Inverse Trigonometric Functions - Class 12 Commerce Maths - Extra Questions

Solve $$\displaystyle \tan^{-1} \left ( \frac{1-x}{1+x} \right ) = \frac{1}{2} \tan^{-1} x, \: \: \left( 0<x<1 \right) $$ 



Solve for $$\displaystyle x$$ and $$\displaystyle y$$; $$\displaystyle \sin^{-1} x + \sin^{-1} y = \frac{2 \pi}{3}$$ and $$\displaystyle \cos^{-1} x - \cos^{-1} y = \frac{\pi}{3}$$



Solve $$\displaystyle \tan x< 2$$



Find the inverse of the following functions:
$$\displaystyle f(x)=\sin ^{-1}\left(\frac{x}{3}\right),x\in [-3,3]$$
then $$f^{-1}(\pi/2)$$



Prove: $$\displaystyle { \cos }^{ -1 }\frac { 4 }{ 5 } +{ \cos }^{ -1 }\frac { 12 }{ 13 } ={ \cos }^{ -1 }\frac { 33 }{ 65 } $$



$$\dfrac {1}{2}\tan^{-1} x = \cos^{1} \left \{\dfrac {1 + \sqrt {1 + x^{2}}}{2\sqrt {1 + x^{2}}} \right \}^{\dfrac {1}{2}}$$.



$$\displaystyle\, \tan^{-1}\frac{2}{11} + \tan^{-1}\frac{7}{24} = \tan^{-1}\frac{1}{2}$$



Find the value of $$\sin\left\{2\sin^{-1}\dfrac{3}{5}\right\}$$



The range of $$arc\sin { x } +arc\cos { x } +arc\tan { x }$$ is



Prove that $$\displaystyle\, \tan^{-1}\frac{\sqrt{1 + x^2} - 1}{x}=\dfrac{1}{2}\tan^{-1}x, x \neq 0$$



Evaluate $$ \sin ^{ -1 }{ \left( \cos { x }  \right)  }$$



Write the range of $$\sin^{-1}x$$.



Solve for x :
$${\left( {{{\tan }^{ - 1}}x} \right)^2} + {\left( {{{\cos }^{ - 1}}x} \right)^2} = \dfrac{{5{\pi ^2}}}{8}$$



If $$y=$$ $${\cot ^{ - 1}}\,\left( {\sqrt {\cos x} } \right) - {\tan ^{ - 1}}\,\left( {\sqrt {\cos x} } \right)$$, then prove that $$\sin y = {\tan ^2}\dfrac{x}{2}.$$



Simplify: $$\tan^{-1}\left(\dfrac{a - x}{1 + ax}\right)$$



Write the function in simplest form : $$\tan^{-1} \left (  \dfrac{x}{\sqrt{a^2-x^2}} \right ) where, |x|<a$$.



Calculating the principal value, find the value of $$\cos\left[\sin^{-1}\left(\dfrac{3}{5}\right)\right]$$.



Solve for x : $$\cos^{-1} x + \sin^{-1} \left(\dfrac{x}{2} \right) = \dfrac{\pi}{6}$$



Prove that: $$\cot \left(\dfrac {\pi}{2}-2\ \cot^{-1}3\right)=\dfrac{3}{4}$$



Evaluate: $$sec^{-1}(-2)$$ 



Solve $${\tan ^{ - 1}}\left( {\tan \frac{{2\pi }}{3}} \right)$$



Evaluate 
$${\cos ^{ - 1}}\dfrac{1}{2} + 2{\sin ^{ - 1}}\dfrac{1}{2}$$



Solve:$${\sin ^{ - 1}}\left( {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$$



Solve:-
$${\cos ^{ - 1}}\left( {\frac{1}{2}} \right) - 2{\sin ^{ - 1}}\left( { - \frac{1}{2}} \right)$$



Differentiate $$\tan^{-1}\left(\dfrac{a\cos x-b\sin x}{b\cos x+a\sin x}\right)$$.



$$\sin\left(2\tan^{-1}\sqrt{\dfrac{1-x}{1+x}}\right)$$.



Solve:
$${\sin ^{ - 1}}(\cos x)$$



$$sin^{-1}(cosx)$$



Solve:
$${\sin ^{ - 1}}(\cos x)$$



$$sin^{-1}sin15+cos^{-1}cos20+tan^{-1}tan 25=$$



Prove $$\tan ^ { - 1 } \dfrac { 1 } { 2 } + \tan ^ { - 1 } \dfrac { 2 } { 11 } = \tan ^ { - 1 } \dfrac { 3 } { 4 }$$



$$\sin ^ { - 1 } \left( \dfrac { 2 x } { 1 + x ^ { 2 } } \right)$$



Find the value of  $$\cot ^ { - 1 } ( - \sqrt { 3 } )$$



$${\tan ^{ - 1}}\left( 2 \right) + {\tan ^{ - 1}}\left( 3 \right) = $$



Solve:
$$\dfrac { \sin ^{ -1 }{ \sqrt { x } - } \cos ^{ -1 }{ \sqrt { x }  }  }{ \sin ^{ -1 }{ \sqrt { x } - } \cos ^{ -1 }{ \sqrt { x }  }  } ,x\epsilon \left[ 0,1 \right] $$



Solve:
$${\sin ^{ - 1}}x + {\sin ^{ - 1}}\sqrt {1 - {x^2}} $$



Prove:
$$\tan^{-1}\sqrt{x}=\dfrac{1}{2}\cos^{-1}\left (\dfrac{1-x}{1+x}\right),x\epsilon [0,1]$$



$$tan^{-1}(tan\,5)$$



Solve:
$${ \cos }^{ -1 }\left( \dfrac { 3\cos x-4\sin x }{ 5 }  \right) $$



Evaluate :
$$\cos(2\cos^{-1}x+\sin^{-1}x)$$ at $$x=\dfrac{1}{5}$$.



Simplify $${\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}{3}} \right)$$



Prove that : $${ cos }^{ -1 }\left( \dfrac { 3 }{ 5 }  \right) +{ cos }^{ -1 }\left( \dfrac { 4 }{ 5 }  \right) =\dfrac { \pi  }{ 2 } $$



$${\cos ^{ - 1}}\left( { - \cfrac{{\sqrt 3 }}{2}} \right)$$



Simplify: $$\sin.{ \cot }^{ -1 }{  \cot  x }$$ 



Solve for $$x$$:
$$4\sin^{-1}x+\cos^{-1}x=\pi$$.



If $$\sin^{-1}x=\tan^{-1}y$$ then prove that $$\dfrac{1}{x^2}-\dfrac{1}{y^2}=1$$.



Prove that 3$$sin^{-1}=sin^{-1} (3x-4x^{3}),x\epsilon[\frac{-1}{2},\frac{1}{2}]$$



Find the value of $$\tan^{-1}{\left(\tan{\dfrac{2\pi}{3}}\right)}$$



Solve:
$$3\tan ^{ -1 }{ x } =\tan ^{ -1 }{ \left( \dfrac { 3x-{ x }^{ 3 } }{ 1-3{ x }^{ 2 } }  \right)  } $$



Evaluate the following :
$$\sin^{-1} (\sin 10)$$



if $$\sin x=1$$ then find $$\sin 2x$$



$$y = \sin ^ { - 1 } \left( \frac { 2 n } { 1 + n ^ { 2 } } \right) + \sec ^ { - 1 } \left( \frac { 1 + n ^ { 2 } } { 2 n } \right)$$



If $${\left( {{{\tan }^{ - 1}}x} \right)^2} + {\left( {{{\cot }^{ - 1}}x} \right)^2} = \dfrac{{5{\pi ^2}}}{8}$$, then find $$x.$$



Prove that :
$$\cos^{-1}\left(\dfrac{12}{13}\right)+\sin^{-1}\left(\dfrac{3}{5}\right)=\sin^{-1}\left(\dfrac{56}{65}\right)$$.



Find the value of $$\sin^{-1}\left (\sin \dfrac{3\pi}{5}\right)$$.



Write the value of $$\cos^{-1} (\cos 6)$$.



Prove that :
$$\tan^{-1} 1 +\tan^{-1} 2 +\tan^{-1} 3=\pi$$



If $$\tan^{-1} 2 +\tan^{-1} 3 +\theta =\pi$$, find the value of $$\theta$$.



Prove that :
$$\tan^{-1} 2 +\tan^{-1}3=\dfrac{3\pi}{4}$$



Solve 
$${\sin }^{ -1 }(\cos x)$$.



Evaluate
$$\tan (\tan^{-1}(-4))$$



Evaluate $$\cos \left[\cos^{-1}\left (\dfrac {-\sqrt 3}{2}\right) +\dfrac {\pi}{6}\right]$$



Find the value of $$\tan^{-1}\left(\tan \dfrac {5\pi}{6}\right)+ \cos^{-1} \left(\cos \dfrac {13\pi}{6}\right)$$.



Prove that $$\cos \left(\dfrac {\pi}{4}-2\cot^{-1} 3\right)=7$$.



If $$\displaystyle x > y > 0$$ then find the value of $$\displaystyle \tan^{-1} \frac{x}{y} + \tan^{-1} \left [ \frac{x + y}{x - y} \right ]$$, 



If $$\displaystyle x + y + z = xyz$$, and $$\displaystyle x, \: y, \: z > 0$$, then find the value of $$\displaystyle \tan^{-1}x + \tan^{-1} y + \tan^{-1} z$$



Prove: $$\displaystyle { \tan }^{ -1 }\sqrt { x } =\frac { 1 }{ 2 } { \cos }^{ -1 }\left( \frac { 1-x }{ 1+x }  \right) ,x\in \left[ 0,1 \right] $$



Write the function in the simplest form:
$$\displaystyle { \tan }^{ -1 }\frac { \sqrt { 1+{ x }^{ 2 } } -1 }{ x } ,x\neq 0$$



If $$y = \sin (\cos^{-1} x) $$ and $$x = 99$$, then $$1/y^2 $$ is equal to



Write the function in the simplest form:
$$\displaystyle { \tan }^{ -1 }\left( \sqrt { \frac { 1-\cos { x }  }{ 1+\cos { x }  }  }  \right) ,x<\pi $$



Prove that : $$\displaystyle { \sin }^{ -1 }\frac { 5 }{ 13 }+{ \cos }^{ -1 }\frac { 3 }{ 5 }={ \tan }^{ -1 }\frac { 63 }{ 16 } $$



Write the function in the simplest form:
$$\displaystyle { \tan }^{ -1 }\left( \frac { 3{ a }^{ 2 }x-{ x }^{ 3 } }{ { a }^{ 3 }-3{ ax }^{ 2 } }  \right) ,a>0;\frac { -a }{ \sqrt { 3 }  } \le x\le \frac { a }{ \sqrt { 3 }  } $$



Prove the following:
$$\cos^{-1}\left (\dfrac {12}{13}\right )+ \sin^{-1}\left (\dfrac {3}{5}\right ) = \sin^{-1}\left (\dfrac {56}{65}\right )$$



If $$\tan^{-1}x + \tan^{-1} y = \dfrac {\pi}{4}, xy < 1$$, then write the value of $$x + y + xy.$$



Write the principal value of $$\cos^{-1}\left (\dfrac {1}{2}\right )-2 \sin^{-1} \left (-\dfrac {1}{2}\right ).$$



Prove that: $$\tan^{-1} \dfrac {1}{5} + \tan^{-1} \dfrac {1}{7} + \tan^{-1} \dfrac {1}{3} + \tan^{-1} \dfrac {1}{8} = \dfrac {\pi}{4}$$



If $$ \sin^{-1}x + \sin^{-1} y = \pi $$ and $$x = ky, $$ then find the value of $$ 39^{2k} + 5^k $$



Show that:
$$\cos ^{ -1 }{ \left[ \dfrac { \cos { \alpha  } +\cos { \beta  }  }{ 1+\cos { \alpha  } \cos { \beta  }  }  \right]  } =2\tan ^{ -1 }{ \left( \tan { \dfrac { \alpha  }{ 2 }  } \tan { \dfrac { \beta  }{ 2 }  }  \right)  }$$



$$\sin ^{ -1 }{ \left( \dfrac { 2\sec { x }  }{ 1+\sec ^{ 2 }{ x }  }  \right) =y }$$ 



Solve for $$x: \cos { \left( \sin ^{ -1 }{ x }  \right)  } =\dfrac{ 1 }{ 7 }$$.



Solve: $$\tan^{-1}2x+\tan^{-1}3x=\displaystyle\frac{\pi}{4}$$.



Solve: $$3\tan^{-1}x+\cot^{-1}x=\pi$$.



Prove that $$\cos ^{ -1 }{ \left( -x \right)  } =\pi -\cos ^{ -1 }{ \left( x \right)  }$$, $$-1\le x\le 1$$. 



Solve : $$\cos^{-1}\sqrt{\dfrac{1+\cos x}{2}}$$



Prove that
$$\tan^{-1} \left (\dfrac {\cos x}{1 + \sin x}\right ) = \dfrac {\pi}{4} - \dfrac {x}{2}$$.



Inverse circular functions,Principal values of $${ sin }^{ -1 }x,{ cos }^{ -1 }x,{ tan }^{ -1 }x$$.
$${ tan }^{ -1 }x+{ tan }^{ -1 }y={ tan }^{ -1 }\dfrac { x+y }{ 1-xy } $$,      $$xy<1$$
       $$\pi +{ tan }^{ -1 }\dfrac { x+y }{ 1-xy } $$,         $$xy>1$$.
Prove
(a) $${ sin }^{ -1 }\dfrac { 4 }{ 5 } +{ sin }^{ -1 }\dfrac { 5 }{ 13 } +{ sin }^{ -1 }\dfrac { 16 }{ 65 } =\dfrac { \pi  }{ 2 } $$
(b) $${ sin }^{ -1 }\dfrac { 3 }{ 5 } +{ sin }^{ -1 }\dfrac { 8 }{ 17 } ={ cos }^{ -1 }\dfrac { 36 }{ 85 } $$
(c) $${ sin }^{ -1 }\dfrac { 3 }{ 5 } +{ cos }^{ -1 }\dfrac { 12 }{ 13 } ={ cos }^{ -1 }\dfrac { 33 }{ 65 } $$



Solve the equation $$\tan ^{ -1 }{ \left( \cfrac { 1-x }{ 1+x }  \right)  } =\cfrac { 1 }{ 2 } \tan ^{ -1 }{ x } ,\,x > 0$$



Inverse circular functions,Principal values of $${ \sin }^{ -1 }x,{ cos }^{ -1 }x,{ \tan }^{ -1 }x$$.
$${ \tan }^{ -1 }x+{ \tan }^{ -1 }y={ \tan }^{ -1 }\dfrac { x+y }{ 1-xy } $$,      $$xy<1$$
       $$\pi +{ \tan }^{ -1 }\dfrac { x+y }{ 1-xy } $$,         $$xy>1$$.
Evaluate the following :
(a) $$\sin\left[ \dfrac { \pi  }{ 3 } -{ \sin }^{ -1 }\left( -\dfrac { 1 }{ 2 }  \right)  \right] $$
(b) $$\sin\left[ \dfrac { \pi  }{ 2 } -{ \sin }^{ -1 }\left( -\dfrac { \sqrt { 3 }  }{ 2 }  \right)  \right] $$



Show that: $$\sin ^{ -1 }{ \left( 2x\sqrt { 1-{ x }^{ 2 } }  \right)  } =2\cos ^{ -1 }{ x },\, \cfrac { 1 }{ \sqrt { 2 }  } \le x\le 1\quad $$



Find the set of values of $$'a'$$ for which the equation $$2\cos^{-1} x = a + a^{2}(\cos^{-1} x)^{-1}$$ posses a solution.



If $$\theta = \sin^{-1} x + \cos^{-1} x - \tan^{-1} x, 1 \le x < \infty$$, the smallest interval in which $$\theta$$ lies is



Inverse circular functions,Principal values of $${ sin }^{ -1 }x,{ cos }^{ -1 }x,{ tan }^{ -1 }x$$.
$${ tan }^{ -1 }x+{ tan }^{ -1 }y={ tan }^{ -1 }\frac { x+y }{ 1-xy } $$,      $$xy<1$$
       $$\pi +{ tan }^{ -1 }\frac { x+y }{ 1-xy } $$,         $$xy>1$$.
Solve 
(a) $$cos(2{ sin }^{ -1 }x)=1/9$$
(b) $${ cos }^{ -1 }(3/5)-{ sin }^{ -1 }(4/5)={ cos }^{ -1 }x$$
(c) If $$sin({ sin }^{ -1 }\frac { 1 }{ 5 } +{ cos }^{ -1 }x)=1$$, then prove that x is equal to $$1/5$$.



Find the value of $$\ \tan^2(\dfrac{1}{2} \ \sin^{-1} \dfrac 2 3)$$



If $$\tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) + \tan \left( {\dfrac{\pi }{4} - \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) = \dfrac{{mb}}{a}$$.Find $$m$$



Solve $$\sin^{-1}(\cos \dfrac {2\pi}{3})$$



Simplify : $$\tan^{-1} \left[\dfrac{\sqrt{1 + x^2} - 1}{x}\right]$$



Let $$\sin^{-1}x=\theta$$ then the value of $$cosec^{-1}\dfrac{1}{\sqrt{1-x^2}}$$.



Find the approximate value of $$\tan^{-1}{[1.001]}$$.



Find the value of $${\sin ^{ - 1}}\left\{ {\sin \left( { - {{600}^0}} \right)} \right\}$$.



If $$\sin^{-1} \left(\dfrac{x}{5}\right) + cosec^{-1} \left(\dfrac{5}{4}\right) = \dfrac{\pi}{2}$$ then a value of $$x$$ is



Solve the equation $$3{\sin ^{ - 1}}\left( {\frac{{2x}}{{1 + {x^2}}}} \right) - 4{\cos ^{ - 1}}\left( {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right) + 2{\tan ^{ - 1}}\left( {\frac{{2x}}{{1 - {x^2}}}} \right) = \dfrac{\pi }{3}$$



Prove that  $$\cot^{-1} 9+cosec^{-1} \dfrac{41}{4}=\dfrac{\pi}{4}$$



If $$ \cot { \left( \cos ^{ -1 }{ \dfrac { 3 }{ 5 } +\sin ^{ -1 }{ x }  }  \right)  } =0$$, find the value of $$x$$.



$${({\tan ^{ - 1}}x)^2}\, + \,{({\cot ^{ - 1}}x)^2} = 5\pi $$. Find the value of $$x$$. 



Let $$y=\tan^{-1}\dfrac{1-\cos 2x}{\sin 2x}$$, then prove that $$\dfrac{dy}{dx}=-1$$.



If $$(\sin^{-1}x)^{2}+(\cos^{-1}x)^{2}=\dfrac {17\pi^{2}}{36}$$, find $$x$$.



Simplify $$sin^{-1}(2x \sqrt{1-x^2}), \frac{1}{\sqrt{2}}\leq x \leq 1$$



Find the value of $$ \tan { \left\{ \dfrac { 1 }{ 2 } \sin ^{ -1 }{ \left( \dfrac { 2x }{ 1+{ x }^{ 2 } }  \right) +\dfrac { 1 }{ 2 } \cos ^{ -1 }{ \left( \dfrac { 1-{ y }^{ 2 } }{ 1+{ y }^{ 2 } }  \right)  }  }  \right\}  }$$; if $$x> y> 1$$.



Find the derivative of $$f$$ given by $$f(x)=\sin ^{ -1 }{ x } $$ assuming it exists.



If $$y=\tan^{-1}\left(\dfrac{x\sin \alpha}{1-x\cos\alpha}\right)$$. Find $$\cot y$$ 



Show that $$\tan ^{ -1 }{ \cfrac { 2 }{ 11 }  } +\tan ^{ -1 }{ \cfrac { 7 }{ 24 }  } =\tan ^{ -1 }{ \cfrac { 1 }{ 2 }  } $$



Find the value of $$\tan^{-1}1+\tan^{-1}2+\tan^{-1}3$$.



$$\tan^{-1}(1)+\cos^{-1}(-\dfrac {1}{2})+\sin^{-1}(-\dfrac {1}{2})$$



If $$\sec ^{ -1 }{ x } =cosec ^{ -1 }{ y } $$, then find the value of $$\cos ^{ -1 }{ \cfrac { 1 }{ x }  } +\cos ^{ -1 }{ \cfrac { 1 }{ y }  } $$



The value of `a` for which $$a{x^2} + {\sin ^{ - 1}}\left( {{x^2} - 2x + 2} \right) + \cos^{ - 1}\left( {{x^2} - 2x + 2} \right) = 0$$ has real solution is



Find the value of x 
If, $$\sin ^{ -1 }{ x } +\sin ^{ -1 }{ 2x= } \frac { \pi  }{ 3 } $$



Evaluate $$\sin \left(\dfrac{\pi}{6} + \cos^{-1} \dfrac{1}{4} \right)$$



Find the range of $$f(x)=\sin^{-1}x+\cos^{-1}x+\tan^{-1}x$$.



Solve : $$\sin^{-1} \left\{ \dfrac{\sin \, x + \cos \, x}{\sqrt{2}} \right \} , - \dfrac{3 \pi}{4} < x < \dfrac{\pi}{4}$$



Solve :
$$\displaystyle \tan^{-1} \left(\dfrac { \frac { 1 }{ 2 } +\frac { 2 }{ 11 }  }{ 1-\frac { 1 }{ 2 } \times \frac { 2 }{ 11 }  } \right) $$



Prove that $$\sin ^{ -1 }{ \dfrac { 3 }{ 5 }  } +\sin ^{ -1 }{ \dfrac { 8 }{ 17 }  } =\cos ^{ -1 }{ \dfrac { 36 }{ 85 }  } $$



$$2\tan ^{ -1 }{ \dfrac { 1 }{ 2 }  } +\tan ^{ -1 }{ \dfrac { 1 }{ 7 }  } =\tan ^{ -1 }{ \dfrac { 31 }{ 17 }  }$$



If $$\tan^{-1} \left\{2\cos \left(2\sin^{-1}\dfrac{1}{2}\right)\right\}$$



Find the domain of the function:
$$y=\sin^{-1}(2x-3)$$



If $$y=\cot^{-1}(\sqrt{\cos x})-\tan^{-1}(\sqrt{cos x})$$, prove that $$\sin y =\tan^2 \dfrac{x}{2}$$.



$$\tan ^{ -1 }{ \left[ \frac { \frac { 2y+1+2x+1 }{ \sqrt { 3 }  }  }{ 1-\left( \frac { 4xy+2x2y+1 }{ 3 }  \right)  }  \right]  } =k$$



Prove that $$\sec^{2} (\tan^{-1}2)+ \csc^{2} (\cot^{-1} 3)=15$$.



Evaluate
$$\sin^{-1}x+\sin^{-1}y=\cos^{-1}$${$$\sqrt{(1-x^{2})(1-y^{2})}-xy$$}



Evaluate $$\sin^{-1} (\sin\dfrac{6\pi}{7})$$.



Solve $$\sin^{-1}\dfrac{14}{|x|}+\sin^{-1}\dfrac{2\sqrt{15}}{|x|}=\dfrac{\pi}{2}$$.



$$\tan ^{ -1 }{ \left( \frac { 1 }{ 2 } \tan { 2A }  \right)  } +\tan ^{ -1 }{ \left( \cot { A }  \right)  } +\tan ^{ -1 }{ \left( \cot ^{ 3 }{ A }  \right)  } =\begin{cases} 0,if\frac { \pi  }{ 4 } <A<\frac { \pi  }{ 2 }  \\ \pi ,if0<A<\frac { \pi  }{ 2 }  \end{cases}$$



If $${\tan ^{ - 1}}\left( {\dfrac{{x - 1}}{{x - 2}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{x + 1}}{{x + 2}}} \right) = \dfrac{\pi }{4}$$. Find the value of x.



Is $$\dfrac{{{{\sin }^{ - 1}}}}{{{{\tan }^{ - 1}}}} = {\cot ^{ - 1}}$$ a valid relation?



$$sin^{-1}(sin(4))$$ =?



Write $${\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}}  - 1}}{{ - x}}} \right), x \ne 0$$ in the simplest form



Is $$\frac{{{{\sin }^{ - 1}}}}{{{{\cos }^{ - 1}}}} = {\tan ^{ - 1}}$$ a valid relation?



Solve:-
$${\tan ^{ - 1}}\left( {\dfrac{{6x}}{{1 - 8{x^2}}}} \right)$$



Evaluate :
        $${\tan ^{ - 1}}\left( {\frac{{4x}}{{1 + 5{x^2}}}} \right) + {\tan ^{ - 1}}\left( {\frac{{2 + 3x}}{{3 - 2x}}} \right)$$



$$\cos \left( {{{\cos }^{ - 1}}\left( {\frac{{\sqrt 3 }}{2}} \right) + \frac{\pi }{6}} \right)$$



Evaluate: $${\sec ^{ - 1}}\left( {\dfrac{{x + 1}}{{x - 1}}} \right) + {\sin ^{ - 1}}\left( {\dfrac{{x - 2}}{{x + 1}}} \right)$$



Solve : $$\text{cosec}^{-1} \left(\dfrac{1 + x^2}{2x} \right) + \tan^{-1} \left(\dfrac{1 - x^2}{2x} \right) = \dfrac{x}{2}$$



Solve : $${\cos ^{ - 1}}\left( {\cos \frac{{7\pi }}{6}} \right)$$



Solve: $${\tan ^{ - 1}}\left( {\tan \frac{{2\pi }}{3}} \right)$$



The numerical value of tan $$\left( {2{{\tan }^{ - 1}}\dfrac{1}{5} - \dfrac{\pi }{4}} \right)$$ is



Prove that
$${\tan ^{ - 1}}\dfrac{1}{5} + {\tan ^{ - 1}}\dfrac{1}{7} = {\tan ^{ - 1}}\dfrac{6}{{17}}$$



Solve $$\sin^{-1}\left\{\dfrac{\sin\:x+\cos\:x}{\sqrt{2}}\right\},\:-\dfrac{3\pi }{4}<x<\dfrac{\pi }{4}$$ 



Solve:
$${\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)$$



$$2\;{\tan ^{ - 1}}\left( {\sqrt {\dfrac{{a - b}}{{a + b}}}\tan \dfrac{x}{2}}  \right)$$



Solve:
$${\tan ^{ - 1}}\left( {\frac{{2x}}{{1 - {x^2}}}} \right)$$



Prove that :
$${\cos ^{ - 1}}x = 2{\sin ^{ - 1}}\left(\sqrt{\dfrac{1-x}{2}} \right).$$



Solve $$Cos^{-1}\left[Cos\:\frac{5\pi }{4}\right]$$



If $$\cos c=\dfrac {\sin \left(2\pi+\dfrac {\pi}{2}\right)-\sin \pi/2}{\pi}$$, find the value of $$c$$.



Integrate the function $$ \tan^{-1} \big({\sqrt{\dfrac{1 - \sin x}{ 1 + \sin x}}}\big)$$ w.r.t dx.



Evaluate: $$\tan^{-1}\left(1\right)+ \cos^{-1}\left(\dfrac{1}{2}\right)+ \sin^{-1}\left(\dfrac{1}{2}\right)$$ which lies in the interval $$\left[0,\pi\right]$$



The value of $$\cos\left(\sin^{-1}\dfrac{1}{2}+\sec^{-1}2\right)$$.



Write in simplest form $$\sin^{-1}{\left[\dfrac{\sqrt{1+x}+\sqrt{1-x}}{2}\right]}$$



The value of $$\sin \left( {{{\cos }^{ - 1}}\dfrac{3}{5}} \right)$$ 



Evaluate the given expression:
$$\cos \left(\sin^{-1}\dfrac {3}{5}+\sin^{-1}\dfrac {5}{13}\right)$$



Evaluate $$\cos^{-1}{[\cos{11\pi/6}]}$$



Evaluate $$\cos \left[\cos^{-1}\left(-\dfrac {\sqrt {3}}{2}\right)+\dfrac {\pi}{6}\right]$$.



Solve:
$${\tan ^{ - 1}}\left( {\tan \frac{{7\pi }}{6}} \right)$$



Prove that : $$\tan ^ { - 1 } \frac { 1 } { 3 } + \tan ^ { - 1 } \frac { 1 } { 7 } + \tan ^ { - 1 } \frac { 1 } { 5 } + \tan ^ { - 1 } \frac { 1 } { 8 } = \frac { \pi } { 4 }$$



Prove that $${\tan ^{ - 1}}\frac{1}{5} + {\tan ^{ - 1}}\frac{1}{7} + {\tan ^{ - 1}}\frac{1}{3} + {\tan ^{ - 1}}\frac{1}{8} = \dfrac{\pi }{4}$$



$$\tan^{-1}\left(\dfrac{1}{4}\right)+2\tan^{-1}\left(\dfrac{1}{5}\right)+\tan^{-1}\left(\dfrac{1}{6}\right)+\tan^{-1}\left(\dfrac{1}{x}\right)=\dfrac{\pi}{4}$$.



$$3\tan^{-1}\dfrac{1}{2+\sqrt{3}}-\tan^{-1}\dfrac{1}{x}=\tan^{-1}\dfrac{1}{3}$$.



Solve : $$\cos ^ { - 1 } \left( - \frac { 1 } { 2 } \right)$$



Write the value of $$2 sin^{-1} \dfrac{1}{2} + cos^{-1} (-\dfrac{1}{2})$$



Prove that $$\tan^{-1}\left(\frac { \sqrt { 1+\cos { x }  } +\sqrt { 1-\cos { x }  }  }{ \sqrt { 1+\cos { x }  } -\sqrt { 1-\cos { x }  }  }\right)=\dfrac{\pi}{4}-\dfrac{x}{2} $$ if $$\pi < x < \dfrac{3\pi}{2}$$



solve
$$\sin ^{ -1 }{ x } +\sin ^{ -1 }{ 2x } =\dfrac { \pi  }{ 3 } $$ then $$x=?$$



Evaluate:
$$\csc^{ - 1}\left( { - \sqrt 2 } \right)$$



Show that $$tan^{-1}\frac{63}{16}=sin^{-1}\frac{5}{13}+cos^{-1}\frac{3}{5}$$



solve
$$\displaystyle {\tan ^{ - 1}}\left( {{{\sin x} \over {1 + \cos x}}} \right)$$



Find the value of the expression $${ \sec }^{ -1 }\left( \dfrac { x+1 }{ x-1 }  \right) +{ \sin }^{ -1 }\left( \dfrac { x-1 }{ x+1 }  \right) $$.



Find the value of $$\tan ^ { - 1 } \left( \tan \frac { 5 \pi } { 6 } \right) + \cos ^ { - 1 } \left( \cos \frac { 13 \pi } { 6 } \right)$$



What is the value of $$\cos \left[ \cos ^ { - 1 } \left( \frac { - \sqrt { 3 } } { 2 } \right) + \frac { \pi } { 6 } \right]$$ ?



Express the following in the simplest form
$${\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right),\dfrac{{ - \pi }}{2} < x < \dfrac{\pi }{2}$$



Solve for $$x:2\tan^{-1}(\cos x)=\tan^{-1}(2\text{cosec} x)$$.



Solve:
$$\cot^{-1}x+\cot^{-1} 2=\dfrac{\pi}{2}$$.



Solve for $$x$$:
$$2\tan^{-1}\dfrac{2x}{1-x^2}=\pi$$.



Prove:
$$\sin ^ { - 1 } \left( \dfrac { 1 } { x } \right) = \ cosec ^ { - 1 } x , \forall x \geq 1 \text { or } x \leq - 1$$

$$\cos ^ { - 1 } \left( \dfrac { 1 } { x } \right) = \sec ^ { - 1 } x , \forall x \geq 1 \text { or } x \leq - 1$$

$$\tan ^ { - 1 } \left( \dfrac { 1 } { x } \right) = \cot ^ { - 1 } x , \quad \forall x > 0$$



Solve: $$\dfrac { { a }^{ 2 }-{ b }^{ 2 } }{ 4 } $$ $${ \sin }^{ -1 }\dfrac { a-b }{ \sqrt { { a  }^{ 2 }-{ b }^{ 2 } }  } $$



Find the value of $$\cos^{-1}\left(\cos {\dfrac {5\pi}{3}}\right)$$



Solve
$$\sin^{-1} \left[\dfrac{\sqrt{1+x}+\sqrt{1-x}}{2}\right]$$



Prove that: $$\tan^{-1} \left[\sqrt{\dfrac{1 - \cos x}{1 + \cos x}} \right] = \dfrac{x}{2}$$



Solve the equation $$\tan^{-1}\left[\dfrac {1-x}{1+x}\right]=\dfrac {1}{2}\tan^{-1}x,(x > 0)$$ 



How do you simplify
$$\sin x + \cot x.\cos x$$



$$y={ cot }^{ -1 }\dfrac { 2x }{ 1-{ x }^{ 2 } }, x\neq \pm 1$$



Solve :
$$\cos^{-1}(\log_{2}x)=0$$



Simplify:$${ tan }^{ -1 }(1/2)+{ tan }^{ -1 }(1/3).$$



$${ \tan }^{ -1 }\left( \dfrac { a\cos x-b\sin x }{ b\cos x+a\sin x } \right) =$$



If $${ \cos }^{ -1 }x+{\cos}^{-1}y+{ \cos }^{ -1 }z=\pi $$ then, prove that $${ x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 }+2xyz=1$$



Solve $$\left( { \tan }^{ -1 }x \right) ^{ 2 }+\left( { \tan }^{ -1 }x \right) ^{ 2 }=\dfrac { 5{ \pi  }^{ 2 } }{ 8 } $$



If $${ \sin }^{ -1 }x=\dfrac { \pi  }{ 5 } $$ for some$$x\in \left[ -1,1 \right] $$ then, find the value of $${ \cos }^{ -1 }x.$$



If $${ \cos }^{ -1 }x+{ \cos }^{ -1 }y+{ \cos }^{ -1 }z=\pi $$ then, prove that $${ x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 }+2xy=1$$



If $${ \sin }^{ -1 }x=\dfrac { \pi  }{ 5 } x\in \left[ -1,1 \right] $$then, the value of $${ \cos }^{ -1 }x$$



Prove that: $$2\tan^{-1}x=\tan^{-1}\dfrac {2x}{1-x^{2}}$$



Theorem: For any $$x\in R$$ $$\quad { sinh }^{ -1 }x={ log }_{ e }(x+\sqrt { x^{ 2 }+1 } )$$



Evaluate the following :
$$\sin^{-1} (\sin 5)$$



Find the value of x if,

$$sin\left\{ { sin }^{ -1 }\cfrac { 1 }{ 5 } +{ cos }^{ -1 }x \right\} =1$$



Evaluate the following :
$$\cos^{-1} (\cos 10)$$



If $$x={ sin }^{ -1 }(sin10)$$ and $$y={ cos }^{ -1 }(cos10)$$, then y - x is equal to : 



Find the value of $$\cos(\sec^{-1}x+\csc^{-1}x), |x|\ge 1$$



Solve the following equation
$$\cos^{-1}\dfrac{x^2-1}{x^2+1}+\tan^{-1}\dfrac{2x}{x^2-1}=\dfrac{2\pi}{3}$$.



If $$\tan^{-1}x=\dfrac{\pi}{10}$$ for some $$x\in R$$, then find the value of $$\cot^{-1}x$$.



Evaluate:
$$\sec^2(\tan^{-1}2)+cosec^2(\cot^{-1}3)$$



Evaluate :
$$\int { { x }^{ 2 }{ \tan }^{ -1 } } \dfrac{x}{2}dx$$ 



If $$y={ cos }^{ -1 }\left( \dfrac { sinx+cosx }{ \sqrt { 2 }  }  \right) $$ where $$\dfrac { \pi  }{ 4 } <x<\dfrac { \pi  }{ 4 } $$ then find $$\dfrac { dy }{ dx } $$



Solve : $$\displaystyle\int { \dfrac { \tan { ^{ -1 } } x }{ 1+{ x }^{ 2 } }  } dx$$



Prove that :-
$${\tan ^{ - 1}}\sqrt x = \dfrac{1}{2}{\cos ^{ - 1}}\left( {\dfrac{{1 - x}}{{1 + x}}} \right),x \in [0,1]$$



Find the value of $$\sec^{-1}\left ( \dfrac{2}{\sqrt{3}} \right )$$



Find the value of x,
if $$\tan^{-1}x+2\cot^{-1}x=\dfrac {2\pi}{3}$$.



Find the value of x which satisfy the equation $${ sin }^{ -1 }x+{ sin }^{ -1 }(1-x)={ cos }^{ -1 }x$$



Prove that $${ \cos }^{ -1 }\left( \dfrac { 4 }{ 5 }  \right) +{ \tan }^{ -1 }\left( \dfrac { 3 }{ 5 }  \right) ={ \tan }^{ -1 }\left( \dfrac { 27 }{ 11 }  \right) $$



Evaluate: $$\sin ^{-1}\dfrac 35+\sin ^{-1}\dfrac 8{17} $$ 



Prove that:
$$2 cos^{-1}\dfrac{3}{\sqrt {13}} + cot^{-1}\dfrac{16}{63} + \dfrac{1}{2}cos^{-1}\dfrac{7}{25} = \pi$$



If $${\sin ^{ - 1}}x - {\cos ^{ - 1}}x = \dfrac{\pi }{6}$$, then solve for $$x$$.



Evaluat the following:
$$\sin^{-1} (\sin 4)$$



Find the value of x, if  $$sin\left [ cot^{-1}(x+1) \right ]=cos(tan^{-1}x)$$



$$sec^{2}(tan^{-1}2)+cosec^{2}(cot^{-1}3)$$



If $$tan^{-1} x - cot^{-1} x = tan^{-1} \left(\dfrac{1}{\sqrt{3}} \right), x > 0$$, find the value of $$x$$ and hence find the value of $$sec^{-1} \left(\dfrac{2}{x}\right)$$



Evaluate the following:
$$\sin^{-1} (\sin 3)$$



Evaluate the following :
$$\sin\left( \dfrac { 1 }{ 2 } { \cos }^{ -1 }\left( \dfrac { 4 }{ 5 }  \right)  \right) $$



$$2\tan^{-1}(\cos x)=\tan^{-1}(2 cosec x)$$.



Evaluate the following:
$$\sin^{-1} (\sin 2)$$



Evaluate:

$$\tan^{-1} (\tan 1)$$



Evaluate the following:
$$\cos^{-1} (\cos 5)$$



Evaluate $$\cos^{-1} (\cos 3)$$



Evaluate the following:
$$\tan^{-1} (\tan 4)$$



Evaluate the following:
$$\tan^{-1} (\tan 2)$$



Evaluate the following:
$$\cos^{-1} (\cos 4)$$



Evaluate the following:
$$\sin^{-1} (\sin 12)$$



Evaluate the following:
$$\cos^{-1} (\cos 12)$$



Evaluate the following:
$$\tan^{-1} (\tan 12)$$



Show that $$2\tan^{-1} x + \sin^{-1} \dfrac {2x}{1 + x^{2}}$$ is constant for $$x \geq 1$$. Also find that constant.



Write the value of $$\cos \left (2\sin^{-1}\dfrac {1}{3}\right )$$.



Find the values of the following:
$$\tan^{-1} \left \{2\cos \left (2\sin^{-1} \dfrac {1}{2}\right )\right \}$$.



Write the value of $$\cos \left (2\sin^{-1} \dfrac {1}{2}\right )$$.



Find the value of x, if:

$$\tan^{-1} \left (\dfrac {x - 2}{x - 1}\right ) + \tan^{-1} \left (\dfrac {x + 2}{x + 1}\right ) = \dfrac {\pi}{4}$$.



If $$x < 0$$, then write the value of $$\cos^{-1} \left (\dfrac {1 - x^{2}}{1 + x^{2}}\right )$$ in terms of $$\tan^{-1} x$$.



Find the value of x, if:

$$\cos^{-1} x + \sin^{1}\dfrac {x}{2} - \dfrac {\pi}{6} = 0$$



Solve the following equation for $$x$$:
$$\tan^{-1} \dfrac {1}{4} + 2\tan^{-1} \dfrac {1}{5} + \tan^{-1} \dfrac {1}{6} + \tan^{-1} \dfrac {1}{x} = \dfrac {\pi}{4}$$.



Write the difference between maximum and minimum values of $$\sin^{-1} x$$ of $$x \epsilon [-1, 1]$$.



Write the value of $$\cos^{2} \left (\dfrac {1}{2}\cos^{-1} \dfrac {3}{5}\right )$$.



Write the value of $$\sin^{-1} \left (\cos \dfrac {\pi}{9}\right )$$.



If $$\sin^{-1} \left (\dfrac {1}{3}\right ) + \cos^{-1}x = \dfrac {\pi}{2}$$, then find $$x$$.



Write the value of $$\sin^{-1} \left (\dfrac {1}{3}\right ) - \cos^{-1} \left (-\dfrac {1}{3}\right )$$.



Write the value of $$\cos^{-1} \left (\cos \dfrac {5\pi}{4}\right )$$.



Evaluate : $$\sin^{-1} \left (\sin \dfrac {3\pi}{5}\right )$$.



Write the value of $$\sin \left \{\dfrac {\pi}{3} - \sin^{-1} \left (-\dfrac {1}{2}\right )\right \}$$.



Write the value of $$\tan^{-1} \dfrac {a}{b} - \tan^{-1} \left (\dfrac {a - b}{a + b}\right )$$.



If $$x < 0, y < 0$$ such that $$xy = 1$$, then write the value of $$\tan^{-1} x + \tan^{-1} y$$.



Write the value of $$2\sin^{-1} \dfrac {1}{2} + \cos^{1} \left (-\dfrac {1}{2}\right )$$.



Write the value of $$\tan^{-1} \left \{\tan \left (\dfrac {15\pi}{4}\right )\right \}$$.



Prove that:
$$\tan^{-1}\left(\dfrac{1+x}{1-x}\right)=\dfrac{\pi}{4}+\tan^{-1}x,x<1$$



Prove that 
$$\sin^{-1}(2x\sqrt{1-x^{2}})=2\sin^{-1}x, |x|\le \dfrac{1}{\sqrt{2}}$$



Prove that:
$$\tan^{-1}x+\cot^{-1}(x+1)=\tan^{-1}(x^{2}+x+1)$$



Evaluate $$\sin \left\{\dfrac {\pi}{2}-\sin^{-1} \left(\dfrac {-\sqrt 3}{2}\right)\right\}$$



Write the value of $$\cot^{-1} (-x)$$ for all $$x\epsilon R$$ in terms of $$\cot^{-1} x$$.



Prove that:
$$\sin^{-1}(3x-4x^{3})=3\sin^{-1}x, |x|\le \dfrac{1}{2}$$



Evaluate $$\cos \left\{\cos^{-1}\left(\dfrac {-\sqrt 3}{2}\right) +\dfrac {\pi}{6}\right\}$$



Prove that:
$$\tan^{-1}\left(\dfrac{3x-x^{3}}{1-3x^{2}}\right)=3\tan^{-1}x,|x|<\dfrac{1}{\sqrt{3}}$$



Solve for $$x$$:
$$\cos (2\sin^{-1}x)=\dfrac{1}{9}$$



Solve for $$x$$:
$$\cos(\sin^{-1}x)=\dfrac{1}{2}$$



Solve for $$x$$:
$$\cos(\sin^{-1}x)=\dfrac{1}{9}$$



Prove that:
$$\cos^{-1} x = 2 \sin^{-1} \sqrt{\dfrac{1 -x}{2}} = 2 \cos^{-1} \sqrt{\dfrac{1 + x}{3}}$$



Prove that:
$$\tan^{-1} \dfrac{1}{2} + \tan^{-1} \dfrac{1}{3} = \sin^{-1} \dfrac{1}{\sqrt{5}} + \cot^{-1} 3 = 45^{\circ}$$



Prove that:
$$2 \tan^{-1} \dfrac{1}{5} + \tan^{-1} \dfrac{1}{7} + 2 \tan^{-1} \dfrac{1}{8} = \dfrac{\pi}{4}$$



Prove that:
$$\sin^{-1} \dfrac{5}{13} + \sin^{-1} \dfrac{7}{25} = \cos^{-1} \left(\dfrac{253}{325} \right)$$.



Prove that:
$$4 \tan^{-1} \dfrac{1}{5} - \tan^{-1} \dfrac{1}{70} + \tan^{-1} \dfrac{1}{99} = \dfrac{\pi}{4}$$



Solve the equation.
$$\sin^{-1} \dfrac{5}{x} + \sin^{-1} \dfrac{12}{x} = \dfrac{\pi}{2}$$



Prove that:
$$\tan^{-1} \dfrac{m}{n} - \tan^{-1} \dfrac{m - n}{m + n} = \dfrac{\pi}{4}$$



Solve the equation.
$$\cos^{-1} \dfrac{x^2 - 1}{x^2 + 1} + \tan^{-1} \dfrac{2x}{x^2 - 1} = \dfrac{2\pi}{3}$$



Solve the equation.
$$2 \tan^{-1} x = \cos^{-1} \dfrac{1 - a^2}{1 + a^2} - \cos^{-1} \dfrac{1 - b^2}{1 + b^2}$$



Prove that:
$$\tan^{-1} t + \tan^{-1} \dfrac{2t}{1 - t^2} = \tan^{-1} \dfrac{3t - t^3}{1 - 3t^2} , t$$ being positive, if $$ t < \dfrac{1}{\sqrt{3}} $$ or $$> \sqrt{3}$$,
and
$$\tan^{-1} t + \tan^{-1} \dfrac{2t}{1 - t^2}= \pi + \tan^{-1} \dfrac{3t - t^3}{1 - 3t^2} $$ if $$t > \dfrac{1}{\sqrt{3}} $$ and $$< \sqrt{3}$$



Prove that:
$$\tan^{-1} \dfrac{1}{3} + \tan^{-1} \dfrac{1}{5} + \tan^{-1} \dfrac{1}{7} + \tan^{-1} \dfrac{1}{8} = \dfrac{\pi}{4}$$



If $$\phi = \tan^{-1} \dfrac{x\sqrt{3}}{2k - x}$$, and $$\theta = \tan^{-1}\dfrac{2x-k}{k\sqrt{3}}$$, prove that one value  of $$\phi -\theta$$ is $$30^o$$.



Solve the equation.
$$\tan^{-1} \dfrac{a}{x} + \tan^{-1} \dfrac{b}{x} + \tan^{-1} \dfrac{c}{x} + \tan^{-1} \dfrac{d}{x} = \dfrac{\pi}{2}$$



Find the range of  $$f(x) =\cot^{-1}(2x-x^{2})$$



Find the set of values of parameter a so that the equation $$(sin^{-1}x)^3+(cos^{-1}x)^3=a\pi^2$$ has a solution



If the roots of the  equation $$x^3 - 10x+ 11 = 0$$ are  u,v and w. Then the value of  $$3cosec^2(\tan^{-1}u+\tan^{-1}v+\tan^{-1}w)$$ is



Find the sum $$cosec^{-1}\sqrt{10}+cosec^{-1}\sqrt{50}+cosec^{-1}\sqrt{170}+...+cosec^{-1}\sqrt{(n^2+1)(n^2+2n+2)}.$$



If $$tan^{-1}(x+\dfrac{3}{x})-tan^{-1}(x-\dfrac{3}{x})=tan^{-1}\dfrac{6}{x}$$, then the value of  $$x^4$$  is  



If $$tan^{-1}y=4tan^{-1}x\,(|x|<tan\dfrac{\pi}{8})$$, find y as an algebraic function of x, and hence, prove that $$\tan \pi/8$$ is a root of the equation $$x^4 - 6x + 1 = 0$$$$



Solve for real values of $$x:\dfrac{(sin^{-1}x)^3+(cos^{-1}x)^3}{(tan^{-1}x+cot^{-1}x)^3}=7$$



Prove that: $$2\tan^{-1}{\left(\dfrac{1}{2}\right)}+\tan^{-1}{\left(\dfrac{1}{7}\right)}=\sin^{-1}{\left(\dfrac{31}{25\sqrt{2}}\right)}$$



If $$\tan^{-1}a+\tan^{-1}b+\tan^{-1}c=\pi$$, then prove that $$a+b+c=abc$$.



Simplify: $$tan^{-1}\left(\dfrac{3sin 2\alpha}{5+3\cos2\alpha}\right)+\tan^{-1}\left(\dfrac{1}{4}\tan\alpha\right)$$, where $$-\dfrac{x}{2}<\alpha<\dfrac{x}{2}$$



Write the simplest form of $$\tan^{-1} \left[\dfrac{\sqrt{1 + x^2} - 1}{x}\right]$$.



Prove that: $$\tan^{-1}\left(\dfrac{63}{16}\right)=\sin^{-1}\left(\dfrac{5}{13}\right)+\cos^{-1}\left(\dfrac{3}{5}\right)$$



If $$\sin^{-1}x+\sin^{-1}y+\sin^{-1}z=\pi,$$ then prove that:
$$x\sqrt{1-x^{2}}+y\sqrt{1-y^{2}}+z\sqrt{1-z^{2}}=2xyz$$



Simplify: $$\tan^{-1} \{  \sqrt{1+x^2} - x \}, x\in R$$



Solve the equation $$\tan^{-1}\dfrac{x+1}{x-1}+\tan^{-1}\dfrac{x+1}{x}=tan^{-1}(-7)$$



Does the following trigonometric equatio have any solutions? If yes, obtain the soultions(s):
$$\tan^{-1}\left(\dfrac{x+1}{x-1}\right)+\tan^{-1}\left(\dfrac{x-1}{x}\right)=-tan^{-1}7$$



Express in the simplest form:
$$\tan - 1 \left(\dfrac{\cos x - \sin x}{\cos x + \sin x}\right), -\dfrac{\pi}{4} < x < \dfrac{\pi}{4}$$



Prove that: $$\tan^{-1} \left(\dfrac{1}{2}\right) + \tan^{-1} \left(\dfrac{1}{5}\right) + \tan^{-1} \left(\dfrac{1}{8}\right) = \dfrac{\pi}{4}$$



Prove the following:
$$\cot^{-1} \left(\dfrac{xy + 1}{x - y}\right) + \cot^{-1} \left(\dfrac{yz + 1}{y - z}\right) + \cot^{-1} \left(\dfrac{zx + 1}{z - x}\right) = 0$$          $$(0 < xy, yx, zx < 1)$$



Write the value of $$\cot(\tan^{-1}a+\cot^{-1}a)$$.



Prove that: $$\tan^{-1} \left(\dfrac{1}{4}\right) + \tan^{-1} \left(\dfrac{2}{9}\right) = \dfrac{1}{2} \cos ^{-1}\left(\dfrac{3}{5}\right)$$



Write the range of one branch of $$\sin^{-1}x$$, other than the principal branch



Evaluate: $$\tan(\tan^{-1}(-4))$$



Find the value of $$\sin^{-1}\left(\sin\dfrac{4\pi}{5}\right)$$



If $$\sin(\sin^{-1}\dfrac{1}{2}+\cos^{-1}x)=1$$, then find the value of $$x$$.



Find the value of $$\sin^{-1}\left(\cos\left(\dfrac{43\pi}{5}\right)\right)$$.



If $$0 < x <1$$, then solve the following for $$x$$.
$$tan^{-1}(x+1)+tan^{-1}(x-1)=tan^{-1}\left(\dfrac{8}{31}\right)$$



Show that
$$2\tan^{-1}(-3)=\dfrac {-\pi}{2}+\tan^{-1}\left(\dfrac {-4}{3}\right)$$.



If $$2\tan^{-1}(\cos \theta)=\tan^{-1}(2\csc \theta)$$, then show that $$\theta =\dfrac {\pi}{4}$$, where $$n$$ is any integer.



Show that $$\cos \left(2\tan^{-1}\dfrac 17 \right) =\sin \left(4\tan^{-1}\dfrac 13 \right)$$.



Solve the following for $$x:\cos^{-1}\left(\dfrac{x^{2}-1}{x^{2}+1}\right)+\tan^{-1}\left(\dfrac{2x}{x^{2}-1}\right)=\dfrac{2\pi}{3}$$



Find the value of $$\tan^{-1}\left(-\dfrac {1}{\sqrt 3}\right)+\cot^{-1}\left(-\dfrac {1}{\sqrt 3}\right)+\tan^{-1}\left[\sin \left(-\dfrac {-\pi}{2}\right)\right]$$.



Find the value of $$\sin \left(2\tan^{-1}\dfrac 13 \right)+\cos (\tan^{-1} 2\sqrt 2)$$



Find the value of $$\tan\dfrac{1}{2}\left[\sin^{-1}\dfrac{2x}{1+x^{2}}+\cos^{-1}\dfrac{1-y^2}{1+y^2}\right], |x|<1, y>0$$ and $$xy<1$$.



Find the value of $$\tan^{-1}\left(\tan \dfrac {2\pi}{3}\right)$$.



Solve the following equation $$\cos (\tan^{-1}x)=\sin \left(\cot^{-1} \dfrac 34 \right)$$



Evaluate:
$$\sin^{-1}\left[\cos \left(\sin^{-1}\dfrac{\sqrt{3}}{2}\right)\right]$$



Evaluate:
$$\tan^{-1}\sqrt{3}-\sec^{-1}(-2)$$



Find the value of
$$\sin \left[2\cot^{-1}\left(\dfrac{-5}{12}\right)\right]$$



Find the value of
$$\sec\left(\tan^{-1}\dfrac{y}{2}\right)$$



Find the value of 
$$\cos^{-1}\left(\cos\dfrac{13\pi}{6}\right)$$



Find the value of 
$$\tan^{-1}\left(\tan\dfrac{9\pi}{8}\right)$$



Evaluate 
$$\tan^{-1}\left(\sin\left(\dfrac{-\pi}{2}\right)\right)$$



Find value of $$\tan (\cos^{-1}x)$$ and hence evaluate
$$\tan\left(\cos^{-1}\dfrac{8}{17}\right)$$



Prove that $$\tan (\cot^{-1}x)=\cot (\tan^{-1}x)$$. State with reason whether the equality is valid for all values of $$x$$.



Evaluate 
$$\cos\left[\sin^{-1}\dfrac{1}{4}+\sec^{-1}\dfrac{4}{3}\right]$$



Find the simplified form of
$$\cos^{-1}\left(\dfrac{3}{5}\cos x+\dfrac{4}{5}\sin x\right)$$, where $$x\in \left[\dfrac{-3\pi}{4}, \dfrac{\pi}{4}\right]$$



Show that  $$\tan \left(\dfrac{1}{2}\sin^{-1}\dfrac{3}{4}\right)=\dfrac{4-\sqrt{7}}{3}$$ and justify why the other value $$\dfrac{4+\sqrt{7}}{3}$$ is isgnored?



Prove that $$\sin^{-1}\dfrac{18}{7}+\sin^{-1}\dfrac{3}{5}=\sin^{-1}\dfrac{77}{85}$$



The set of values of $$\sec^{-1}\dfrac 12 $$ is _________.



Fill in the blanks in the following:
If $$\cos ( \tan^{-1}x+\cot^{-1}\sqrt 3)=0$$, then the value of $$x$$ is ............



Fill in the blanks in the following:
The value of $$\sin^{-1}\left( \sin \dfrac{3\pi}{5}\right)$$ is .........



Find the value of $$4\tan^{-1}\dfrac{1}{5}-\tan^{-1}\dfrac{1}{239}$$



Prove that $$\tan^{-1}\dfrac{1}{4}+\tan^{-1}\dfrac{2}{9}=\sin^{-1}\dfrac{1}{\sqrt{5}}$$



Fill in the blanks in the following:
If $$y=2\tan^{-1}x+\sin^{-1}\left( \dfrac{2x}{1+x^2}\right)$$, then .... $$< y < $$ ....



Fill in the blanks in the following:
The value of $$\cos^{-1}\left( \cos \dfrac{14\pi}{3}\right)$$ is ________.



Fill in the blanks in the following:
The value of $$\cot^{-1}(-x)x\in R$$ in terms of $$\cot^{-1}x$$ is .........



 Show that $$ \sin^{-1} \left ( 2x \sqrt{1 - x^{2}} \right ) = 2 \sin^{-1} x $$



Fill in the blanks in the following:
The result $$\tan^{-1}x-\tan^{-1}y=\tan^{-1}\left( \dfrac{x-y}{1+xy}\right)$$ is true when value of $$xy$$ is .......



Find the value of $$ \tan \left (  \tan^{-1} x + \cot^{-1}x\right ) $$



Prove the following: $$\tan^{-1}\left[\dfrac{\cos\theta+\sin\theta}{\cos\theta-\sin\theta}\right]=\dfrac{\pi}{4}+\theta$$, if $$\theta \epsilon \left(-\dfrac{\pi}{4},\dfrac{\pi}{4}\right)$$



Fill in the blanks in the following:
The value of $$\cos ( \sin^{-1}x+\cos^{-1}x)$$, where $$|x| \le 1$$, is .............



Fill in the blanks in the following:
The value of $$\tan \left( \dfrac{\sin^{-1}x+\cos^{-1}x}{2}\right)$$, where $$x=\dfrac{\sqrt 3}{2}$$, is ............



Prove the following: $$\tan^{-1}\left[\sqrt{\dfrac{1-\cos\theta}{1+\cos\theta}} \,\right]=\dfrac{\theta}{2}$$,if $$\theta \,\epsilon (-\pi, \pi)$$



Prove that $$ \tan ^{-1} x + \tan^{-1} \dfrac{2x}{1 - x^{2}} = tan^{-1} \left ( \dfrac{3x - x^{3}}{1 - 3x^{2}} \right ) $$



$$ 2 \tan ^{-1} \dfrac{1}{2} + \tan ^{-1} \dfrac{1}{7} = \tan^{-1} \dfrac{31}{17}$$



$$ \tan^{-1} \dfrac{2}{11} + \tan ^{-1} \dfrac{7}{14} = \tan ^{-1} \dfrac{1}{2}$$



$$ 3 \sin^{-1} x = \sin^{-1} ( 3x - 4x^{3}) , x \epsilon \left [ -\dfrac{1}{2},\dfrac{1}{2} \right ]$$



Find the values of the following :
$$\tan^{-1} (1) + \cos ^{-1} (-\dfrac{1}{2}) + \sin ^{-1} ( -\dfrac{1}{2}) $$



$$ 3 \cos^{-1} x = \cos^{-1} ( 4x^{3} - 3x) , x \epsilon \left [ \dfrac{1}{2}, 1 \right ] $$



Find the values of the following :
$$\cos^{-1}(\dfrac{1}{2}) + 2 \ sin ^{-1} (\dfrac{1}{2}) $$



Solve $$ \tan ^{-1} \left \{ \dfrac{\sqrt{1 +x^{2} - \sqrt{1 - x^{2}}}}{\sqrt{1 + x^{2} + \sqrt{1 - x^{2}}}} \right \} $$



Find the values of each of the following .
$$ \tan \dfrac{1}{2} \left [ \sin^{-1} \dfrac{2x}{1 + x^{2}}+ \cos^{-1}\dfrac{1 - y^{2}}{1 + y^{2}} \right ] $$



Find the values of each of the following .
$$ \tan^{-1} \left [ 2 \cos\left ( 2 \sin^{-1}\dfrac{1}{2} \right ) \right ] $$



Find the values of each of the following .
$$ \cot \left ( \tan^{-1} a + \cot^{-1} a \right ) $$ 



Write the following function in the simplest form :
$$ \tan^{-1} \dfrac{\sqrt{1 + x^{2} -1}}{x} ,  x\neq 0$$



$$ \tan^{-1}\sqrt{ \dfrac{1- \cos x}{1 + \cos x}} , 0 < x  < \pi$$



Write the following function in the simplest form :
$$ \tan^{-1} \dfrac{1}{\sqrt{x^{2}-1}} ,  |x| > 1 $$



$$ \tan^{-1} \dfrac{\cos x - \sin x}{\cos x +  \sin x} , \dfrac{- \pi}{4} < x < \dfrac{3\pi}{4}$$



In $$ \sin \left ( \sin^{-1}\dfrac{1}{5} + \cos^{-1} x \right ) = x $$



Find the value of the following :
$$\tan ^{-1} \left ( \dfrac{\sqrt{1 + x}- \sqrt{1 - x}}{\sqrt{1 + x } + \sqrt{1 - x}} \right )= \dfrac{x}{4} - \dfrac{1}{2} \cos^{-1} x$$
$$-\dfrac{1}{\sqrt{2}}\leq  x \geq  [Hint : put x = \cos 2\theta ]$$



If $$ \tan^{-1} \dfrac{x - 1}{x - 2} + \tan^{-1} \dfrac{x +1}{x +2} = \dfrac{\pi}{4} $$ Then find the value of x 



Find the values of each of the expressions.
$$ \sin^{-1} \left ( \sin\dfrac{2\pi}{3} \right )$$



$$\dfrac{9\pi }{8} - \dfrac{9}{4} \sin^{-1} \dfrac{1}{3} = \dfrac{9}{4} \sin^{-1} \dfrac{2\sqrt{2}}{3}$$



Find the values of each of the expressions.
$$ \tan \left ( \sin^{-1}\dfrac{3}{5} + \cot^{-1}\left ( \dfrac{3}{2} \right ) \right ) $$



Find the values of each of the expressions .
$$ \tan^{-1} \left ( \tan \dfrac{3\pi}{4} \right )$$



Prove the following
$$\tan^{-1} \sqrt{\dfrac{ax}{bc}}+\tan^{-1} \sqrt{\dfrac{bx}{ca}}+\tan^{-1} \sqrt{\dfrac{cx}{ab}}=\pi, where\ a+b+c=x$$



Prove the following
$$2 \tan^{-1}x= \sin^{-1}\dfrac{2x}{1+x^2}=\cos^{-1} \dfrac{1-x^2}{1+x^2}$$



Prove the following
$$2 \tan^{-1}\dfrac{1}{2} - \tan^{-1}\dfrac{1}{7}=\dfrac{\pi}{4}$$



$$\tan ^{-1} \dfrac{1 -x}{1 + x} = \dfrac{1}{2} \tan^{-1} x, (x>0)$$



Prove the following
$$2 \tan^{-1}\dfrac{17}{19} - \tan^{-1}\dfrac{2}{3}=\tan^{-1} \dfrac{1}{7}$$



$$2 \tan ^{-1} (\cos^{ x}) = \tan^{-1}  (2 cosec x)$$



If $$\sin^{-1}\left(\dfrac{3}{4}\right)+\sec^{-1}\left(\dfrac{4}{3}\right)=x$$, then find $$x$$.



Solve the following equation
$$\sec^{-1} \left(\dfrac{x}{a} \right)-\sec^{-1} \left(\dfrac{x}{b} \right)= \sec^{-1}b-\sec^{-1}a$$



Find :$$\sin^{-1}\left(\dfrac{4}{5}\right)+2\tan^{-1}\left(\dfrac{1}{3}\right)$$



If $$4\sin^{-1}x+\cos^{-1}x=\pi$$, then find $$x$$.



Prove the following
$$\dfrac{1}{2} \tan^{-1} x=\cos^{-1} \left\{ \dfrac{1+ \sqrt{1+x^2}}{2 \sqrt{1+x^2}} \right\}^{\dfrac{1}{2}}$$



If $$\sin^{-1}\left(\dfrac{5}{13}\right)+\sin -1\left(\dfrac{12}{x}\right)=90^o$$, then find $$x$$.



Prove that $$\tan^{-1}(\dfrac{1}{2}\tan 2A)+\tan^{-1}(\cot A)+\tan^{-1}(\cot^2A)=0$$



Solve : $$\tan^{-1} 4x + \tan^{-1} 6x = \dfrac{\pi}{4}$$. 



Prove that:
$$2\tan^{-1}\left[\tan (45^o -\alpha)\tan \dfrac{\beta}{2}\right]=\cos^{-1}\left(\dfrac{\sin 2\alpha +\cos \beta}{1+\sin 2\alpha \cos \beta}\right)$$



$$\phi =\tan^{-1}\dfrac{x\sqrt{3}}{2K-x}$$ and $$\theta =\tan^{-1}\dfrac{2x-K}{K\sqrt{3}}$$
then prove that value of $$\phi -\theta $$ is $$30^o$$.



Prove that $$\tan^{-1}x=2\tan^{-1}(\csc (\tan^{-1}x)-\tan (\cot^{-1}x)$$.



The number  of solutions of the equation $$\displaystyle \sin^{-1}\left (\dfrac{1+x^{2}}{2x}\right)=\dfrac{\pi}{2}\sec(x-1)$$ is



Prove that $$\tan^{-1}\left (\dfrac {\cos x}{1 + \sin x}\right ) = \dfrac {\pi}{4} - \dfrac {x}{2}, x\epsilon \left (-\dfrac {\pi}{2}, \dfrac {\pi}{2}\right )$$



Prove that $$\sin^{-1}\left (\dfrac {8}{17}\right ) + \sin^{-1}\left (\dfrac {3}{5}\right ) = \cos^{-1} \left (\dfrac {36}{85}\right )$$



Prove the following:
$$\cos^{-1}\left (\dfrac {4}{5}\right ) + \cos^{-1}\left (\dfrac {12}{13}\right ) = \cos^{-1}\left (\dfrac {33}{65}\right )$$



If $$\sin \left (\sin^{-1} \dfrac {1}{5} + \cos^{-1}x \right ) = 1$$, then find the value of $$x.$$



Write the value of $$\displaystyle  \tan\left(2\tan^{-1}\frac{1}{5}\right)$$ 



If $$\tan^{-1} \dfrac{x-1}{x-2}+\tan^{-1}\dfrac{x+1}{x+2}=\dfrac{\pi}{4}$$, then find the value of $$x$$.



If $$\displaystyle cos^{-1} x + cos^{-1} y = \frac{\pi}{2}$$ then prove that $$cos^{-1} x = sin^{-1} y$$



Solve: $$\displaystyle \sin^{-1} \frac{5}{x} + \sin^{-1} \frac{12}{x} = \frac{\pi}{2}$$



Prove that:
$$2\tan^{-1} \left (\dfrac {1}{5}\right ) + \sec^{-1} \left (\dfrac {5\sqrt {2}}{7}\right ) + 2\tan^{-1} \left (\dfrac {1}{8}\right ) = \dfrac {\pi}{4}.$$



Evaluate: $$\sum _{ r=1 }^{ \infty  }{ \tan ^{ -1 }{ \left( \cfrac { 2 }{ 1+(2r+1)(2r-1) }  \right)  }  } $$



If $$\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi$$ then prove that:
$$x+y+z = xyz$$



Calculate (192 - 214)
$$\sin ^{-1}$$ + 2 $$\tan^{-1}$$ (-$$\sqrt{3}$$).



Simplify
$$\cos^{-1}$$ (cos $$\dfrac{8\pi}{7}$$).



Show that 
$$\tan^{-1} (\frac{1}{2}) + \tan^{-1} (\frac{1}{3}) = \cfrac{\pi}{4}$$



Simplify 
$$\tan^{-1}$$ (tan $$\dfrac{8\pi}{7}$$).



Simplify
$$\tan^{-1}$$ $$\sqrt{2}$$ - $$\cot^{-1}$$ (1/$$\sqrt{2}$$)



Prove that: $$\sin^{-1}\left (\dfrac {3}{5}\right ) + \cos^{-1} \left (\dfrac {12}{13}\right ) = \sin^{-1}\left (\dfrac {56}{65}\right )$$.



Prove $$2 \sin^{-1} \left(\dfrac{5}{13}\right)=\cos^{-1}\left(\dfrac{119}{169}\right)$$



Write $$\tan^{-1} \left( \cfrac{\sqrt{1+\cos x}}{\sqrt{1-\cos x}} \right)$$ in its simplest form.



$$ \sin^{-1} ( \dfrac{\sqrt{1+x} + \sqrt{1-x} }{2})$$ 



Find the value of $${\sin}^{-1}{(\sin{\dfrac{3\pi}{5}})}$$.



Let (x, y) be such that $$sin^{-1} ax + cos^{-1} y + cos^{-1} (bxy) = \frac{\pi}{2}$$



The sum $$\sum_\limits{n=1}^{\infty}  \tan^{-1}\left(\dfrac{2}{n^2}\right) $$ equals $$\dfrac{\pi}{m}$$.Find $$m$$



Find the value of $$\sin ^{ -1 }{ \left( \cos { \cfrac { 33\pi  }{ 5 }  }  \right)  } $$



Find m if the following equation holds true 
 $$\tan \left(\dfrac{1}{2} \sin^{-1} \dfrac{3}{4} \right) = \dfrac{4 - \sqrt{m}}{3}$$



$$Show \>that $$   $$ cot^{-1}\left( \frac{\sqrt{1+ sinx}+ \sqrt{1-sinx}}{\sqrt{1+ sinx}- \sqrt{1-sinx}}\right) =\frac{x}{2}$$ $$for\>x\in\>(0,\frac{\pi}{2})$$



$$\sin^{-1}(1-x)-2\sin^{-1}x=\cfrac{\pi}{2}$$, then $$x$$ is equal to:



If $$\sin^{-1}x+\sin^{-1}y+\sin^{-1}z =\pi$$, prove that $$x\sqrt{1-x^2}+y\sqrt{1-y^2}+z\sqrt{1-z^2}=2xyz$$.



Find the value of $$\cos^{-1} (\cos \dfrac {2\pi}{3}) + \sin^{-1} \left (\sin \dfrac {2\pi}{3}\right )$$.



Solve the following equation $$cos(tan^{-1}x)=sin \left(cot^{-1}\dfrac{3}{4}\right)$$



Solve:
$$\tan \left( {{{\cos }^{ - 1}}\frac{1}{x}} \right) = \sin \left( {{{\cot }^{ - 1}}\frac{1}{x}} \right)$$



Solve  :  $$y=\sin^{-1}(\sec x)$$



Evaluate:$$ {{\tan }^{-1}}\left( \dfrac{\sqrt{1+\cos x}-\sqrt{1-\cos x}}{\sqrt{1+\cos x}+\sqrt{1-\cos x}} \right) $$   



Find the values of $$\sin\left(\cos^{-1}\dfrac{3}{5}+\cos^{-1}\dfrac{12}{13}\right)$$.



Find the value of $$x$$ for which $${\sec ^{ - 1}}x + {\sin ^{ - 1}}x = \dfrac{\pi }{2}.$$ 



Solve the equation
$${\tan ^{ - 1}}\frac{{1 - x}}{{1 + x}} - \frac{1}{2}{\tan ^{ - 1}}x = 0,x > 0$$



Express $$\tan^{-1}\left(\dfrac{\cos x}{1-\sin x}\right), -\dfrac{\pi}{2}<x<\dfrac{\pi}{2}$$ in the simplest form.



Solve : $$\tan^{-1}\sqrt{\dfrac{1+\sin x}{1-\sin x}} $$ ,$$-\dfrac{\pi}{2} < x < \dfrac{\pi}{2}$$



Tan $$^{-1}$$ {$$\dfrac{\sqrt{1 +  cos x}}{1 - cos x}$$, 0 < x < $$\pi$$



tan $$^{-1}$$ {$$\dfrac{cos x}{1 + sin x}$$}, 0 < x < $$\pi$$



$$cos^{-1}(2x-1)= ?$$



cos $$^{-1}$$ ($$\dfrac{1 - x^2}{1 + x^2}$$), 0 < x < 1



sin$$^{-1}$$ $$\dfrac{1 - x^2}{1 + x^2}$$, 0 < x < 1



Solve:$$\left( { tan }^{ -1 }x \right) ^{ 2 }+\left( { cot }^{ -1 }x \right) ^{ 2 }=\dfrac { 5{ \pi  }^{ 2 } }{ 8 } $$



Let y = $${ sin }^{ -1 }\left( \dfrac { \sqrt { 1+x } +\sqrt { 1-x }  }{ 2 }  \right) $$ put $$x=cos\theta .\quad then\theta ={ cos }^{ -1 }x$$



$${ cot }^{ -1 }\left[ \frac { \sqrt { 1+sinx } +\sqrt { 1-sinx }  }{ \sqrt { 1+sinx } -\sqrt { 1-sinx }  }  \right] ,0<x<\frac { \pi  }{ 2 } $$



Find the value of x if,
$${ \cos }^{ -1 }\dfrac { a }{ x } -\cos^{ -1 }\dfrac { b }{ x } =\cos^{ -1 }\dfrac { 1 }{ b } -{ \cos }^{ -1 }\dfrac { 1 }{ a } $$



write the value of $${ tan }^{ -1 }\left\{ 2sin\left( 2co{ s }^{ -1 }\frac { \sqrt { 3 }  }{ 2 }  \right)  \right\} $$



Evaluate
1344759_a2f7353461534b698b81e1bb6260b264.jpg



If $$\tan^{-1}{(x+2)}+\tan^{-1}{(x-2)}=\tan^{-1}{(\cfrac{1}{2})}$$, then sum of value(s) of $$x$$ is equal to ?



$$solve\quad for\quad x,\\ 2{ tan }^{ -1 }\left( cos\quad x \right) ={ tan }^{ -1 }\left( 2\quad cosec\quad x \right) $$



Prove that : $$\tan^{-1}{\cfrac{1}{5}}+\tan^{-1}{\cfrac{1}{7}}+\tan^{-1}{\cfrac{1}{3}}+\tan^{-1}{\cfrac{1}{8}}=\cfrac{\pi}{4}$$



Let $$y=\sin^{-1}{(\sin{8})}-\tan^{-1}{(\tan{10})}+\cos^{-1}{(\cos{12})}-\sec^{-1}{(sec{9})}+\cot^{-1}{(\cot{6})}-cosec^{-1}{(cosec{7})}$$. If simplifies to $$a\pi+b$$, then find $$(a-b)$$.



Show that:$$\sin ^ { - 1 } \left( - \frac { 1 } { 2 } \right) + \cos ^ { - 1 } \left( \frac { \sqrt { 3 } } { 2 x } \right) = \cos ^ { - 1 } \left( - \frac { 1 } { 2 } \right)$$



  Prove that: $$\tan ^{ -1 }{ \left(\dfrac { 3 }{ 4 } \right) } +\tan ^{ -1 }{ \left(\dfrac { 3 }{ 5 } \right) } -\tan ^{ -1 }{ \left( \dfrac { 8 }{ 19 }  \right) =\dfrac { \pi  }{ 4 }  } $$



Find $$x$$ if $${ tan }^{ -1 }(x+2)+{ tan }^{ -1 }(x-2)={ tan }^{ -1 }\left( \frac { 8 }{ 79 }  \right) ;x>0$$



Solve for $$ x , 2 \tan ^ { - 1 } ( \sin x ) = \tan ^ { - 1 } ( 2 \sec x ) , 0 < \frac { \pi } { 2 } $$



$$tan^{-1} A + tan^{-1} B= ?$$



Solve:
$$cos^{-1}{(\dfrac{2x}{1+x^2})}$$



Show that $$\tan ^ { - 1 } ( 1 / 4 ) + \tan ^ { - 1 } ( 2 / 9 ) = \frac { 1 } { 2 } \cos ^ { - 1 } \left( \frac { 3 } { 5 } \right)$$



Solve -
If y = $$sec^-1 (\frac{1}{\sqrt{1 - x^2}})$$



Solve the equation.
$$\cot^{-1} x + \cot^{-1} (n^2 - x + 1) = \cot^{-1} (n - 1)$$



Write the value of $$\cos^{-1} (\cos 1540^{\circ})$$.



Find the simplest values of
$$\tan^{-1} \dfrac{\sqrt{1+x^2} - 1}{x}$$, and $$\tan \left(\dfrac{1}{2}\sin^{-1} \dfrac{2x}{1 + x^2}+\dfrac{1}{2} \cos^{-1} \dfrac{1-y^2}{1+y^2}\right)$$. 



Express $$tan^-1 (\frac{cosx}{1-sin x})$$, $$-\frac{\pi}{2} < x < \frac{3\pi}{2}$$ in the simplest form.



Write the value of $$\tan^{-1} \left (\dfrac {1}{x}\right )$$ for $$x < 0$$ in terms of $$\cot^{-1} (x)$$.



If $$ax+b(sec(\tan^{-1}x))=c$$ and $$ay+b(sec(\tan^{-1}y))=c$$, then find the value of $$\dfrac{x+y}{1-xy}$$.



Prove that $$\tan^{-1}\left(\dfrac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}\right)=\dfrac{\pi}{4}+\dfrac{1}{2}\cos^{-1}x^{2}$$



Find the real Solution of the equation
$$\tan^{-1}\sqrt {x(x+1)}+\sin^{-1}\sqrt {x^2 +x+x}=\dfrac {\pi}{2}$$.



Solve the equation
$$\theta  = \tan^{-1} (2 \tan^2 \theta) - \dfrac{1}{2} \sin^{-1}\dfrac{3\sin 2\theta}{5+4\cos 2\theta}$$.



Show that
$$\sin^{-1}\dfrac{5}{13}+\cos^{-1}\dfrac{3}{5}=\tan^{-1}\dfrac{63}{16}$$



If $$\dfrac{1}{2}\sin^{-1} \dfrac{2x}{1-x^2}+\dfrac{1}{2} \cos^{-1}\dfrac{1-y^2}{1+y^2}+\dfrac{1}{3}\tan^{-1}\dfrac{3z-z^3}{1-3z^2}=5 \pi$$
then prove that $$x+y+x=xyz$$



Class 12 Commerce Maths Extra Questions