Show that the points $$A(2,3),B(4,0)$$ and $$C(6,-3)$$ are collinear.
Write the value of $$\triangle = \begin{vmatrix}x+y&y+z&z+x\\z&x&y\\-3&-3&-3\end{vmatrix}$$.
The area of a triangle is zero, then the three points are said to be ______ points.
Find the value of the determinant: $$\begin{vmatrix}5 & -2\\ -3 & 1\end{vmatrix}$$
If for any $$2 \times 2$$ square matrix A, $$A (adj A) = \begin{bmatrix} 8& 0\\ 0 & 8\end{bmatrix}$$, them write the value of det[A].
Find a value of $$x$$ if $$\begin{vmatrix}x& 2 \\18&x\end{vmatrix} = \begin{vmatrix}6& 2 \\18&6\end{vmatrix}$$
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ { a }^{ 2 } & { b }^{ 3 } & { c }^{ 3 } \end{vmatrix}$$ Prove that : = $$(a - b) (b - c) (c - a) (a + b + c).$$
Find the values of $$x$$ for which $$\begin{vmatrix}3&x\\x&1\end{vmatrix}=\begin{vmatrix}3&2\\4&1\end{vmatrix}$$.
Evaluate the following deteminants : i)$$\begin{vmatrix} x& -7\\ x &5x+1 \end{vmatrix}$$
If $$3^{n}$$ is a factor of the determinant $$\left| \begin{matrix} 1 & 1 & 1 \\ _{ }^{ n }{ { C }_{ 1 } } & _{ }^{ n+3 }{ { C }_{ 1 } } & ^{ n+6 }{ { C }_{ 2 } } \\ ^{ n }{ { C }_{ 2 } } & ^{ n+3 }{ { C }_{ 2 } } & ^{ n+6 }{ { C }_{ 2 } } \end{matrix} \right| ,$$ then the maximum value of $$n$$ is $$____$$.
Find the determinant in following case: $$A=\left [ \begin{array}{c}5\hspace{0.5cm}{20}\\0\hspace{0.5cm}{2}\end{array} \right ]$$
Find if the points (0, 8/3), (1/3) , and (82, 30) are collinear.
Prove the following : $$\left| \begin{matrix} y+z & z & y \\ z & z+x & x \\ y & x & x+y \end{matrix} \right| =4xyz$$
Prove that the points (a , b), (c , d) and (a - c, b - d) are collinear if ad = bc. Also show that the straight line passing through these points passes through origin.
Show that $$\begin{vmatrix} \sin 10^{\circ}& -\cos 10^{\circ}\\ \sin 80^{\circ}&\cos 80^{\circ} \end{vmatrix}=1$$
Find the value of $$K$$, for which the given points are collinear: $$\begin{matrix} A \\ \left( 7,-2 \right) \end{matrix}\begin{matrix} B \\ \left( 5,1 \right) \end{matrix}\begin{matrix} C \\ \left( 3,K \right) \end{matrix}$$
In each of the following find the value of $$k$$, for which the points are collinear.. (ii) $$(8, 1), (k, -4), (2, -5)$$
Let $$A=\begin{bmatrix}5&8\\8&13\end{bmatrix}$$ then show that $$A$$ satisfies the equation $$x^2-18x+1=0$$.
In each of the following find the value of $$k$$, for which the points are collinear.(i) $$(7, -2), (5, 1), (3, k)$$
Find the value of $$x$$ if the points $$(x,5),(2,3)$$ and $$(-2,-11)$$ are collinear.
If the minor of three-one element (i.e $$M_{31}$$) in the determinant $$\left| \begin{matrix} 0 & 1 & \sec { \alpha } \\ \tan { \alpha } & -\sec { \alpha } & \tan { \alpha } \\ 1 & 0 & 1 \end{matrix} \right| $$ is $$1$$ then find the value of $$\alpha$$. $$(0 \le \alpha \le \pi)$$
Show that $$\triangle$$ABC is an isosceles triangle, if the determinant
$$\begin{vmatrix} 1 & 1 & 1 \\ 1+\cos A & 1+\cos B & 1+\cos C \\ \cos^2A +\cos A & \cos^2B+\cos B & \cos^2C+\cos C\end{vmatrix}=0$$
Using properties of determinants, prove the following
In the diagram on a lunar eilpse, if the positions od sun,Earth and moon are shown by $$(-4,6), (k,-2) $$and$$ (5,-6)$$ respectively, then find the value of k.
If the points $$(3,-2), (x,2)$$ and $$(8,8)$$ are collinear find $$10x$$ using determinant.
If the value of determinant $$\left| \begin{matrix} m & 6 \\ -5 & 4 \end{matrix} \right| $$ is $$58$$, then find the value of $$m$$.
If $$A(x_{1},y_{1}),B(x_{2},y_{2}),C(x_{3},y_{3})$$ are vertices of an equilateral triangle whose each side is equal to a, then prove that $$\begin{vmatrix} x_{1} & y_{1} & 2 \\ x_{2} & y_{2} & 2 \\ x_{3} & y_{3} & 2 \end{vmatrix}=3a^4$$.
Find the value of $$k$$ if det $$\begin{vmatrix} K+3 & 1 & 2 \\ 3 & -2 & 1 \\ -4 & -3 & 3 \end{vmatrix}=0$$
Using the method of slope, show that the following points are collinear :
$$( i ) A \left( 4,8\right ) , B \left( 5,12 \right) , C \left( 9,28 \right)$$
$$(ii) A \left( 16 , - 18 \right) , B \left( 3 , - 6 \right) , C \left( - 10,6\right )$$
Show that the points $$P(-2,3,5), Q(1,2,3)$$ and $$R(7,0,-1)$$ are collinear.
Show that the points $$P(-2, 3, 5), Q(1, 2, 3)$$ and $$R(7, 0, -1)$$ are collinear.
Are the following pairs of sets equal? Give reasons. $$A=\{x : x$$ is a letter of the word "WOLF"$$\}$$, $$B=\{x : x$$ is a letter of the word "FOLLOW"$$\}$$.
The value of the determinant $$\begin{vmatrix} \cos30^{\circ} & \sin60^{\circ} \\ \sin30^{\circ} & \cos60^{\circ} \end{vmatrix}$$ is
If $$A,B$$ and $$C$$ are the angles of non-right angles triangle $$ABC$$, then find the value of $$\begin{vmatrix} \tan { A } & 1 & 1 \\ 1 & \tan { B } & 1 \\ 1 & 1 & \tan { C } \end{vmatrix}$$
If the value of $$\begin{vmatrix} 1 & 2 & 4 \\ -1 & 3 & 0 \\ 4 & 1 & 0 \end{vmatrix}$$ is $$k$$, then find $$\dfrac{-k}{13}$$.
The absolute value of the determinant $$\begin{vmatrix} -1 & 2 & 1 \\ 3+2\sqrt { 2 } & 2+2\sqrt { 2 } & 1 \\ 3-2\sqrt { 2 } & 2-2\sqrt { 2 } & 1 \end{vmatrix}$$ is $$\displaystyle\frac { k }{ \sqrt { 2 } } $$ then $$k=$$
If $$\begin{vmatrix} x & x+y & x+y+z \\ 2x & 3x+2y & 4x+3y+2z \\ 3x & 6x=3y & 10x+6y+3z \end{vmatrix}=64$$, then the real value of $$x$$ is .........
The value of $$\begin{vmatrix} 2{ x }_{ 1 }{ y }_{ 1 } & { x }_{ 1 }{ y }_{ 2 }+{ x }_{ 2 }{ y }_{ 1 } & { x }_{ 1 }{ y }_{ 3 }+{ x }_{ 3 }{ y }_{ 1 } \\ { x }_{ 1 }{ y }_{ 2 }+{ x }_{ 2 }{ y }_{ 1 } & 2{ x }_{ 2 }{ y }_{ 2 } & { x }_{ 2 }{ y }_{ 3 }+{ x }_{ 3 }{ y }_{ 2 } \\ { x }_{ 1 }{ y }_{ 3 }+{ x }_{ 3 }{ y }_{ 1 } & { x }_{ 2 }{ y }_{ 3 }+{ x }_{ 3 }{ y }_{ 2 } & 2{ x }_{ 3 }{ y }_{ 3 } \end{vmatrix}$$ is ........
The constant $$k$$ is such that the following system of equations posses a non-trivial(i.e., not all zero) solution over the set of rationals $$Q$$ $$ x+ky+3z=0,\quad 3x+ky-2z=0\quad 2x+3y-4z=0$$ Then $$\displaystyle \frac{2k}{11}$$ is equal to
If $$A + B + C = \pi$$, then $$\begin{vmatrix} sin (A + B + C)& sin B & cos C\\ - sin B & 0 & tan A\\ cos (A + B) &- tan A &0 \end{vmatrix} = $$ .............
If $$(1,2)$$, $$\displaystyle \left(\frac{1}{2} , 3 \right)$$ and $$(0, k)$$ are collinear points, find the value of $$k$$.
State whether True or False
(-1, 8), (9, -2), (3,4) are collinear points.
Let $$f\left ( x \right )=\begin{vmatrix} 2\cot x & -1 & 0\\ 1 & \cot x & -1\\ 0 & 1 & 2\cot x \end{vmatrix}$$ then
$$A_{3 \times 3}$$ is a matrix such that $$|A|=a, \:B = (adj \:A)$$ such that $$|B|= b$$. Find the value of $$\dfrac{(ab^2 + a^2b + 1)S}{25}$$ where $$\displaystyle \frac{1}{2}S=\frac{a}{b}+\frac{a^2}{b^3}+\frac{a^3}{b^5} + \:......... \:up \:to \:\infty $$, and $$a = 3$$.
Find the value of $$x$$ for which the points $$(x, -1), (2,1)$$ and $$(4, 5)$$ are collinear.
Find the values of $$x$$, if (i)$$\begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix}=\begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix}$$ (ii)$$\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix}=\begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}$$
(ii)$$\begin{vmatrix} y+k & y & y \\ y & y+k & y \\ y & y & y+k \end{vmatrix}={ k }^{ 2 }(3y+k)$$
Find the value of determinant. (i) $$\begin{vmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{vmatrix}$$ (ii) $$\begin{vmatrix} { x }^{ 2 }-x+1 & x-1 \\ x+1 & x+1 \end{vmatrix}$$
(i) Find equation of line joining $$(1, 2)$$ and $$(3, 6)$$ using determinants (ii) Find equation of line joining $$(3, 1)$$ and $$(9, 3)$$ using determinants.
Write minors and cofactors of the elements of following determinants (i)$$\begin{vmatrix} 2 & -4 \\ 0 & 3 \end{vmatrix}$$ (ii)$$\begin{vmatrix} a & c \\ b & d \end{vmatrix}$$
Find the Minors and Cofactors of the elements of the following determinants:
If $$A_{ij}$$ is the cofactor of the element $$a_{ij}$$ of the determinant $$\begin{bmatrix}2&-3&5\\6&0&4\\1&5&-7 \end{bmatrix}$$ then write the value of $$a_{32}.A_{32}.$$
If $$\triangle = \begin{vmatrix} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{vmatrix}$$, white the cofactor of the element $$a_{32}$$.
If $$\Delta = \begin{vmatrix} 5& 3 & 8\\ 2 & 0 & 1\\ 1 & 2 & 3\end{vmatrix}$$, write the cofactor of the element $$a_{32}$$
If $$\Delta = \begin{vmatrix}1 & 2 & 3\\ 2 & 0 & 1\\ 5 & 3 & 8\end{vmatrix}$$, write the minor of the elements $$a_{22}$$
If $$\Delta = \begin{vmatrix} 5 & 3 & 8\\ 2 & 0 &1 \\ 1 & 2 & 3\end{vmatrix}$$, write the minor of the element $$a_{23}.$$
Find the relation between $$x$$ and $$y$$ if the points $$A(x, y), B(-5, 7)$$ and $$C(-4, 5)$$ are collinear.
For how many real values of $$'m'$$ the points $$A (m + 1, 1), B (2m + 1, 3)$$ and $$C (2m + 2, 2m)$$ are collinear.
Show that the adjoint of $$A = \begin{bmatrix}-4 & -3 & -3\\ 1 & 0 & 1\\ 4 & 4 & 3\end{bmatrix}$$ is $$A$$ itself
Find the value of $$ k$$ if $$A (4, 11), B (2, 5), C (6, k) $$ are collinear points.
Find the value of $$a$$ for which the following points $$A (a, 3), B(2, 1)$$ and $$C(5, a)$$ are collinear. Hence find the equation of the line.
A, B, and C are three collinear points. The coordinates of A and B are (3, 4) and (7, 7) respectively and AC =10 units. Find sum of co-ordinates of C.
Using determinants show that points $$A (a, b + c), B(b, c + a)$$ and $$C (c, a + b)$$ are collinear.
find the value of $$k$$ for which the points $$(k,-1)(2,1)$$ and $$(4,5)$$ are collinear.
Show that the points $$A(-3,3)$$, $$B(0,0)$$, $$C(3,-3)$$ are collinear.
If $$A=\begin{bmatrix}1&2\\3&4\end{bmatrix},$$ find $$|2A|$$.
Find the equation of line joining (1, 2) and (3, 6) using determinants.
Calculate the values of the determinants: $$\begin{vmatrix}a & h & g\\ h& b & f\\ g & f & c\end{vmatrix}$$.
For what values of $$m$$ will the expression $${y}^{2}+2xy+2x+my-3$$ be capable of resolution into two rational factors?
Calculate the values of the determinants: $$\begin{vmatrix}1 & 1 & 1\\ 1& 1 + x & 1\\ 1 & 1 & 1 + y\end{vmatrix}$$.
Calculate the values of the determinants: $$\begin{vmatrix}1 & z & -y\\ -z& 1 & x\\ y & -x & 1\end{vmatrix}$$.
Solve for $$\lambda$$ if $$\begin{vmatrix} a^2+\lambda & ab & ac\\ ab & b^2+\lambda & bc\\ ac & bc & c^2+\lambda\end{vmatrix}=0$$.
Calculate the values of the determinants: $$\begin{vmatrix}b + c & a & a\\ b& c + a & b\\ c & c & a + b\end{vmatrix}$$.
Find the area of $$\triangle PQR$$ whose vertices are $$P(2,1),Q(3,4)$$ and $$R(5,2)$$.
Find the equation of the line joining $$A(1,3)$$ and $$B(0,0)$$ using determine and find $$k$$ of $$D(k,0)$$ is a point such that area of $$\triangle$$ $$ABD$$ is $$3$$ sq. units.
If points $$\left( a,0 \right) ,\left( 0,b \right) $$ and $$\left( x,y \right) $$ are collinear, prove that $$\cfrac { x }{ a } +\cfrac { y }{ b } =1$$.
If the points $$A(-2, 1), B(a, b)$$ and $$C(4, -1)$$ are collinear and $$a-b=1$$, find the values of $$a$$ and $$b$$.
Find the ratio in which the line segment joining the points $$P(x, 2)$$ divides the line segment joining the points $$A (12, 5)$$ and $$B(4,-3)$$. Also find the value of $$x$$.
If three points $$\left( { x }_{ 1 },{ y }_{ 1 } \right) ,\left( { x }_{ 2 },{ y }_{ 2 } \right) ,\left( { x }_{ 3 },{ y }_{ 3 } \right) $$ lie on the same line, prove that $$\cfrac { { y }_{ 2 }-{ y }_{ 3 } }{ { x }_{ 2 }{ x }_{ 3 } } +\cfrac { { y }_{ 3 }-{ y }_{ 1 } }{ { x }_{ 3 }{ x }_{ 1 } } +\cfrac { { y }_{ 1 }-{ y }_{ 2 } }{ { x }_{ 1 }{ x }_{ 2 } } =0$$
Show that the following set of points are collinear. $$(2,5), (4,6)$$ and $$(8,8)$$
If $$a\ne b\ne c$$, prove that the points $$\left( a,{ a }^{ 2 } \right) ,\left( b,{ b }^{ 2 } \right) ,\left( c,{ c }^{ 2 } \right) $$ can never be collinear.
Find the value of $$k$$ if points $$(k,3),(6,-2)$$ and $$(-3,4)$$ are collinear.
For what value of $$a$$ the point $$(a,1),(1,-1)$$ and $$(11,4)$$ are collinear?
Prove that the points $$\left( ab, \right) ,\left( { a }_{ 1 },{ b }_{ 1 } \right) $$ and $$\left( a-{ a }_{ 1 },b-{ b }_{ 2 } \right) $$ are collinear if $$a{ b }_{ 1 }={ a }_{ 1 }b$$
Prove that the points $$(a,0),(0,b)$$ and $$(1,1)$$ are collinear if $$ \left ( \cfrac { 1 }{ a } +\cfrac { 1 }{ b } =1 \right )$$
Prove that the points $$(2,3), (-4,-6)$$ and $$1,3/2)$$ do not form a triangle.
Find the value of $$\lambda$$ if the following equations are consistent $$x + y - 3 = 0$$ $$(1 + \lambda) x + (2 + \lambda) y - 8 = 0$$ $$ x - (1 + \lambda) y + (2 + \lambda) = 0$$
Find cofactors of the elements of the matrix $$A = \begin{bmatrix} -1 & 2 \\ -3 & 4 \end{bmatrix}$$
Find the value of $$k$$, if the points $$A(8,1),B(3,-4)$$ and $$C(2,k)$$ are collinear.
If the points $$A(-1,-4),B(b,c)$$ and $$C(5,-1)$$ are collinear and $$2b+c=4$$, find the values of $$b$$ and $$c$$.
Find the value(s) of $$k$$ for which the points $$(3k-1,k-2),(k,k-7)$$ and $$(k-1,-k-2)$$ are collinear.
Find the value of $$k$$, if the points $$A(7,-2),B(5,1)$$ and $$C(3,2k)$$ are collinear.
Prove the following : $$\left| \begin{matrix} ax & by & cz \\ { x }^{ 2 } & { y }^{ 2 } & { z }^{ 2 } \\ 1 & 1 & 1 \end{matrix} \right| =\left| \begin{matrix} a & b & c \\ x & y & z \\ yz & zx & xy \end{matrix} \right| $$
Without expanding prove that the determinant $$ \left | \begin{array}{111} sinA & CosA & sin(A+\theta) \\ sin B & cos B & sin(B+\theta) \\ sin C & CosC & sin (c+\theta) \\ \end {array} \right | $$ =0
A, B , C are the points (a, p), (b,q) and (c,r) respectively such that a, b, c are in A. P. and p, q ,r in G.P. If the points are collinear then prove that p = q = r
If A = diag (a, b, c) = $$\begin{bmatrix} a & 0 & 0 \\[0.3em] 0 & b & 0 \\[0.3em] 0 & 0 & c \end{bmatrix}$$ such that $$abc \neq 0$$ then $$A^{-1} = diag (\frac{1}{a}, \frac{1}{b}, \frac{1}{c}) = \begin{bmatrix} \frac{1}{a} & 0 & 0 \\[0.3em] 0 & \frac{1}{b} & 0 \\[0.3em] 0 & 0 & \frac{1}{c} \end{bmatrix}$$
If where r = 1,2,3 be the co-ordinates of the points A, B, C respectively, then prove the following: The equation of internal bisector of angel A is $$b \, \begin{vmatrix} x & y & 1\\ x_1 & y_1 & 1\\ x_2 & y_2 & 1 \end{vmatrix} \, + \, c \, \begin{vmatrix} x & y & 1\\ x_1 & y_1 & 1\\ x_3 & y_3 & 1 \end{vmatrix} \, = \, 0$$ where b = AC and c = AB.
If $$A$$ is a matrix of order $$3 \times 3$$ then find $$\left| adj\ A \right|$$ where $$\left| A \right| =2$$
Find $$a$$ if $$\begin{vmatrix} i & -2i & -1\\ 3i & i^{3} & -2\\ 1& -3 & -i\end{vmatrix}$$ = $$ai$$, where $$i =\sqrt{-1}$$
Find the non-zero roots of the equation, $$\Delta = \begin{vmatrix} a & b & ax + b \\ b & c & bx + c \\ ax + b & bx + c & c\end{vmatrix} = 0$$
Solve: $$\begin{vmatrix} 3x+4 & x+2 & 2x+3 \\ 4x+5 & 2x+3 & 3x+4 \\ 10x+17 & 3x+5 & 5x+8 \end{vmatrix}=0$$. The value of the determinant at $$x=-1$$is:
By using properties of determinants prove that $$\begin{vmatrix} (y+z)^{2}&xy& zx\\ xy&(x+z)^{2} & yz\\ xz & yz & (x+y)^{2}\end{vmatrix}$$ is divisible by $$(x+ y + z)^{n}$$. Find $$n$$ .
Show that $$\begin{vmatrix} b+c & c+a & a+b \\ a+b & b+c & c+a \\ a & b & c \end{vmatrix} = a^3 + b^3 +c^3 - 3abc$$
If $$a \ne p, b \ne q$$ and $$c \neq r$$ $$\begin{vmatrix} p & b & c \\ a & q & c \\ a & b & r \end{vmatrix}= 0$$ then, find the value of :- $$\dfrac{p}{p-a} + \dfrac{q}{q-b} + \dfrac{r}{r-c} = ?$$
Find the value of following determinant. $$\begin{vmatrix} -1 & 7\\ 2 & 4\end{vmatrix}$$.
Find the value of the following determinant. $$\begin{vmatrix} 2i & -3i \\ { i }^{ 3 } & -2{ i }^{ 3 } \end{vmatrix}$$, where $$i=\sqrt {-1}$$.
If $$f\left( x \right) = a + bx + c{x^2}$$ and $$\alpha ,\beta ,\gamma $$ are the roots of the equation $${x^3} = 1$$, then $$\left| {\begin{array}{*{20}{c}}a & b & c\\b & c & a\\c & a & b\end{array}} \right|$$ is equal to
If $$A$$ is a skew-symmetric matrix of order $$3$$ then find $$\left| A \right|$$
Evaluate $$\left| \begin{matrix} 1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b \end{matrix} \right|$$ without direct expansion.
Find the value of the determinant: $$\begin{vmatrix} \sqrt{2} & 2\sqrt{3}\\ 3\sqrt{2} & \sqrt{3}\end{vmatrix}$$.
If $$\vec { a } =\tilde { i } +\tilde { j } +\tilde { k } ,\vec { b } =\tilde { i } -\tilde { j } +\tilde { k } ,\vec { c } =\tilde { i } +2\tilde { j } -\tilde { k } $$, then the value of $$\left| \begin{matrix} \overrightarrow { a } .\overrightarrow { a } & \overrightarrow { a } .\overrightarrow { b } & \overrightarrow { a } .\overrightarrow { c } \\ \overrightarrow { b } .\overrightarrow { a } & \overrightarrow { b } .\overrightarrow { b } & \overrightarrow { b } .\overrightarrow { c } \\ \overrightarrow { c } .\overrightarrow { a } & \overrightarrow { c } .\overrightarrow { b } & \overrightarrow { c } .\overrightarrow { c } \end{matrix} \right| =$$
If $$\Delta=\left| \begin{matrix} { a }_{ 11 } & { a }_{ 12 } & { a }_{ 13 } \\ { a }_{ 21 } & { a }_{ 22 } & { a }_{ 23 } \\ { a }_{ 31 } & { a }_{ 32 } & { a }_{ 33 } \end{matrix} \right| $$ and $$A_{IJ}$$ is cofactors of $$a_{ij}$$ then the value of $$\Delta$$ is given by
$$\left| \begin{matrix} 1 & w & { w }^{ 2 } \\ w & { w }^{ 2 } & 1 \\ { w }^{ 2 } & w & 1 \end{matrix} \right| $$ Where w is a complex cube root of unity.
Find the value of $$k$$ if points $$\left (k,3\right),\left (6,-2\right)\ and \left (-3,4\right)$$ are collinear.
Find the value of $$\begin{vmatrix} 53 & 106 & 159 \\ 52 & 65 & 91 \\ 102 & 153 & 221 \end{vmatrix}$$
Find the value of K if the point A $$(2,3)$$ ,B$$ (4,K) $$and C$$( 6,-3)$$ are collinear?
Find the values of the following determinants $$\begin{vmatrix} 1+3i & i-2 \\ { -i-2 } & 1-3{ i } \end{vmatrix}$$ where $$i=\sqrt{-1}$$.
If $$\left| \begin{matrix} a & b & a\alpha +b \\ b & c & b\alpha +c \\ a\alpha +b & b\alpha +c & 0 \end{matrix} \right| =0$$. Prove that $$a,b,c$$ are in G.P. or $$\alpha$$ is a root of $$ax^{2}+2bx+c=0$$
Without expanding , find the value of $$\begin{vmatrix} a+b & 2a+b & 3a+b \\ 2a+b & 3a+b & 4a+b \\ 4a+b & 5a+b & 6a+b \end{vmatrix}$$
$$\left| \begin{array} { c c c } { a ^ { 2 } } & { b ^ { 2 } } & { c ^ { 2 } } \\ { a } & { b } & { c } \\ { 1 } & { 1 } & { 1 } \end{array} \right| = - ( a - b ) ( b - c ) ( c - a )$$
If $$\Delta=\begin{vmatrix} 1 & \sin{\theta} & 1\\ -\sin{\theta} & 1 & \sin{\theta} \\ -1 & -\sin{\theta} & 1 \end{vmatrix}$$ then prove that $$2\le \Delta\le 4$$
Prove that $$\begin{vmatrix} bc & a & { a }^{ 2 } \\ ca & b & { b }^{ 2 } \\ ab & c & { c }^{ 2 } \end{vmatrix}=\begin{vmatrix} 1 & { a }^{ 2 } & { a }^{ 3 } \\ 1 & { b }^{ 2 } & { b }^{ 3 } \\ 1 & { c }^{ 2 } & { c }^{ 3 } \end{vmatrix}$$
Find the value of k so that point colinear(7,-2)(5,1)(3,k).
If for any 2 x 2 square matrix A, A(adj A) = $$\left[ \begin{array}{l}8\,\,0\\0\,\,8\end{array} \right]$$,then write the value of $$\left| A \right|$$ .
Find the value of the determinant $$\begin{vmatrix} -1 & 2 & 1\\ 3+2\sqrt{2} & 2+2\sqrt{2} & 1 \\ 3-2\sqrt{2} & 2-2\sqrt{2} & 1 \end{vmatrix}$$
Show that $$\begin{vmatrix} a & \quad a+b & \quad a+b+c\quad \\ 2a & 3a+2b & 4a+3b+2c \\ 3a\quad & 6a+3b & 10a+6b+3c \end{vmatrix}={ a }^{ 3 }$$
Prove that $$\begin{vmatrix} {a}^{2}+1 & ab & ac\\ ab & {b}^{2}+1 & bc \\ ac & bc & {c}^{2}+1 \end{vmatrix}=1+{a}^{2}+{b}^{2}+{c}^{2}$$
Given that matrix $$A=\left[ \begin{matrix} x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & z \end{matrix} \right]$$. If $$xyz=2013$$ and $$8x+4y+3z=2012$$ then A(adj A) is equal to
If $$f(x)=\left| \begin{matrix} 2x & { x }^{ 2 } & { x }^{ 3 } \\ { x }^{ 2 }+2x & 1 & 3x+1 \\ 2x & 1-3{ x }^{ 2 } & 5x \end{matrix} \right| $$, then find $$f'(1)$$
Show that the points $$A(1,2,7),\ B(2,6,3)$$ and $$C(3,10,-1)$$ are collinear.
$$(k,k ), (2,3)$$ and $$(4,-1)$$ are collimear. So find the value of $$k$$.
Solve the matrix $$\left| {\begin{array}{*{20}{c}}{\frac{1}{b}{b^2}} & {ca}\\{\frac{1}{c}{c^2}} & {ab}\end{array}} \right|$$
Prove that point $$(1,1),(-2,7)$$ and $$(3,-3)$$ are collinear.
If the points ( a,0),(0,b)and (3,2) are col linear, prove that $$\dfrac { 2 }{ b } +\dfrac { 3 }{ a } =1$$
Prove that.$$\left| \begin{matrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{matrix} \right| (a-b)(b-c)(c-a)$$
Prove that : $$\begin{vmatrix} 0 & a & -b \\ -a & 0 & -c \\ b & c & 0 \end{vmatrix}=0$$.
Find the value of the following determinants. $$\begin{vmatrix} \dfrac { 7 }{ 3 } & \dfrac { 5 }{ 3 } \\ \dfrac { 3 }{ 2 } & \dfrac { 1 }{ 2 } \end{vmatrix}$$
Given $$\begin{bmatrix} 2 & 1 \\ -3 & 4 \end{bmatrix} X=\begin{bmatrix} 7 \\ 6 \end{bmatrix}$$. Write : the order of the matrix $$X$$ the matrix $$X$$.
Find the value of $$\lambda$$ for which the points $$(6,-1,2),(8,-7,\lambda)$$ and $$(5,2,4)$$ are collinear.
Find the value of the following determinants. $$\begin{vmatrix} -1 & 7 \\ 2 & 4 \end{vmatrix}$$
Find the value of the following determinants. $$\begin{vmatrix} 5 & 3 \\ -7 & 0 \end{vmatrix}$$
If $$A=[aij]$$ is a matrix of order 2x2 such that $$|A|=15$$ and cij represents the co factor of aij then find $${ a }_{ 21 }{ c }_{ 21 }+{ a }_{ 22 }{ c }_{ 22 }$$.
A square matrix $$\mathrm { B }$$ of order $$3 ,$$ has $$| B | = 7 ,$$ find $$| B$$ adjB $$|$$
A. square matrix $$A$$ of order $$3 ,$$ has $$| A | = 5 ,$$ find $$| A$$ adja|
Find equation of line joining (1,2) and (3,6) using determinants.
Prove that $$\begin {vmatrix} a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2 \end {vmatrix}$$ = 4$$a^2b^2c^2$$
Prove that $$\begin{vmatrix} a & a & a \\ a & b & b \\ a & b & c \end{vmatrix}=a(b-c)(a-b)$$, Hence find the value of $$\begin{vmatrix} 3 & 3 & 3 \\ 3 & 5 & 5 \\ 3 & 5 & 7 \end{vmatrix}.$$
A point $$P\left(2,-1\right)$$ is equidistant from points $$\left(a,7\right)$$ and $$\left(-3,a\right)$$. Find $$a$$.
Prove that : $$\begin {vmatrix} a & c & a + c \\ a + b & b & a \\ b & b + c & c \end {vmatrix}$$ = $$4abc$$
Prove that: $$\begin{vmatrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2b \end{vmatrix}=2{ \left( a+b+c \right) }^{ 3 }$$
Fill in the blanks with correct number $$\left| \begin{matrix} 3 \\ 4 \end{matrix}\begin{matrix} 2 \\ 5 \end{matrix} \right| =3\times \Box -\Box \times 4=\Box -8=\Box $$
Using properties of determinant solve :- $$\left| \begin{matrix} 1 & a & { a }^{ 2 }-bc \\ 1 & b & { b }^{ 2 }-ac \\ 1 & c & { c }^{ 2 }-ab \end{matrix} \right| =$$
Find the adjoint of the following matrice: $$ \begin{bmatrix} \cos\,\alpha & \sin\,\alpha \\ \sin\,\alpha & \cos\,\alpha \end{bmatrix} $$ Verify that $$ (adj A ) A = |A| I = A (adj A) $$ for the above matrice.
If $$ A = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$,show that adj $$ A = 3A^{T}. $$
$$ \begin{vmatrix} x+\lambda & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda \end{vmatrix}$$
Evaluate the following :
$$ \begin{vmatrix} x+\lambda & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda \end{vmatrix}$$
Evaluate the following determinant :
$$ \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix}$$
If a,b,c are real numbers such that $$\begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix}= 0$$, then show that either $$a+b+c=0$$ or, $$a=b=c$$.
Evaluate the following :
$$ \begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix}$$
Find the adjoint of the given matrix and verify in each case that $$A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I$$. $$\begin{bmatrix} 3& -1 & 1\\ -15 & 6 & -5 \\ 5 & -2 & 2\end{bmatrix}$$
If $$a, b, c$$ are $$p^{th}, q^{th}$$ and $$r^{th}$$ terms respectively of a G.P, then prove that $$\begin{vmatrix}\log a& p & 1 \\ \log b& q & 1\\ \log c &r & 1 \end{vmatrix} =0$$
Find the cofactors of all the elements of $$\begin{bmatrix}1&-2 \\ 4 & 3 \end{bmatrix}$$
Find the adjoint of the given matrix and verify in each case that $$A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I$$. $$\begin{bmatrix} 0& 1 & 2\\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}$$
Find the adjoint of the given matrix and verify in each case that $$A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I$$. $$\begin{bmatrix} 2& 3\\ 5 & 9\end{bmatrix}$$
Find the adjoint of the given matrix and verify in each case that $$A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I$$. $$\begin{bmatrix} \cos \alpha& \sin \alpha\\ \sin \alpha & \cos \alpha\end{bmatrix}$$
Find the adjoint of the given matrix and verify in each case that $$A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I$$. $$\begin{bmatrix} 9& 7 & 3\\ 5 & -1 & 4 \\ 6 & 8 & 2\end{bmatrix}$$
If $$A$$ and $$B$$ are square matrices each of order $$3$$ and $$|A|= 5, \, |B| = 3$$, then the value of $$|3AB|$$ is ______
Find the adjoint of the given matrix and verify in each case that $$A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I$$. $$\begin{bmatrix} 1& -1 & 2\\ 3 & 1 & -2 \\ 1 & 0 & 3\end{bmatrix}$$
Find the adjoint of the given matrix and verify in each case that $$A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I$$. $$\begin{bmatrix} 3& -5\\ -1 & 2\end{bmatrix}$$
Let $$A$$ be a square matrix of order $$3$$, write the value of $$|2A|$$, where $$|A|=4$$.
If $$A=\begin{vmatrix} 3 & 4 \\ 1 & 2 \end{vmatrix}$$, find the value of $$3|A|$$.
Find the adjoint of the given matrix and verify in each case that $$A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I$$. $$\begin{bmatrix} 4& 5 & 3\\ 1 & 0 & 6 \\ 2 & 7 & 9\end{bmatrix}$$
If $$A$$ is a $$2\times 2$$ matrix such that $$|A|\neq 0$$ and $$|A|=5$$, write the value of $$|4A|$$.
If $$A$$ is a $$3\times 3$$ matrix such that $$|A|\neq 0$$ and $$|3A|=k|A|$$, then write the value of $$k$$.
Evaluate $$\begin{vmatrix} \sin { { 60 }^{ o } } & \cos { { 60 }^{ o } } \\ -\sin { { 30 }^{ o } } & \cos { { 30 }^{ o } } \end{vmatrix}$$.
Find the adjoint of the given matrix and verify in each case that $$A \cdot (adj A) = (adj A)\cdot A = |A| \cdot I$$. $$\begin{bmatrix} \cos \alpha& -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}$$
Prove that the three straight lines whose equations are $$15x - 18y + 1 = 0, 12x + 10y -3 = 0$$, and $$6x + 66y - 11 = 0$$ all meet in a point. Show also that the third line bisects the angle between the other two.
Prove that the following sets of three lines meet in a point. $$2x - 3y = 7, 3x - 4y = 13$$, and $$8x - 11y = 33$$.
Given $$A=\begin{vmatrix} a & b & 2c \\ d & e & 2f \\ l & m & 2n \end{vmatrix};B=\begin{vmatrix} f & 2d & e \\ 2n & 4l & 2m \\ c & 2a & b \end{vmatrix}$$, then the value of $$\dfrac{B}{A}$$ is ________.
Find the minor of the element of second row and third column ( $$a 23$$ ) in the following determinant: $$\left|\begin{array}{ccc}2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7\end{array}\right|$$
If $$A$$ is an invertible metrix of order $$3$$ and $$|A| = 5$$, then find $$|adj \ A|$$.
If $$\Delta=\left|\begin{array}{lll}5 & 3 & 8 \\2 & 0 & 1 \\1 & 2 & 3\end{array}\right| \text { , then write the minor of the element } a_{23}$$
What positive value of $$x$$ makes the following pair of determinants equal? $$\left|\begin{array}{cc}2 x & 3 \\ 5 & x\end{array}\right|,\left|\begin{array}{cc}16 & 3 \\ 5 & 2\end{array}\right|$$
Find the cofactor of $$a_{12}$$ in the following: $$\left|\begin{array}{ccc}1 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7\end{array}\right|$$
If $$A$$ is idempotent matrix satisfying $$ ( I - 0.4 A)^{-1} = I - \alpha A $$ where $$I$$ is the unit matrix of the same order as that of $$A$$ then find the value of $$ | 9 \alpha | $$.
Find the equation of line joining (1,2) and (3,6) using determinants.
Find the value of $$\left|\begin{array}{cccc}\sin A & -\sin B \\\cos A & \cos B\end{array}\right|$$ $$\text { where } A=53^{\circ}, B=37^{\circ}$$
If $$A = \begin{bmatrix} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha \end{bmatrix}$$, find the value of $$|adj \ A|$$.
If $$ \Delta= \left| \begin{matrix} 0 & b-a & c-a \\ a-b & 0 & c-b \\ a-c & b-c & 0 \end{matrix} \right| $$ then show that $$ \Delta $$ is equal to zero.
Write the adjoint of the following matrix: $$\Big[\begin{matrix} 2 & -1 \\ 4 & 3 \end{matrix}\Big]$$
If $$\left|\begin{array}{ll}x & x \\1 & x\end{array}\right|=\left|\begin{array}{ll}3 & 4 \\1 & 2\end{array}\right|$$ , then write the positive value of $$x$$
Find the equation of the line joining $$A(1,3)$$ and $$B(0,0)$$ using determinants and find $$k$$ if $$D(k, 0)$$ is a point such that the area of $$\Delta A B D$$ is 3 sq units.
Show that if the determinant $$ \Delta = \left| \begin{matrix} 3 & -2 & sin\quad 3\quad \theta \\ -7 & 8& cos \quad 2 \theta \\ -11 & 14 & 2 \end{matrix} \right| = 0 $$ then $$ Sin \theta = 0 $$ or $$ \frac {1}{2} $$
Write the value of $$\left|\begin{array}{cc}\sin 20^{\circ} & -\cos 20^{\circ} \\ \sin 70^{\circ} & \cos 70^{\circ}\end{array}\right|$$
Evaluate : $$ \left| \begin{matrix} y+z & z & y \\ z & z+x & x \\ y & x & x+y \end{matrix} \right| =\quad 4xyz $$
If $$ A$$ is a matrix or order $$ 3 \times 3 $$ then number of minors in determinant of $$ A $$ are__________
Fill in the blank.
If $$ A $$ is matrix of order $$ 3 \times 3 $$ then $$ |3A| $$ is equal to_________
If $$ x+y+z = 0 $$ prove that $$ \left| \begin{matrix} xa & yb & zc \\ yc & za & xb \\ zb & xc & ya \end{matrix} \right| \quad =\quad xyz\quad \left| \begin{matrix} a & b & c \\ c & a & b \\ b & c & a \end{matrix} \right| $$
If $$ A +B +C = 0 $$ then prove that $$ \left| \begin{matrix} 1 & cos\quad C & cos\quad B \\ cos\quad C & 1 & cos\quad A \\ cos\quad B\quad & cos\quad A\quad & 1 \end{matrix} \right| =0 $$
If $$ Cos 2 \theta = 0$$ then $$ \left| \begin{matrix} 0 & cos \theta &sin \theta \\ cos \theta & sin \theta & 0 \\ sin \theta & 0 & cos \theta \end{matrix} \right|^2 = $$_________
If $$ a+ b +c \neq 0 $$ and $$ \left| \begin{matrix} a & b & c \\ b & c & a \\ c & a & b \end{matrix} \right| = 0 $$ then prove that $$ a = b = c $$.
Find the value of the following determinant $$\begin{vmatrix} 5 & {-2}\\{-3} & 1\end{vmatrix}$$.
Find the value of the following determinant $$\begin{vmatrix} 3 & {-1}\\{1} & 4 \end{vmatrix}$$.
Find the adjoint of the matrix $$A = \begin{bmatrix} 1 & 2\\ 3 & -5\end{bmatrix}$$ and verify the result $$A(adj \,A) = (adj \,A) = A |A| \cdot I$$.
Find the adjoint of the following matrix. $$ \begin{bmatrix} 1& -1 & 2 \\ -2 & 3 & 5 \\ -2 & 0 & -1 \end{bmatrix} $$
The sum if the products of element of any row with the co-factors of corresponding elements is equal to __________
Find the adjoint of the following matrix. $$ \begin{bmatrix} 2 & -3 \\ 3 & 5 \end{bmatrix} $$
If $$A=\begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$$, then show that $$\left| 2A \right| =4\left| A \right| $$
Find the values of following determinant. $$\begin{vmatrix} 5&3 \\ -7&0 \end{vmatrix} $$
Evaluate the determinations: $$\begin{vmatrix} { x }^{ 2 }-x+1 & x-1 \\ x+1 & x+1 \end{vmatrix}$$
there are n points in a plane of which m points are collinear. how many triangles will be formed by joining three points?
If matrix $$A=\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$$ then find $$adj.A$$ also prove that $$A(adj A)= |A| I_3= (adj A)A$$
Find the minors of elements of second row of determinant $$\begin{vmatrix} 2 & 3 & 4\\ 3 & 6 & 5\\ 1 & 8 & 9 \end{vmatrix}$$.
If $$A$$ be a square matrix of order $$3\times 3$$ then find $$\left| kA \right| $$ $$\left| KA \right| ={ k }^{ n }\left| A \right| $$ when $$n$$ is the order
For which value of k, det $$\begin{vmatrix} k & 2\\ 4 & -3 \end{vmatrix}$$ will be zero?
$$A = \begin{bmatrix}1 & \tan x\\ -\tan x & 1\end{bmatrix}$$ and $$f(x)$$ is defined as $$f(x) = det. (A^T A^{-1})$$ then find the value of $$\underset{\text{n times}}{\underbrace{f(f(f(f.......f(x))))}}$$ is $$(n \geq 2)$$.
If A is a square matrix of order 3, then find $$|(A - A^T)^{2011}|$$.
Match the statements in Column I with statements in column II
Prove that $$\begin{vmatrix} bc & bc'+b'c & b'c'\\ ca & ca'+c'a & c'a'\\ ab & ab'+a'b & a'b' \end{vmatrix}=(ab'-a'b)(bc-b'c)(ca'-c'a)$$
If $$ax_1^2+by_1^2+cz_1^2=ax_2^2+by_2^2+cz_2^2=ax_3^2+by_3^2+cz_3^2=d$$ and $$ax_2x_3+by_2y_3+cz_2z_3=ax_3x_1+by_3y_1+cz_3z_1=ax_1x_2+by_1y_2+cz_1z_2=f$$, then prove that $$\begin{vmatrix} x_1 & y_1 & z_1\\ x_2 & y_2 & z_2\\ x_3 & y_3 & z_3 \end{vmatrix}=(d-f)\left [\frac {d+2f}{abc}\right ]^{1/2}(a, b, c\neq 0)$$
Are the three points $$A(2,3),B(5,6)$$ and $$C(0,2)$$ collinear?
Find the maximum value of $$\begin{vmatrix} 1& 1 & 1\\ 1 & 1 +\sin \theta & 1\\ 1 & 1 & 1 + \cos \theta\end{vmatrix}$$
If $$a^2+b^2+c^2=1$$ then is the value of the determinant $$\begin{vmatrix} a^2+(b^2+c^2)cos\theta & ba(1-cos\theta) & ca(1-cos\theta)\\ ab(1-cos\theta) & b^2(c^2+a^2)cos\theta & cb(1-cos\theta)\\ ac(1-cos\theta) & bc(1-cos\theta) & c^2+(a^2+b^2)cos\theta \end{vmatrix}$$ independent of a,b,c? If yes enter 1 else enter 0.
A line of slope 2 passes through the point A(1,3). a) Check whether B(3,7) is a point on this line. b) Write down the equation of this line. c) Find the coordinates of a point C on the line such that BC = 2AB.
If $$\begin{vmatrix}x+1&x-1\\x-3&x+2\end{vmatrix}=\begin{vmatrix}4&-1\\1&3\end{vmatrix}$$, then write the value of $$x$$.
For what values of p and q, the system of equations $$2x + py + 6z = 8, x + 2y + qz = 5, x + y + 3z = 4$$ has (i) no solution (ii) a unique solution (iii) infinitely many solutions.
The straight lines $$\displaystyle \imath_1, \imath_2 \, and \, \imath_3$$ are parallel and lie in the same plane. A total of m points are taken on the line $$\displaystyle \imath_1,$$ n points on $$\displaystyle \imath_2$$, and k points on $$\displaystyle \imath_3$$. How many triangles are there whose vertices are at these points?
Write minors and cofactors of the elements of the following determinants: $$(i) \begin{vmatrix} 2 & -4 \\ 0 & 3 \end{vmatrix}$$ $$(ii) \begin{vmatrix} a & c \\ b & d \end{vmatrix}$$ $$(iii) \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{vmatrix}$$ $$(iv) \begin{vmatrix} 1 & 0 & 4 \\ 3 & 5 & -1 \\ 0 & 1 & 2 \end{vmatrix}$$
Using properties of determinants, find the value of $$n$$ in the following. $$ \left | \begin{array}{111} 3x & -x+y & -x+z \\ x-y & 3y & z-y \\ x-z & y-z & 3z \\ \end {array} \right | $$ =$$ n( x+y + z)(xy + yz + zx)$$
The value of determinant $$\begin{vmatrix} 2 & 7 & 65\\ 3 & 8 & 75 \\ 5 & 9 & 86\end{vmatrix} equals $$.
$$\left| \begin{matrix} { a }^{ 2 }+1 & ab & ac \\ ab & { b }^{ 2 }+1 & bc \\ ca & cb & { c }^{ 2 }+1 \end{matrix} \right| =1+{ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }$$
Using cofactor elements of $$2$$nd row, find the value of determinant, $$\Delta =\begin{vmatrix} -3 & 0 & 2\\ 4 & -1 & 3\\ 5 & 0 & -2\end{vmatrix}$$.
Show that the points are collinear $$(-5, 1) (5, 5) (10, 7)$$
Find the value of determinant $$\begin{vmatrix} 5 & -3 \\ -7 & -4 \end{vmatrix}$$
Find the relation between $$x $$ and $$y$$, if the points $$x,y $$ i.e $$(1,2)$$ and $$(7,0)$$ are collinears.
If $$A =\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$$, then verify that $$A(adjA)=(adjA)A= I \left| A \right|$$.
Find the value of $$a$$ if the points $$P ( 1,5 ) , Q ( a , 1 )$$ and $$R ( 4,11 )$$ are collinear .
Find the largest value of a third order determinant whose elements are $$1$$ or $$-1$$
Find the cofactor matrix of the determinant $$\begin{vmatrix} 1 & 2 & 3\\ -4 & 3 & 6 \\ 2 & -7 & 9 \end{vmatrix}$$
If the points $$(x_{1},\ y_{1}),\ (x_{2},\ y_{2})$$ and $$(x_{3},\ y_{3})$$ are collinear, show that $$\displaystyle \sum { \left( \frac { { y }_{ 1 }-{ y }_{ 2 } }{ { x }_{ 1 }{ x }_{ 2 } } \right) } =0$$, i.e $$\dfrac {y_{1}-y_{2}}{x_{1}x_{2}}+\dfrac {y_{2}-y_{3}}{x_{2}x_{3}}+\dfrac {y_{3}-y_{1}}{x_{3}x_{1}}=0$$
If $$A = \left[ {\begin{array}{*{20}{c}}1 & { - 2} & 3\\4 & 0 & { - 1}\\{ - 3} & 1 & 5\end{array}} \right]$$, then $${\left( {adj\,A} \right)}$$ is equal to
Find the largest value of a third order determinant whose elements are $$0$$ or $$1$$
Using properties of determinant, prove that $$\begin{vmatrix} b+c & a-b & a \\ c+a & b-c & b \\ a+b & c-a & c \end{vmatrix}=3abc-{ a }^{ 3 }-{ b }^{ 3 }-{ c }^{ 3 }$$
Compute the adjoint of the following matrice: $$ \begin{bmatrix} 2 & -1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & -1 \end{bmatrix}$$ Verify that $$ (adj A)A = |A|I = A(adj A) $$ for the above matrice.
Compute the adjoint of the following matrice: $$ \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
Verify that $$ (adj A)A = |A|I = A(adj A) $$ for the above matrice.
Compute the adjoint of the following matrice: $$ \begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$ Verify that $$ (adj A)A = |A|I = A(adj A) $$ for the above matrice.
Find the adjoint of the following matrice: $$ \begin{bmatrix} -3 & 5 \\ 2 & 4 \end{bmatrix} $$ Verify that $$ (adj A ) A = |A| I = A (adj A) $$ for the above matrice.