \\ 3 +\sqrt {115} & \sqrt {15} & 5 \end{matrix} \right|   is equal to ...............



Show that if the determinant \Delta  = \left| \begin{matrix} 3 & -2 & sin\quad 3\quad \theta \\ -7 &  8& cos \quad 2 \theta \\ -11 & 14 & 2 \end{matrix} \right|    = 0  then Sin \theta = 0 or   \frac {1}{2}



Write the value of \left|\begin{array}{cc}\sin 20^{\circ} & -\cos 20^{\circ} \\ \sin 70^{\circ} & \cos 70^{\circ}\end{array}\right|



Evaluate :
 \left| \begin{matrix} y+z & z & y \\ z & z+x & x \\ y & x & x+y \end{matrix} \right| =\quad 4xyz



If A is a matrix or order 3 \times 3 then number of minors in determinant of A are__________



Fill in the blank.
If A is matrix of order 3 \times 3 then |3A| is equal to_________



If x+y+z = 0 prove that       \left| \begin{matrix} xa & yb & zc \\ yc & za & xb \\ zb & xc & ya \end{matrix} \right| \quad =\quad xyz\quad \left| \begin{matrix} a & b & c \\ c & a & b \\ b & c & a \end{matrix} \right| 



Evaluate :
 \left| \begin{matrix} 3x & -x+y & -x+z \\ x-y & 3y & z-y \\ x-z & y-z & 3z \end{matrix} \right| 



If A +B +C = 0 then prove that   \left| \begin{matrix} 1 & cos\quad C & cos\quad B \\ cos\quad C & 1 & cos\quad A \\ cos\quad B\quad  & cos\quad A\quad  & 1 \end{matrix} \right| =0   



If Cos 2 \theta  =  0 then   \left| \begin{matrix} 0 & cos \theta &sin \theta  \\ cos \theta & sin \theta & 0 \\ sin \theta & 0 & cos \theta \end{matrix} \right|^2 = _________



If a+ b +c \neq 0 and  \left| \begin{matrix} a & b & c \\ b & c & a \\ c & a & b \end{matrix} \right|  = 0 then prove that a = b = c .



Find the value of the following determinant
\begin{vmatrix} 5 & {-2}\\{-3} & 1\end{vmatrix}.



Find the value of the following determinant 
\begin{vmatrix} 3 & {-1}\\{1} & 4 \end{vmatrix}.



Find the adjoint of the matrix A = \begin{bmatrix} 1 & 2\\ 3 & -5\end{bmatrix} and verify the result A(adj \,A) = (adj \,A) = A |A| \cdot I.



Find the adjoint of the following matrix.
\begin{bmatrix} 1& -1 & 2 \\ -2  & 3 & 5 \\ -2 & 0 & -1  \end{bmatrix}



The sum if the products of element of any row with the co-factors of corresponding elements is equal to __________



Find the adjoint of the following matrix.
\begin{bmatrix} 2 & -3 \\ 3 & 5 \end{bmatrix}



Evaluate the determinations:
\begin{vmatrix} \cos { \theta  }  & -\sin { \theta  }  \\ \sin { \theta  }  & \cos { \theta  }  \end{vmatrix}



If A=\begin{bmatrix} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{bmatrix} find \left| A \right|



Find the values of determinant.
\begin{vmatrix} -1&7 \\ 2&4 \end{vmatrix}



Evaluate the determinations:
\begin{vmatrix} 2 & 4 \\ -5 & -1 \end{vmatrix}



If A=\begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}, then show that \left| 2A \right| =4\left| A \right|



Find the values of following determinant.
\begin{vmatrix} 5&3 \\ -7&0 \end{vmatrix}



Evaluate the determinations:
\begin{vmatrix} { x }^{ 2 }-x+1 & x-1 \\ x+1 & x+1 \end{vmatrix}



there are n points in a plane of which m points are collinear. how many triangles will be formed by joining three points?



If matrix A=\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix} then find adj.A also prove that A(adj A)= |A| I_3= (adj A)A



Find the minors of elements of second row of determinant \begin{vmatrix} 2 & 3 & 4\\ 3 & 6 & 5\\ 1 & 8 & 9 \end{vmatrix}.



If A be a square matrix of order 3\times 3 then find \left| kA \right|
\left| KA \right| ={ k }^{ n }\left| A \right| when n is the order



For which value of k, det \begin{vmatrix} k  & 2\\                              4 & -3 \end{vmatrix} will be zero?



Evaluate
\begin{vmatrix} \sin { 30 }  & \cos { 30 }  \\ -\sin { 60 }  & \cos { 60 }  \end{vmatrix}



Find adjoint of matrix :
\begin{vmatrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{vmatrix}



A = \begin{bmatrix}1 & \tan  x\\ -\tan  x & 1\end{bmatrix} and f(x) is defined as f(x) = det. (A^T A^{-1}) then find the value of \underset{\text{n times}}{\underbrace{f(f(f(f.......f(x))))}} is (n \geq 2).



If A is a square matrix of order 3, then find |(A - A^T)^{2011}|.



Match the statements in Column I with statements in column II



Prove that \begin{vmatrix} bc & bc'+b'c & b'c'\\ ca & ca'+c'a & c'a'\\ ab & ab'+a'b & a'b' \end{vmatrix}=(ab'-a'b)(bc-b'c)(ca'-c'a)



Let

\Delta _{1}=\begin{vmatrix} 1 & \cos \alpha  & \cos \beta \\ \cos \alpha  & 1 & \cos \gamma \\ \cos \beta  & \cos \gamma  & 1 \end{vmatrix}

and \Delta _{2}=\begin{vmatrix} 0 & \cos \alpha  & \cos \beta \\ \cos \alpha  & 0 & \cos \gamma \\ \cos \beta  & \cos \gamma  & 0 \end{vmatrix} .

 If \Delta _{1}=\Delta _{2}, find \sin ^{2}\alpha +\sin ^{2}\beta +\sin ^{2}\gamma



Prove that 
\begin{vmatrix} bc-a^2 & ca-b^2 & ab-c^2\\ -bc+ca+ab & bc-ca+ab & bc+ca-ab\\ (a+b)(a+c) & (b+c)(b+a) & (c+a)(c+b) \end{vmatrix}=3.(b-c)(c-a)(a-b)(a+b+c)(ab+bc+ca)



If ax_1^2+by_1^2+cz_1^2=ax_2^2+by_2^2+cz_2^2=ax_3^2+by_3^2+cz_3^2=d and ax_2x_3+by_2y_3+cz_2z_3=ax_3x_1+by_3y_1+cz_3z_1=ax_1x_2+by_1y_2+cz_1z_2=f, then prove that \begin{vmatrix} x_1 & y_1 & z_1\\ x_2 & y_2 & z_2\\ x_3 & y_3 & z_3 \end{vmatrix}=(d-f)\left [\frac {d+2f}{abc}\right ]^{1/2}(a, b, c\neq 0)



Are the three points A(2,3),B(5,6) and C(0,2) collinear?



Find the maximum value of \begin{vmatrix} 1& 1 & 1\\ 1 & 1 +\sin \theta & 1\\ 1 & 1 & 1 + \cos \theta\end{vmatrix}



If a^2+b^2+c^2=1 then is the value of the determinant \begin{vmatrix} a^2+(b^2+c^2)cos\theta & ba(1-cos\theta) & ca(1-cos\theta)\\ ab(1-cos\theta) & b^2(c^2+a^2)cos\theta & cb(1-cos\theta)\\ ac(1-cos\theta)  & bc(1-cos\theta) & c^2+(a^2+b^2)cos\theta \end{vmatrix}  independent of a,b,c?
If yes enter 1 else enter 0.



A line of slope 2 passes through the point A(1,3).
a) Check whether B(3,7) is a point on this line.
b) Write down the equation of this line.
c) Find the coordinates of a point C on the line such that BC = 2AB.



If \begin{vmatrix}x+1&x-1\\x-3&x+2\end{vmatrix}=\begin{vmatrix}4&-1\\1&3\end{vmatrix}, then write the value of x.



Find determinent
\left( {\matrix{    7 & 1 & { - 6}  \cr    { - 6} & { - 4} & {13}  \cr    2 & 5 & { - 8}  \cr  } } \right)



Find the value of the determinant:
\begin{vmatrix}\cos(\theta+\phi)&-\sin (\theta+\phi)&\cos 2\phi\\ \sin \theta& \cos \theta &\sin \phi\\ -\cos \theta &\sin \theta &\cos \phi\end{vmatrix}



For what values of p and q, the system of equations
2x + py + 6z = 8, x + 2y + qz = 5, x + y + 3z = 4
has (i) no solution (ii) a unique solution (iii) infinitely many solutions.



Solve: 
\begin{vmatrix} 1+\sin ^2 \theta & \cos ^2\theta & 4\sin 4\theta \\ \sin ^2 \theta &1+\cos ^2 \theta & 4\sin 4\theta \\ \sin ^2 \theta & \cos ^2 \theta & 1+4\sin 4\theta \end{vmatrix} =0; where, 0<\theta <\large{\cfrac{\pi}{2}}.



The straight lines \displaystyle \imath_1, \imath_2 \, and \, \imath_3  are parallel and lie in the same plane. A total of m points are taken on the line \displaystyle \imath_1, n points on \displaystyle \imath_2, and k points on \displaystyle \imath_3. How many triangles are there whose vertices are at these points?



Write minors and cofactors of the elements of the following determinants: 
(i) \begin{vmatrix} 2 & -4 \\ 0 & 3 \end{vmatrix} 
(ii) \begin{vmatrix} a & c \\ b & d \end{vmatrix} 
(iii) \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{vmatrix} 
(iv) \begin{vmatrix} 1 & 0 & 4 \\ 3 & 5 & -1 \\ 0 & 1 & 2  \end{vmatrix} 



Evaluate the determinants: \left | \begin{array}{111} 21 & 17 & 7 & 10 \\ 24 & 22 & 6 & 10 \\ 6 & 8 & 2 & 3 \\ 5 & 7 & 1 & 2 \\ \end {array} \right |



ax + by + cz = k
a^2x + b^2y + c^2z = k^2
a^3x + b^3y + c^3z = k^3
Solve by Crammer's rule



Using properties of determinants, find the value of n in the following.
\left | \begin{array}{111} 3x & -x+y & -x+z \\ x-y & 3y & z-y \\ x-z & y-z & 3z \\ \end {array} \right | = n( x+y + z)(xy + yz + zx)



The value of determinant  \begin{vmatrix} 2 & 7 & 65\\ 3 & 8 & 75 \\ 5 & 9 & 86\end{vmatrix} equals   .



\left| \begin{matrix} { a }^{ 2 }+1 & ab & ac \\ ab & { b }^{ 2 }+1 & bc \\ ca & cb & { c }^{ 2 }+1 \end{matrix} \right| =1+{ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }



Using cofactor elements of 2nd row, find the value of determinant, \Delta =\begin{vmatrix} -3 & 0 & 2\\ 4 & -1 & 3\\ 5 & 0 & -2\end{vmatrix}.



Show that the points are collinear (-5, 1) (5, 5) (10, 7)



Find the value of determinant \begin{vmatrix} 5 & -3 \\ -7 & -4 \end{vmatrix} 



Find the relation between x and y, if the points x,y i.e (1,2) and (7,0) are collinears.



If A =\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}, then  verify that A(adjA)=(adjA)A= I \left| A \right|.



Find the value of a if the points P ( 1,5 ) , Q ( a , 1 ) and R ( 4,11 ) are collinear .



Find the largest value of a third order determinant whose elements are 1 or -1



Find the cofactor matrix of the determinant \begin{vmatrix} 1 & 2 & 3\\ -4 & 3 & 6 \\ 2 & -7 & 9 \end{vmatrix}



If the points (x_{1},\ y_{1}),\ (x_{2},\ y_{2}) and (x_{3},\ y_{3}) are collinear, show that \displaystyle \sum { \left( \frac { { y }_{ 1 }-{ y }_{ 2 } }{ { x }_{ 1 }{ x }_{ 2 } } \right) } =0, i.e
\dfrac {y_{1}-y_{2}}{x_{1}x_{2}}+\dfrac {y_{2}-y_{3}}{x_{2}x_{3}}+\dfrac {y_{3}-y_{1}}{x_{3}x_{1}}=0



If A = \left[ {\begin{array}{*{20}{c}}1 & { - 2} & 3\\4 & 0 & { - 1}\\{ - 3} & 1 & 5\end{array}} \right], then {\left( {adj\,A} \right)} is equal to 



Find the largest value of a third order determinant whose elements are 0 or 1



adj (adj A) = |A|^{n - 2} A



Prove that \begin{vmatrix} { yz-x }^{ 2 } & { zx-y }^{ 2 } & xy-z^{ 2 } \\ { zx-y }^{ 2 } & { xy }-z^{ 2 } & { yz-x }^{ 2 } \\ { xy-z }^{ 2 } & { yz-x }^{ 2 } & { zx-y }^{ 2 } \end{vmatrix} is divisible by (x+y+z) and hence find the quotient



If A=\begin{pmatrix} 2 & 3 & 4 \\ 0 & -2 & 1 \\ 3 & -1 & 2 \end{pmatrix},B=\begin{pmatrix} 2 & 0 & -3 \\ 4 & 0 & -1 \\ 3 & 4 & 5 \end{pmatrix} and C=\begin{pmatrix} 5 & 6 & 7 \\ -1 & 2 & 3 \\ 4 & -5 & 4 \end{pmatrix} Prove that A(BC) and (AB)C.



Using properties of determinant, prove that \begin{vmatrix} b+c & a-b & a \\ c+a & b-c & b \\ a+b & c-a & c \end{vmatrix}=3abc-{ a }^{ 3 }-{ b }^{ 3 }-{ c }^{ 3 } 



Compute the adjoint of the following  matrice: 
\begin{bmatrix} 2 & -1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & -1 \end{bmatrix}
Verify that (adj A)A = |A|I = A(adj A) for the above matrice.



Compute the adjoint of the following  matrice: 
\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}

Verify that (adj A)A = |A|I = A(adj A) for the above matrice.



Compute the adjoint of the following  matrice: 
\begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \end{bmatrix}
Verify that (adj A)A = |A|I = A(adj A) for the above matrice.



Find the adjoint of the following matrice:
\begin{bmatrix} -3 & 5 \\ 2 & 4 \end{bmatrix}  
Verify that (adj A ) A = |A| I = A (adj A) for the above matrice.



Find the adjoint of the following matrice:

\begin{bmatrix} 1 & \tan\,\alpha /2 \\ -\tan\,\alpha /2 & 1 \end{bmatrix}

Verify that (adj A ) A = |A| I = A (adj A) for the above matrice.



Find A (adj A) for the matrix A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 2 & 1 \\ -4 & 5 & 2 \end{bmatrix}.



Find the adjoint of the matrix A= \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix} and hence show that A(adj\: A)= \left | A \right |I_{3}.



Compute the adjoint of the following  matrice: 
\begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 1 & 1 & 3 \end{bmatrix}
Verify that (adj A)A = |A|I = A(adj A) for the above matrice.



 \left| \begin{matrix} 0 & xyz & x-z \\ y-x & 0 & y-z \\ z-x & z-y & 0 \end{matrix} \right|  =_________



Class 12 Commerce Maths Extra Questions