For each of the differential equations, find the general solution:
$$\cfrac{dy}{dx}+2y=\sin\,x$$
2. $$\cfrac{dy}{dx}+3y=e^{-2x}$$
$$\cfrac{dy}{dx}+\cfrac{y}{x}=x^{2}$$
4. $$\cfrac{dy}{dx}+(\sec\,x)y=\tan\,x$$ ...$$\left(0\le x < \cfrac{\pi}{2}\right)$$
5. $$\cos^2x\cfrac{dy}{dx}+y=\tan\,x$$ ...$$\left(0\le x < \cfrac{\pi}{2}\right)$$
$$x\cfrac{dy}{dx}+2y=x^2\log\, x$$
$$x\, \log\, x\cfrac{dy}{dx}+y = \cfrac{2}{x} \log x$$
$$(1+x^2)dy + 2xy dx = \cot x dx$$ ...$$ (x \neq 0)$$
$$x\cfrac{dy}{dx}+y-x+xy\, \cot\, x=0$$ ...$$(x\neq 0)$$
$$(x+y)\cfrac{dx}{dy}=1$$
$$y\, dx+(x-y^2)dy=0$$
12. $$(x+3y^2)\cfrac{dy}{dx}=y$$ ...$$(y > 0)$$