Factorisation - Class 8 Maths - Extra Questions

Factorise $$ab({x^2} + {y^2}) - xy({a^2} + {b^2})$$.



Divide the polynomial $$3x^{4} -4x^{3} -3x - 1$$ by $$x -1$$.



Find  the root of given equation  $${x}^{2}+6x+5$$



Factorize $$x\left( {x + z} \right) - y\left( {y + z} \right)$$



Factorise the expression and divide them as directed.
$$(5p^2-25p+20)\div (p-1)$$.



Factousation, $$16{p^2}{q^2}{r^3} - 24{p^3}{q^2}{r^2} + 8{p^3}{q^2}{r^2}$$



factorise 
$$3 x ^ { 2 } + 6 x ^ { 3 }$$



Factorise:
$$ab^{2}+b(a-1)-1$$



Factorize:
$$4 a ^ { 2 } - 8 a b$$



Factorize 
$$x ^ { 2 } + 7 x + 12 = 0$$



Factorize:
$$2 x ^ { 3 } b ^ { 2 } - 4 x ^ { 5 } b ^ { 4 }$$



Factorize: $$15 x ^ { 4 } y ^ { 3 } - 20 x ^ { 3 } y$$



Factorize:.$$15 x + 5$$



Factorise completely by removing a monomial factor.
5m+5n



Factorise completely by removing a monomial factor.
5a+8b



Factorise completely by removing a monomial factor.
2x-4



Factorize: 
$$a ^ { 3 } b - a ^ { 2 } b ^ { 2 } - b ^ { 3 }$$



Factorise completely by removing a monomial factor.
5x+10



Solve : $$(x^3+2x^2+3x) \div 2x$$



Factorise completely by removing a monomial factor.
-3m-15n



Factorise completely by removing a monomial factor.
7x-14y



Factorise completely by removing a monomial factor.
$$3y-9$$



Factorize:
$$6 x ^ { 2 } y + 9 x y ^ { 2 } + 4 y ^ { 3 }$$



Factorise completely by removing a monomial factor.
-7p-14q



Factorise completely by removing a monomial factor.
ax+bx



Factorise completely by removing a monomial factor.
$$4 + 12{x^2}$$



Factorise completely by removing a monomial factor.
$${x^2}{y^{}} + x{y^2}$$



Factorize:
$$6{x^2} - 11x$$



Factorise :
$$a{x^2} + a{b^3}$$



Factorise completely by removing a monomial factor
$${x^2}{y^2} + {x^2}$$



divide
$$({y^2} + 10y + 24) \div (y + 4)$$



Factorise completely by removing a monomial factor
ax+ay+az



Factories:-
$$6n+12n^2$$



Factories:-
$$6n+12n^2+21n$$



Factorize $$x^3+13x^2+32x+20$$, if it is given that $$x+2$$ is its factor.



Factorise
$$12{x^2} - 9x$$



$$12xy(9x^{2}-16y^{2})\div 4xy(3x+4y)$$



Factorize: $${x^3} + 6{x^2}y + 9x{y^2}$$.



Factorize:
$$(a^2-b^2)x^2+2ax+1$$.



Factorise : 
1.  $$2x^{2}-x-3$$
2.  $$-2x^{2}+3x+9$$



Solve:
$$z^2-16z+55=0$$.



Factorize: $${x}^{2}+10x+24$$



$$(4x^4-5x^3-7x+1)\div (4x-1)$$.



Divide $$\left( { 2y }^{ 3 }+{ 4y }^{ 2 }+3 \right) \div { 2y }^{ 2 }$$



Factorise : $$ 150 -6x^2 $$



Factorise : $$ 8ab^2 - 18a^3 $$



Factorise : $$ x^2 +\dfrac {1}{x^2} - 2 -3x +\dfrac {3}{x} $$



Factorise : $$ a (a-2b-c) +2bc $$



Factorise : $$ 4a^2 -9b-2bc  -c^2 $$



Factorise the following expressions:
(i) $$ 32a^2b - 72b^3 $$
(ii) $$ 9 (a +b)^3 - 25 ( a+b) $$



$$ 18 m +16 n $$



$$ 20x^2 -45y^2 $$



$$  x^3 -25x $$



$$ 14 (a-3b)^3 - 21p (a -3b) $$



Factorise $$ 27a^3b^3 - 18 a^2b^3 + 75a^3b^2 $$



$$ 10 (2p +q)^3 -15b( 2p +q)^2 + 35(2p +q) $$



$$  150 -6a^2 $$



$$ 32x^2 -18y^2 $$



$$ 3a(x^2 +y^2) +6b ( x^2 +y^2 ) $$



$$ x(x^2+y^2-x^2) +y(-x^2-y^2 +z^2) -z (x^2 +y -z^2) $$



$$ \pi a^5 - \pi^3 ab^2 $$



Factorise $$m^2+m+1=0$$.



Factorize:
$${a}^{3}-3{a}^{2}b+3a{b}^{2}-{b}^{3}+8$$



Factorise:
$$x^{2}+20x-69$$



Divide $$\sqrt{2}a^3+3\sqrt{2}a^2+6a$$ by $$2a$$.



Factorize $$\dfrac {1}{6}a^{2}-a+\dfrac {4}{3}$$.



Factorise:
$$4u^2+8u$$



Factorise
$$ - 3{x^2} + 3xy - 4xza$$



Factorise:
$$\left( {a - b} \right) + {\left( {a - b} \right)^2}$$



Factorise:
$$ - 5{a^2} + 4a + 5\left( { - {a^2} + 5} \right)$$



Factorize $$x^{3}+13x^{2}+32x+20$$



Resolve $$2{b}^{2}-5b-3$$ in to factors.



Factorise: $${ 7x }^{ 3 }z-{ 21x }z^{ 2 }$$



$${ ab }^{ 2 }+(a-1)b-1$$



Factorise: $${ x }^{ 2 }+18x+45$$



 Factorize  $$p^2+1.5p+0.5$$.



Find the quotient and remainder on dividing the polynomials $$a{x^2} + \left( {b + ac} \right)x + bc\;by\;x + c$$



Resolve into factors $$3x^2-6x$$



Divide : $$a^2 + 7a +12$$  by  $$(a+4)$$.



Find the quotient and remainder.
$$(2p^{2}+7p-9)\div (p-6)$$



Factorise 

$$18a^3b^3−27a^2b^3+36a^3b^2$$



Factorise 

$$12x^2y^3 - 21 x^3y^2$$



Factorise 

$$15ab^2 – 20a^2b$$



Factorise the following:
$$27 - 125x^{3} - 135x + 225x^{2}$$



Resolve in to factors $$x^2+xy$$



Factorise $$9{x}^{2}+12xy$$.



Factorise the following:
$$125x^{3} + 64y^{3} - 300x^{2}y + 240xy^{2}$$



$$5x^2-10x$$



Factorise $$6xy + 9y^2$$



Divide $$-8x^{9}$$ by $$2x^{7}$$



Find the common factors of the terms $$8x$$ and $$24$$.



Factorise: $$25-50p-100q$$.



Factorise: $$2p(a-b)+3q(5a-5b)+4r(2b-2a)$$.



Factorise $$25a^2 b + 35ab^2$$



Factorise the following:
$$64a^{3} + 21b^{3}$$



Factorise $$6ab - b^2 - 2bc + 12 ac$$



Factorise: $$7p^2 + 49pq$$



Factorise:
$$a^4-343a$$



Factorise: $$4ab{ x }^{ 2 }+8abx+12aby$$



factorise : $${ 27p }^{ 3 }\left( { 4q-2r }^{ 3 } \right) +{ 64q }^{ 3 }\left( { 2r-3p }^{ 3 } \right) +{ 8r }^{ 3 }\left( { 3p-4q }^{ 3 } \right)$$



Find the factors of $$y^{2}-7y+12$$.



$$(p^{2}+5p+4)\div(p+1)$$



Factorise: $$36a^2b - 60a^2bc$$



Factorise the following:
$$2x^3y^2-4x^2y^3+8xy^4$$



Factorize the following.
$$20a^{12}b^2-15a^8b^4$$.



Find the common factors of the given terms: $$4m^2, 6m^2, 8m^3$$



Factorize the following.
$$2a^4b^4-3a^3b^5+4a^2b^5$$.



Factorize the following.
$$28a^2+14a^2b^2-21a^4$$.



Factorize the following expression.
$$abx^2+(ay-b)x-y$$.



Factorize the following expression.
$$a(a-2b-c)+2bc$$.



Factorize the following algebraic expression.
$$6x(2x-y)+7y(2x-y)$$.



Factorize the following.
$$16m-4m^2$$.



Factorize the following.
$$9x^2y+3axy$$.



Factorize the following expression.
$$a(a+b-c)-bc$$.



Factorize the following expression.
$$16(a-b)^3-24(a-b)^2$$.



Find the common factors of the given terms: $$7xy, 35x^2y^3$$



Factorise the polynomial: $$3ax - 6xy + 8by - 4bx$$



Factorise: $$5x^2 - 25xy$$



Factorize the following expression.
$$a^2x^2+(ax^2+1)x+a$$.



Factorize the following expression.
$$x^2+xy+xz+yz$$.



Factorize the following.
$$x^2yz+xy^2z+xyz^2$$.



Factorize the following algebraic expression.
$$49-a^2+8ab-16b^2$$.



Factorize the following expression.
$$ab-a-b+1$$.



Factorize the following expression.
$$x-y-x^2+y^2$$.



Factorize the following expression.
$$x^4-625$$.



Factorize the following expression.
$$x^2+y-xy-x$$.



Find the common factors of the given terms: $$12x^2y, 18xy^2$$



Find the common factors of the given terms: $$15p, 20qr, 25rp$$.



Factorise: $$ut + at^2$$



Factorise the polynomial: $$x^3 + 2x^2 + 5x + 10$$



Factorise: $$25x^2 + 9y^2 - 30xy$$



Factorize the following quadratic polynomial by using the method of completing the square.
$$p^2+6p+8$$.



Factorize the following expressions:
$$17l^{2} + 85m^{2}$$



Factorize the following expression.
$$4(xy+1)^2-9(x-1)^2$$.



Factorize the following expression.
$$p^2q^2-p^4q^4$$.



Factorize the following expressions:
$$-12y + 20y^{3}$$



Factorize the following expressions:
$$5a^{2} + 35a$$



Factorize the following expressions:
$$pq - pqr$$



Factorize: $$6xy - 4y + 6 - 9x$$



Factorize the following expressions:
$$18m^{3} - 45mn^{2}$$



Factorize:
$$mx - my - nx + ny$$



Factorize:
$$ax^{3} - bx^{2} + ax - b$$



Factorize:
$$2m^{3} + 3m - 2m^{2} - 3$$



Factorize:
$$2x + 3xy + 2y + 3y^{2}$$



Factorize:
$$p^{2} - 6p + 8$$



Factorize the polynomial:
$$a^{2} + 13a + 12$$



Factorize:
$$a^{2} + 11b + 11ab + a$$



Factorize:
$$15b^{2} - 3bx^{2} - 5b + x^{2}$$



Factorize:
$$169p^{2} - 625q^{2}$$



Factorize:
$$a^{2}x^{2} + axy + abx + by$$



Work out the following divisions:
$$(9x^{5} - 15x^{4} - 21x^{2}) \div (3x^{2})$$



Work out the following divisions:
$$(5x^{3} - 4x^{2} + 3x) \div (2x)$$



Factorize the polynomial:
$$x^{2} - 14xy + 24y^{2}$$



Factorize the polynomial:
$$m^{2} - 21m - 72$$



Work out the following divisions:
$$(8x^{4}yz - 4xy^{3}z + 3x^{2}yz^{4})\div (xyz)$$



Simplify the following expressions:
$$(x^{2} + 7x + 10)\div (x + 2)$$



Work out the following divisions:
$$4x^{2}y - 28xy + 4xy^{2} \div (4xy)$$



Work out the following divisions:
$$5y^{3} - 4y^{2} + 3y \div y$$



Simplify:
$$(7m^{2} - 6m)\div m$$



Factorize the polynomial:
$$x^{2} - 5x + 6$$



Factorize the following:
$$2m^{2} - 10mn - 2m + 10n$$



Factorise:
$$4a - 8b + 5ax - 10 bx$$



Resolved into factor 
$$ap+ap^{2}$$



Solve $$2x^2 - 5x =0 $$



Factorize:
$$ { ab }^{ 2 }-ab-{ a }^{ 2 }b+{ a }^{ 2 }$$



Factorisation of 721 ? 



Factorize of $$a^{2}+10\ a+24$$



Divide the following:
$$({ x }^{ 3 }-64)\div (x-4)$$



Divide, Write the quotient and the remainder.
$$40a^{3}\div (-10a)$$



Divide: $$3{a}^{3}-9{a}^{2}b-6a{b}^{2}$$ by $$-3a$$



Factorize:
$$99x^2-202xy+99y^2$$.



Simplify :
$$3x(2+5x)-6(1-2x)$$



Factorise
$$6{ x }^{ 2 }-5x-6$$



Factories the expressions. 
$$y(y+z)+9(y+z)$$



Factorize:
$$x ^ { 2 } - 23 x + 132$$



Factorise :
$$6x^{2}+5x-6$$



Factorise the following expression. 
$${q^2} - 10q + 21$$ 



Factorise the expression 
$$ax^{2}+bx$$



Factorise:
$$q^2-10q+21$$



Solve : $$3\left( x-4 \right) ^{ 2 }-5\left( x-4 \right) $$



Solve it :- 
$$x^2 + (a + \frac{1}{a}) x + 1 = 0$$



Factorize;$${ g }^{ 2 }-10 g+21.$$



Factorise:
$$\sqrt {2}x-\sqrt {3}x^{2}$$



Factorise : $${ a }^{ 2 }-\left( b+5 \right) a+5b$$



Find 
$$\sqrt { 3} { x }^{ 2 } -2x\sqrt { 3 } $$



Factorize
$$ 21 py^2 -56py $$



Divide :
$$x^{5} - 15x^{4} - 10x^{2}$$ by $$-5x^{2}$$



Divide :
$$8m - 16$$ by $$-8$$



Divide :
$$4a^{2} - a$$ by $$-a$$



Divide :
$$3y^{3} - 9ay^{2} - 6ab^{2}y$$ by $$- 3y$$



Divide :
$$10x^{3}y - 9xy^{2} - 4x^{2}y^{2}$$ by $$xy$$



Divide :
$$8x + 24$$ by $$4$$



$$ 4x^3 -6 x^2 $$



Factorise the expression $$m^2 - 4m - 21$$



Factorise : $$14{x^2} + 9x + 1$$



Solve
$$3x^{4}-4x^{3}$$



Facrorise $$m(m-1)-n(n-1)$$



Identify the terms and factors in the following expression.
i) $$5ab^2 + 7a^2b$$
ii) $$12xyz - 6xy$$



Divide $$(4{x}^{2}-17xy+4{y}^{2} ) by  ( x-4y)$$



Factorize:
$$p^2+p-(a+2)(a+1)$$.



Factorize:
$$6(x-y)^2-(x-y)-15$$.



Factorise
$$5y^{2}+5y-10$$



Factorise $$64xy+8xy^{2}$$



Divided $$(32{x}^{4}{y}^{3}-16{x}^{3}{y}^{4})$$ by $$(-8{x}^{2}y)$$



Factorise:
$$24x^3 – 36x^2y$$



$$38x^{3}y^{2}z + 19xy^{2}$$ is equal to __________ .



Factorise
$$12x^2-27$$



Factorise 

$$x(a-3) + y(3-a)$$



Factorise 

$$x^3(2a-b) + x^2(2a-b)$$



Factorise
$$ 16p^3-4p $$



$$9+6z+9a^2$$



Factorise
$$3x^5-48x^3$$



Factorise
$$20a^2-45b^2$$



Perform the following division:
$$(ax^{3}-bx^{2}+cx) \div (-dx)$$



Factorise the following polynomials : 
(i) $$ a^2b+ab^2 -abc - b^2c +axy +bxy $$
(ii) $$ ax^2 -bx^2 + ay^2 -by^2 + az^2 - bz^2 $$



$$ 8x^2 - 6x^2 + 10x $$



Divide:
$$14p^2q^3 - 32p^3q^2 + 15pq^2 - 22p + 18q$$ by $$-2p^2q$$.



$$ 28 p^2q^2 r - 42 pq^2r^2 $$



Factorise the following :
$$ 12x^3 -14x^2 -10x $$



Factorise the following :
$$ 10x^2 -18x^3 +14x^4 $$



Factorise by taking out the common factors:
$$2(2x - 5y)( 3x + 4y) - 6(2x - 5y) (x - y)$$



Solve:
$$x^2(a-b)-y^2(a-b)+z^2(a-b)$$



Factorise: 
$$3a^5-108a^3$$



Factorise: 
$$50a^3-2a$$



Resolve in to factors: $$5 -  10m -  20n.$$



Factorise :
$$4x^2+\dfrac{1}{4x^2}+1$$



Solve:
$$4x(3x-2y)-2y(3x-2y)$$



Factorise : 
$$24a^3-37a^2-5a$$



Find and correct errors of the following mathematical expressions:
$$ \dfrac{3x^{2}+1}{3x^{2}} =1+1 =2 $$



Resolve in to factors:$$(1.6)a^2 - (0.8)a$$



Resolve in to factors : $$x^2+xy$$



Divide the given polynomial by the given monomial : $$(5x^2 - 6x)\div 3x$$



Factorise the expression: $$5y^2 -20y - 8z+ 2yz$$



Factorise the expression: $$6xy-4y+6 -9x$$



Factorise the expression: $$y(y + z)+ 9(y + z)$$



Divide $$64y^3-1000$$ by $$8y -20$$.



Write down all possible factors of $$3x^2y$$



$$(n^{3} - n)$$ is divisible by $$3$$. Explain the reason



Factorise the polynomial: $$m^2 - mn + 4m - 4n$$



Factorise: $$x^2 - 36$$



Factorise: $$x^2 - 81$$



Factorise: $$36x^2 + 96xy + 64y^2$$



Factorise: $$m^2 - 121$$



Factorise: $$25m^2 - 40mn + 16n^2$$



Factorise: $$a^2 + 10 a + 25$$



Factorise: $$49x^2 - 25y^2$$



Factorise: $$x^4 - y^4$$



Find the errors in the following mathematical sentence:
$$(3x + 2) \div 3x = \dfrac{2}{3x}$$



Factorise: $$x^2 -ax - bx + ab$$



Factorise: $$x(y + z) - 5(y + z)$$



Factorise: $$mn + m + n + 1$$



Factorise the polynomial: $$lx^2 + mx$$



Check whether the given expression is correct?
$$\dfrac{4x + 3}{3} =x + 1$$



Factorise: $$7y^2 + 35z^2$$



Verify whether the given mathematical statement is correct?
$$3x + 5 \div 3 = 5$$



Factorise: $$a^4 - (b + c)^4$$



Factorize the following expressions:
$$15a^{2}b + 35ab$$



Factorize the following expressions:
$$7x - 14y$$



Factorize the following expressions:
$$3x - 45$$



Simplify:-
$$2ab + 2b + 3a$$



Solve: $$(x^{6} - 3x^{4} + 2x^{2})\div 3x^{2}$$



Factorize the following expressions:
$$2x + 6$$



Factorize the following:
$$x^{3} - 3x^{2} + x - 3$$



Factorize the following:
$$2xy - 3ab + 2bx - 3ay$$



Factorize the following expressions:
$$4x^{2} + 20xy$$



Simplify: $$3(5y^{2} - 3y + 2)$$



Factorize the following expressions:
$$3x^{2} - 12xy$$



Solve: $$(8x^{3} - 5x^{2} + 6x) \div 2x$$



Solve: $$(7x^{2} - 5x)\div x$$



Factorise the following:
$$6a^5 - 18a^3 + 42a^2$$



Factorise:
$$2a^3 + 4a^2$$



Find the remainder using remainder theorem, when:
$$3x^3+4x^2-5x+8$$ is divided by $$x-1$$ 



Find the remainder using remainder theorem, when:
$$8x^4+12x^3-2x^2-18x+14$$ is divided by $$x+1$$



Find the factors of $$a(b - c)^{3} + b(c - a)^{3} + c(a - b)^{3}$$.



Find the remainder using remainder theorem, when:
$$4x^3-12x^2+11x-5$$ is divided by $$2x-1$$  



Determine whether $$(x+1)$$ is a factor of the polynomial:
$$6x^4+7x^3-5x-4$$



Determine whether $$(x+1)$$ is a factor of the polynomial:
$$2x^4+9x^3+2x^2+10x+15$$



Find the factors of $$a^{4} (b^{2} - c^{2}) + b^{4}(c^{2} - a^{2}) + c^{4} (a^{2} - b^{2})$$.



Factorise: $${x^2} + 7x - 18$$



Factorize:
$$m^3-m$$.



Simplify:
$$2\left(a^2+\dfrac{1}{a^2}\right)-\left(a-\dfrac{1}{a}\right)-7$$.



Factorize  $${(y - (b - a))^2}$$



Simplify:
$$x(x-4)-y(y-4)$$.



Factorize
$${x^2} - x + 10$$



Simplify:
$$x^6+6x^3+8$$.



Simplify:
$$a^2-3b^2-c^2-2ab+4bc$$.



Divide $${x}^{3}-6{x}^{2}+11x-6$$ by $$x-2$$ and verify the division algorithm



Factorise: $$12ax - 4ab + 18bx - 6b^2=0$$



Factorise $$x^4-5x^2+6$$.



Factorise
$$6x^{2}+11x+6$$



Factorise $$8a^{2}-22ab+15b^{2}$$.



If a polynomial $$f(x)$$ is divided by $${x}^{2}-16$$ then remainder is $$5x+3$$, what will be the remainder when the same polynomial is divided by $$(x+4)$$?



Factorize $$125a^{3}+343b^{3}$$.



$$p(x)=x^{3}+3x^{2}+3x+1$$ is divided by $$x=-\dfrac{1}{2}$$
$$p(a) x=-\dfrac{1}{2}=0$$
$$x=\dfrac{1}{2}$$
$$p\left(\dfrac{1}{2}\right)= \left(\dfrac{1}{2}\right)^{3}+3\left(\dfrac{1}{2}\right)^{2}+3\left(\dfrac{1}{2}\right)+1$$



Factorize $$4x^{2}-3x-7$$



Simplify:
$$a^2y^2+ay-(a+2)(a+1)$$.



Answer any two of the following:
factorize $$4{ \left( a-1 \right)  }^{ 2 }-4\left( a-1 \right) =3$$



Find the value of $$P$$ for which polynomial $$x^{3}+x^{2}-3x-P$$ is exactly divisible by polynomial $$(x+3)$$.



Divide $$4x^3 + 3x^2 - 2x + 8 $$ by $$ x - 2$$



Divide $$6{a}^{4}-2{a}^{2}-a$$ by $${a}^{2}$$



Factorise: $${x}^{2}+6x+5$$ $$= 0$$



Factorise $$ab\left( {{x^2} + {y^2}} \right) - xy\left( {{a^2} + {b^2}} \right)$$



Factorize $${x^2} - 2x - 8$$



Simplify:
$$(a^2-b^2)(x^2-y^2)+4abxy$$



Factorize $$8x^2-128$$.



Simplify:
$$p^2+p-(a+1)(a+2)$$.



Divide $$2x^3-9x^2+10x$$ by $$(2x+5)$$ and also verify the result.



Simplify:
$$x^2+4x-y^2+4y$$



Simplify: $$\cfrac{\cfrac{y}{6} + \cfrac{2y}{3}}{y +\cfrac{2y-1}{3}}$$.



Divide $$3x^3+2x^2+13x+42$$ by $$(x+2)$$ and also verify the result.



Factorize:
$$a^2+b^2$$



Simplify: $$x^2 + 6x + 9 - 4y^2$$.



Factorize : $$ (x+y) (2x+3y)- (x+y) (x+1) $$



Simplify: $$\left(n^2 + \dfrac{1}{n^2}\right) - 4\left(n + \dfrac{1}{n}\right) + 6$$



Factorise: $$8{y^2} - y$$



Factorize $$6{ x }^{ 2 }+17x+5$$ by using the Factor Theorem.



Divide $$3{y^4} - 8{y^3} - {y^2} - 5y - 5$$ by $$y-3$$ and find the quotient and the reminder.



Factorise.
$$m^2-23m+120$$.



Factorise: 
$${x^2} + 8x + 16$$



Solve: $$16a^{2}-b^{2}+4a+b$$



Find the remainder when $$x^3+3x^2+3x+1$$ is divided by $$x+1$$



Factorize by factorisation method $$15x^5y^2+3x^3y+19$$ 



Find the remainder when $$x^3 + x^2 + x + 1$$ is divided by $$x - \frac{1}{2}$$, by using remainder theorem. 



Factorise:
$$c+bc^2-ba^2-a$$.



Factorise: $$27{x^3} - 21{x^2} + 15{x^4}$$



Solve:
$$8{a^2}b - 3ab + 5{b^2} \ by \ 6ab$$



Evaluate
$$(5x^{3}-3x^{2})\div x^{2}$$



Simplify
$$\left( {5{a^3}b - 7a{b^3}} \right) \div ab$$



Simplify $${x^4} + 2{x^3}y - 2x{y^3} - {y^4}$$



$$24a^{3}b^{2} + 8a^{2}b^{2} + 12ab$$ by $$6ab$$.



Divide  $${2{x^3} - 4{x^2} - 3x - 1}$$ by $${x + 2}$$



Divide $$3x^{4}+2x^{2}-3$$ by $$(x+1)$$ and find quotient and remainder.



The volume of a cuboid is given by the expression $$3x^{3}-12x$$. Find the possible expression for its dimensions.



Factorize: $$12x^{2}-7x+1$$



Convert into factorials:
$$3 \times 6 \times 9 \times 12 \times 15 \times 18$$



Solve:-
$$a^{2}-11a+30$$ by $$(a-5)$$



Divide :
$$15{p^3} \div 3p$$



$$\left( { m }^{ 2 }-14m-32 \right) \div \left( m+2 \right) $$



Factorise the expressions using the common factor method.
$$8x^2y + 4x$$



Solve :-
 $$\left( {3{x^2} + 5x - 9} \right) \times \left( {3x - 5} \right)$$



Solve: $$21 m ^ { 2 } \div 7 m$$



Divide. Write the quotient and the remainder.
(a) $$21{m}^{2}\div 7m$$
(b) $$40{a}^{3}\div (-10a)$$



Factories : $$2xy+2y+3x+3$$



Factorise:
$$6{x}^{2}{y}^{3}-12{x}^{2}{y}^{2}+18{x}^{3}y$$



Divide the given polynomial by the given monomial.
$$(p^{3}q^{6}-p^{6}q^{3})\div p^{3}q^{3}$$ 



Factorize :
$$7x(3x-y)+7y(3x-y)$$ 



the product of two polynomials is $$7.5{ a }^{ 3 }{ b }^{ 2 }-2.5ab+10{ a }^{ 2 }{ b }^{ 2 } $$. if one of them is 2.5ab,find the other polynomial.



Solve $$18a^{3}b-27a^{2}b$$



Solve by factorization method: $$\sqrt{3}x^2+10x+7 \sqrt{3}=0$$



Divide the polynomial $${x^3} - 2{x^2} - 4x - 1$$ by $$x - 1$$ and find the
remainder.



Factorise
$$10x{y^2} - 15{x^2}y$$



Facrtorise
$$9x^2-6x+1=0$$



Factorise

$$3x(5a - 6b) - 12{a^2}(5{a^{}} - 6b)$$



$$-20 x^{4} $$  by $$5x$$



Factorise $$\left( {a - b} \right) + {\left( {a - b} \right)^2}$$



Factorize:-
$$2x^2-7x-15$$



Divide : $$-36x^{4}/(-9x)$$



Divide $$2{x^2} - 7{x^3} + 17{x^2}+17x +5 $$ by $$2{x^2}$$



Find the value of a, if $${\text{x}}\;{\text{ - }}\;{\text{a}}$$ is factor of $${x^3} - {a^2}x + x + 2$$.



$${ 2x }^{ 2 }-5x-2xy+5y$$



Factorise the following expression :
$$7x-42$$



Factorize:
$$x^2-9x+20$$



Find the factors of the polynomial given below.
$$2m^{2}+5m+3$$



Solve the equation : $$3 n ^ { 3 } + 4 n ^ { 2 } + n=0$$



Find the product using the distributive law of multiplication.
$$( x + 7 ) ( x - 2 )$$



Factorize:
$$(2x^{3}+54)$$



Factories
$$x^{2}+11x+18$$



Define factorisation.



Write the following polynomials in factored from:
(i) $$90p^{3}q^{3}r^{3}+18p^{3}q^{3}r$$
(ii) $$48pqr+96qr^{3}$$
(iii) $$21x^{2}z^{2}+30y^{3}z$$
(iv) $$36x^{2}y^{3}z^{2}+72x^{2}y^{3}z^{3}$$



Solve :
$$6xy-4y+6-9x$$



Carry out the following division :
$$28 x ^ { 4 } \div 56 x$$



Simplify 
$$21b-60+7b-20b$$



Factorise : $$16w^{3}-u^{4}w^{3}$$



Factorize : $$\dfrac { 36{m}^{2} } { 289 }  - 81$$



Factories : $$p ^ { 2 } + 6 p + 8$$



Factorize:
$$x^{1}+x^{2}\times 25$$ 



Factorise.
$$4a^{2}+7a-2$$



Express the following as the product of exponent through prism factorization
$$1156$$



Factorize :
$$a^{2}-b^{2}-a-b$$



Factorise.
$$11{x}^{2}+17x+6$$



Factorise:$$25m^{2}-70mn+49n^{2}$$



Factorise.
$$4x^{2}+3x-7$$



Factorise: $$2x^{2}-3x+1$$.



Factorise.
$$9x^{2}-6x+1$$



Factorise:
$$8xy+yz$$



$$(6x^{3}+11x^{2}-10x-7)\div (2x+1)$$



Factorise.
$$9x^{2}-8x-1$$



Divide $$4(2x^{2}+5x+3)$$   by  $$2(2x+3)$$



Factorise the expression
$$am^{2}+bm^{2}+bn^{2}+an^{2}$$



Factorize the following:
 $$3x-9$$



Factorise:$$14m-21$$



Factorise: $$15ab^{2}-20a^{2}b$$



Factorise the expression
$$(xy+y)+x+1$$



Solve: $$(5p^{2}-25p+20)\div (p-1)$$



Divide.
(a) $$12{ x }^{ 3 }\quad by\quad 3x$$



Carry out the following divisions 
$$-54l^{4}m^{3}n^{2}$$ by $$9l^{2}m^{2}n^{2}$$



Solve the following when $$x^{3}+3x^{2}+3x+1$$ is divisible by 
$$x$$



Factorise: $$16(2p-3q)^{2}-4(2p-3q)$$



Factorise the following expression by finding common factor.
$$p^{3}-16p^{2}=0$$



Factorise  $${ x }^{ 2 }+x-2$$



Factorise:
$$4x^{2}+9y^{2}+25z^{2}+12xy+30yz+20zx$$



Simplify:
$$3{\left( {a - 2b} \right)^2} - 5\left( {a - 2b} \right)$$



Factorise 
$${ 5 b }^{ 2 }-6b+1$$



Factorise:$${ a }^{ 2 }{ x }^{ 2 }+\left( { ax }^{ 2 }+1 \right) x+a$$



Simplify:
$$(x^2-5)(x+5)+25$$



Simplify:$$\left(3{x}^{2}-x\right)\div\left(-x\right)$$.



Factorise the following expression. 
$${p^2} + 6p + 8$$   



Factorise:
2a+36c



On dividing $$  p\left(4 p^{2}-16\right)  $$ by $$  4 p(p-2),  $$ we get (a) $$  2 p+4 $$ (b) $$  p+2 $$



Find :
$${ 9x }^{ 2 }-15x+6=?$$



$$36\left( x+4 \right) \left( { x }^{ 2 }+7x+10 \right) \div 9\left( x+4 \right) $$



In the division algorithm of polynomials the divisor is $$(x+2)$$, quotient is $$(x+1)$$ and the remainder is $$4$$ . Find the dividend?



Factorise the given polynomial expression:
$${a}^{2}{x}^{2}+(a{x}^{2}+1)x+a$$



Factorise : $$ 27 a^3b^3 - 45 a^4 b^2 $$



Factorise $$14p^{2} + 21pq$$.



Factorise the quadratic expression:
$${x}^{2}+y-xy-x$$



Factorise : $$x^5 +x^2 $$



Factorise the given polynomial expression:
$${x}^{3}+x-3{x}^{2}-3$$



Factorise completely:
$$18{x}^{2}-24x$$



Factorise : $$ x^3-x^2+ax+x-a-1 $$



Factorise : $$ 32x^4 -500 x $$



Factorise:
$$6d^2e-9e^2$$.



Divide $$5m^{3}-30m^{2}+45m$$ by $$5m$$



Write the greatest common factor of the following terms $$2xy$$, $$-y^{2}$$, $$2xy$$



Common factor of  $$ax^{2} + bx$$ is _____ .



Factorise the following expressions: $$-xy - ay$$



Factorise : $$ 3a^7 b - 81 a^4b^4 $$



Factorise the following expressions: $$ ax^{2} - bx^{2} + cx$$



Factorise the following expressions: $$6ab + 12bc$$



$$ 15ax^3 -9ax^2 $$



If factorised form of $$18mn + 10mnp$$ is $$amn (b + 5p)$$. Then product of $$a$$ and $$b$$ is



Factorise the following expressions: $$l^{2}m^{2}n - lm^{2}n^{2} l^{2}mn^{2}$$



Divide:
$$5x^{2} - 3x$$ by $$x$$



Factorize :  $$a^{2}(b+c)^{2}+b^{2}(c+a)^{2}+c^{2}(a+b)+abc(a+b+c)+(a^{2}+b^{2}+c^{2})(bc+ca+ab)$$



Factorise $$xy^2 - xz^2$$, Hence, find the value of
$$40 \times 5.5^2 - 40 \times 4.5^2$$



What are the possible expressions for the dimension of the cuboids whose volumes are given as in image?

463700.png



Factorise the following using appropriate identities:
(i) $$9x^2+6xy+y^2$$
(ii) $$4y^2-4y+1$$
(iii) $$x^2-\displaystyle\frac{y^2}{100}$$



 Find the common factors of the given terms.
(i) $$12x, 36$$

(ii) $$2y, 22xy$$

(iii) $$14 pq, 28  p^{2}q^{2} $$

(iv) $$2x,  3x^{2}, 4 $$

(v) $$6abc , 24 ab^{2} , 12a^{2}b $$

(vi) $$ 16x^{3}, -4x^{2}, 32x $$

(vii) $$10 pq, 20qr, 30rp$$

(viii) $$ 3x^{2}y^{3}, 10x^{3}y^{2}, 6x^{2}y^{2}z $$



Factorise: $${ x }^{ 2 }+14x+45$$



Factorise: $$36{ x }^{ 2 }+25+60x$$



Find and correct errors of the following mathematical expressions:
$$ \dfrac{4x+5}{4x} =5 $$



Factorise
(i) $$x^{2}+xy +8x+8y $$
(ii) $$15xy-6x+5y-2 $$
(iii) $$ax+by-ay-by$$
(iv) $$15pq+15+9q+25p$$
(v) $$z-7+7xy-xyz$$



Factorise
(i) $$4p^{2} - 9q^{2} $$
(ii) $$63a^{2}-112b^{2} $$
(iii) $$49x^{2}-36 $$
(iv) $$16x^{5}-144x^{3} $$
(v) $$(l+m)^{2}-(l-m)^{2}$$
(vi) $$9x^{2}y^{2}-16 $$
(vii) $$(x^{2}-2xy+y^{2})-z^{2} $$
(viii) $$25a^{2}-4b^{2}+28bc-49c^{2} $$



Factorise: $$2a\left( x-y \right) +3b\left( 5x-5y \right) +4c\left( 2y-2x \right) $$



Find and correct errors of the following mathematical expressions:
$$ \dfrac{7x+5}{5} =7x $$



Divide the polynomial by the given monomial
(i) $$(5x^{2}-6x) \div 3x $$
(ii) $$(3y^{8}-4y^{6}+5y^{4})\div y^{4}  $$
(iii) $$8(x^{3}y^{2}z^{2}+x^{2}y^{3}z^{2} +x^{2}y^{2}z^{3})\div 4x^{2}y^{2}z^{2}  $$
(iv) $$(x^{3}+2x^{2}+3x) \div 2x  $$
(v) $$(p^{3}q^{6}-p^{6}q^{3}) \div p^{3}q^{3}  $$



Find the remiander if we divide $$\left( 15{ y }^{ 4 }-16{ y }^{ 3 }+9{ y }^{ 2 }-\dfrac { 1 }{ 3 } y-\dfrac { 50 }{ 9 }  \right) $$ by $$\left( 3y-2 \right) $$



Factorise: $$7xa-70xb$$



Find the common factor of the given terms: $$4x^2, \ 6xy, \ 8y^2x$$



Factorise: $$\sqrt { 3 } { y }^{ 2 }+11y+6\sqrt { 3 } $$



Factorise: $$13{ m }^{ 2 }+156{ n }^{ 2 }$$



Factorise: $$a^3 - a^2 b^2 - ab + b^3$$



Factorise the expression $$x^2 + 10 x + 25$$



Factorise: $$12{ \left( { a }^{ 2 }+7a \right)  }^{ 2 }-8\left( { a }^{ 2 }+7a \right) \left( 2a-1 \right) -15{ \left( 2a-1 \right)  }^{ 2 }$$



Factorise $$48a^2 - 243b^2$$



Factorise the expression $$4x^2 + 20x - 96$$



Factorise:
$$16z^2 - 48z + 36$$



Factorise the expression $$p^4 - 256$$



Divide $$30(a^2bc + ab^2 c + abc^2) $$ by $$6abc$$



Factorise: $$81x^2 - 198xy + 121y^2$$



Factorise the expression $$x^2 + 2xy + y^2 - 4z^2$$



Find out the quotient and the remainder when
$$P(x) = x^{3} + 4x^{2} - 5x + 6$$ is divided by $$g(x) = x + 1$$



Divide $$3y^{3} + 2y^{2} + y$$ by $$y$$.



Divide $$4p^{2} + 2p + 2$$ by $$'2p'$$ .



Laxmi does not want to disclose the length, breadth and height of a cuboid of her project. She has constructed a polynomial $${ x }^{ 3 }-6{ x }^{ 2 }+11x-6$$ by taking the values of length, breadth and height as its zeroes. Can you open the secret [i.e., find the measures of length, breadth and height]?



Factorise $$3{ x }^{ 4 }-10{ x }^{ 3 }+5{ x }^{ 2 }+10x-8$$



Factorize:
$$a^{2}x + abx + ac + aby + b^{2}y + bc$$



Factorize:
$$x^{2} + \dfrac {2}{3}x + \dfrac {1}{9}$$



Factorize the following expressions:
$$2a^{5}b^{3} - 14a^{2}b^{2} + 4a^{3}b$$



Factorise : $$2x^{2}+7x+3$$.



Rearrange the like terms: 
$$7l^{3}m^{2} - 21lm^{2}n + 28lm$$



Factorize the following expressions:
$$3x^{3} - 5x^{2} + 6x$$



Factorize the following:
$$ab(x^{2} + 1) + x (a^{2} + b^{2})$$



Find the remainder using remainder theorem, when:
$$2x^3-4x^2+7x+6$$ is divided by $$x-2$$ 



If the polynomials $$mx^3-2x^2+25x-26$$ and $$2x^3-mx+9$$ leave the same remainder when they are divided by $$(x-2)$$, find the value of m. Also find the remainder.



When the polynomial $$2x^3-ax^2+9x-8$$ is divided by$$x-3$$ the remainder is Find the value of a.



Find the value of m if $$x^3-6x^2+mx+60$$ leaves the remainder 2 when divided by $$(x+2)$$.



Determine whether $$(x+1)$$ is a factor of the polynomial:
$$x^3-14x^2+3x+12$$



If $$(x-1)$$ divides $$mx^3-2x^2+25x-26$$ with remainder $$0$$, find the value of $$m$$.



Find the remainder using remainder theorem, when:
$$x^3-ax^2-5x+2a$$ is divided by $$x-a$$  



Determine whether $$(x+1)$$ is a factor of the polynomial:
$$3x^3+8x^2-6x-5$$



Determine whether $$(x+4)$$ is a factor of $$x^3+3x^2-5x+36$$.



Find the remainder using remainder theorem, when:
$$4x^3-3x^2+2x-4$$ is divided by $$x+3$$  



Determine whether $$(2x+1)$$ is a factor of $$4x^3+4x^2-x-1$$.



Give possible expressions for the length and breadth of the following rectangles, in which their areas are given:
Area: $$35{y}^{2}+13y-12$$



Factorize $$x^3 + 3x^2 - x - 3$$



Find the remainder when $$x^3-7x^2-x+6$$ is divided by $$(x+2)$$.



Using factor theorem show that $$(x- 1)$$ is factor of $$4x^3-6x^2+9x-7$$.



Find the value of a if $$2x^3-6x^2+5ax-9$$ leaves the remainder 13 when it is divided by x-2.



Factorize the following
$$2x^2 - 15x + 27$$



Find the remainder when $$x^3+ax^2-3x+a$$ is divided by x+a.



Find the quotient and the remainder when $$10-4x+3x^2$$ is divided by$$x-2$$.



Find the quotient and the remainder $$(4x^3+6x^2-23x-15)\div (3+x)$$



Determine the value of $$p$$ if $$(x+3)$$ is a factor of $$x^3-3x^2-px+24$$.



If the polynomials $$2x^3+ax^2+4x-12$$ and $$x^3+x^2-2x+a$$ leave the same remainder when divided by (x-3), find the value of a. Also find the remainder.



Find the remainder when $$f(x)=12x^3-13x^2-5x+7$$ is divided by $$(3x+2).$$



Factorize:
$$6x^{2}+11x-10$$



If $$a+b+c=0$$, show that $$6\left( { a }^{ 5 }+{ b }^{ 5 }+{ c }^{ 5 } \right) =5\left( { a }^{ 3 }+{ b }^{ 3 }+{ c }^{ 3 } \right) \left( { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } \right) $$.



Prove that $${ \left( a+b \right)  }^{ 5 }-{ a }^{ 5 }-{ b }^{ 5 }=5ab\left( a+b \right) \left( { a }^{ 2 }+ab+{ b }^{ 2 } \right) $$.



Show that $${ \left( x+y \right)  }^{ 7 }-{ x }^{ 7 }-{ y }^{ 7 }=7xy\left( x+y \right) { \left( { x }^{ 2 }+xy+{ y }^{ 2 } \right)  }^{ 2 }$$.



Factorise : $${y^2} - 4y + 3$$



Factorise: $$2{x^2} + 11x - 21$$



The expression $$2{ x }^{ 3 }+b{ x }^{ 2 }-cx+d\quad $$ leaves the same remainder, when divided by $$x+1$$ or $$x-2$$ or $$2x-1$$. Find $$b$$ and $$c$$.



Factorize : $$x^2-24x-180$$



Factorise : $$6 - x - {x^2}$$



Factorise : $${x^2} - 11x - 80$$



Simplify :
i) $$\cfrac{-14x^8y^5+21x^{10}y-28x^7y^6}{7x^7y^8}$$
ii) $$\cfrac{15a^4x^8-30a^{7}x^5-45a^6x^6}{20a^{14}x^5}$$
iii) $$\cfrac{-60x^4a^5-75x^{3}a^6+8x^5a^4}{-20x^8a^4}$$



Factorise : $${z^2} - 32z - 105$$



Factorise : $$6{x^2} + 17x + 12$$



Resolve into factors of $$4{x^2} - 25{y^2} + 2x + 5y$$



Factorise
$$x^3 - 2x^2 - x + 2$$



Express in standard form
$$(x-a) (x-b)$$



Factorise: $$6{x^2} + 11x - 10$$



Factorise: $$18{x^2} + 3x - 10$$



Factorize $$y^2-( a+ b) y + ab$$



Factorize:
$$x^2+3\sqrt{2}x+4=0$$



Divide P(x) by g(x)
P(x) $$={x^4} - 3{x^2} - 4$$
g(x)$$ = x + 2$$



Factorize:
$$(i)\ \ \ {x^2} + 9x + 18$$
$$(ii)\ \ 6{x^2} + 7x - 3$$
$$(iii)\ 2{x^2} - 7x - 15$$
$$(iv)\ \ 84 - 2r - 2{r^2}$$



If you divide $$f\left( x \right) = {x^3} + 3{x^2} - kx - 12$$ by $$\left( {x - 3} \right)$$, you get remainder $$30$$. Find $$k$$ and also find the quotient.



Simplify $$\dfrac {{x}^{2}}{9}-\dfrac {{y}^{2}}{4}$$



Let $$p(x) = x^{4}-3x^{2}+2x + 5$$. Find the remainder when $$p(x)$$ is divided by $$(x-1)$$.



factorise
$$9x^{2}+12xy$$



Divide $$({x^2} + 5x + 6 )$$ by $$( x + 2)$$.



Factorize: $$2x^{2}-7x-15$$



Factorise:$$15x+5$$



Factorize the following:$$8{x}^{2}-14x+8x-14$$



Factorise $${X}^{2}-7X+10=0$$



Factorize the following:
$$(16-81{x}^{2})$$



Find the remainder when $${x^2}\, - \,a{x^2}\, + \,8x\, + \,a$$ is divided by $$(x - a)$$



Divide $$p(x) = 2x^3 - 11x^2 + 19x - 10$$ by g(x) = 2x -Find the quotient and remainder.



Factorize the following:$$3x-{3}^{2}$$



Factorize:
$$3x^{2}-14x+18$$



Factorize $$y^{2}-10y+25$$



Factorise $$(i) x^{2}+3\sqrt{3}x+6$$
$$(ii) 6x^{2}+\sqrt{5}x-10$$



Factorise : $$x^{2}+3\sqrt{3}x+6$$



Find the remainder when the polynomial $$4y^3 - 3y^2 - 5y + 1$$ is divided by $$2y + 3$$.



Express in the product of two polynomial$$x^4+y^4+x^2y^2$$.



Factorize: 
$$(1){ \quad x }^{ 3 }-{ 2x }^{ 2 }-x+2\\  (2)\quad { x }^{ 3 }-{ 3x }^{ 2 }-9x-5\\ (3)\quad { x }^{ 3 }+{ 13x }^{ 2 }+32x+20\\  (4)\quad { y }^{ 3 }+{ y }^{ 2 }-y-1$$



Find the remainder when $$x^4+4x^3-5x^2-6x+7$$ is divisible by $$x-3$$.



Factorise $$x^2-3x+2$$.



Divide :
$${2x}^{3}-{5x}^{2}-{3x}\ by (x-1)$$ ?



Factorise the following:
$$27a^{3} - 8b^{3} - 54a^{2}b + 36ab^{2}$$



Find the remainder when $$x^4+4x^3-5x^2-6x+7$$ is divided by $$x+1$$.



Find the remainder when $$x^4+4x^3-5x^2-6x+7$$ is divided by $$x-2$$.



Find the remainder when $$x^3-ax^2+6x-a$$ is divided by $$x-a$$.



Find the remainder when $$x^4+4x^3-5x^2-6x+7$$ is divided by $$x+2$$.



Find the remainder when $$x^4+4x^3-5x^2-6x+7$$ is divided by $$x-1$$.



Solve:
$$x^2+9x+18$$.



Find the remainder:
 $$\left( {{x^3} - 4{x^2} + 7x - 2} \right) \div \left( {x - 2} \right)$$.



Evaluate:
$$\dfrac{1}{2}x^2-3x+4$$.



Factorise $$a^3-36a$$.



Factorise
$$12x +15$$



$$3x^2-x-4$$.



Solve:
$$5{x^2} - 22x - 15 = 0$$



Factorize - $${x^2} + \dfrac{1}{{{x^2}}} - 2x - \dfrac{2}{x} + 2$$ 



Give possible expressions for the length and breadth of the following rectangles, in which their areas are given:
Area: $$25{a}^{2}-35a+12$$



$$4x^2+4\sqrt{3}x+3=0$$.



Factorise:
$$a^2 + 12a+32$$



Factorise:
$$z^2+13z+40$$



Factorise:
$$s^2+12s+27$$



Factorize $$1+2p + p^2$$



Factorise
$$a^2+4b^2-4ab-4c^2$$.



Factories the given algebraic expression by taking out the common terms. Also, write the common term
$$8ab+14a^{2}b-2a^{3}-12ab^{2}$$



Factorise each of the following:
$$9x^2-6x+1$$



Factorise:
$$p^2 + p - 132$$



$$\frac{{10{x^2} + 15x + 63}}{{5{x^2} - 25x + 12}} = \frac{{2x + 3}}{{x - 5}}$$



Factorise:
$$a^2+5a-104$$



Factorize $$2x^2+x-4=0$$.



Find the common factor of the given term.
$$3a, 21ab$$.



Solve the factorisation method:$$x + \frac{1}{x} = 11\frac{1}{{11}}$$



Enter 1 if it is true else 0.
 $$(25m^{4}-15m^{3}+10m+8)\div5m^{3}$$ $$=5m-3+\dfrac {2}{m^2}+\dfrac {8}{5m^3}$$



Find the common factor of the given term : $$8x, 24$$



Factorize: $$ 3 a ^ { 2 } b - 12 a ^ { 2 } - 9 b + 36 $$



Factors : $$\left(5x-\dfrac{1}{x}\right)^2 + 5 \left(5x- \dfrac{1}{x}\right)+6$$



Divide the polynomial $$3x^{4}-4x^{3}-3x-1$$ by $$x-1$$. B using long division method only. Also check whether $$x+1$$ is a factor or not.



If $$x+a$$ is a common factor of $$f\left( x \right) = {x^2} + x - 6$$ and $$g\left( x \right) = {x^2} + 3x - 18$$ Then find the value of a



Divide $${4x}^{3}+{20x}^{2}+33x+18\ by \left (x+2\right)$$



Factorize using identities
$$t^{4}-625$$



Find  the remainder when $$f(x) = 2{x^3} - 6{x^2} + 4x - 2$$ is divided by $$g(x)=2x - 1$$



 Simplify:
$$\left(1+\dfrac{x^2-y^2-z^2}{2yz}\right)\left(\dfrac{1}{x+y-z}+\dfrac{1}{z+x-y}\right)$$



Divide. Write the quotient and the remainder.
$$(5x^{3}-3x^{2}) \div x^{2}$$



Divide : $$(6x^{5}-4x^{4}+8x^{3}+2x^{3})\div 2x^{2}$$



factorise : 
$$12(x^2 + 7x )^2 - 8(x^2 + 7x)(2x - 1) -15 (2x - 1)^2$$



Factorise
$$2 a ^ { 2 } + 10 a - 28 = 0$$



Factorise :$$x^{4}+5x^{3}+5x^{2}-5x-6.$$



Solve :$$(2x^4+3x^3+4x-2x^2)\div (x+3)$$



Solve:$$6x-3y$$



Simplify:
$${a^2} + 4{b^2} - 4a -8b +4ab$$



Simplify:
$$a{x^2}y - bxyz - a{x^2}z + bx{y^2}$$



Factorize the given polynomial
 $$x^{3}-3x^{2}-9x-5$$



Factories $${p}^{2}-36p+99$$



Factorise the following :
$$\begin{array} { l } { (i)6 a + 6 b } \\ { (ii)a x + b x } \\ { (iii)3 x ^ { 2 } - 6 a ^ { 6 } } \end{array}$$
$$\begin{array} { l } {(iv) 9 x ^ { 2 } + 3 x } \\ { (v)12 x ^ { 3 } y - 4 x y ^ { 2 } } \end{array}$$
$$\begin{array} { l } {(vi) \dfrac { 1 } { 2 } x + \dfrac { 1 } { 2 } } \\ (vii){ c d m + c d t } \\ (viii){ 36 a ^ { 2 } b ^ { 3 } - 18 a ^ { 3 } b ^ { 2 } } \\(ix) { 25 m ^ { 2 } n ^ { 3 } - 5 m n } \\(x) { 3 a y + 3 a z } \end{array}$$
$$\begin{array} { l } { (xi)185 a + 185 b } \\(xii) { 28 x - 14 y } \\ (xiii){ a x - a y } \\ (xiv){ 12 y ^ { 3 } + 6 a ^ { 3 } } \\ (xv){ 3 x + 9 y } \end{array}$$



Divide $$4{x^2} - 8x + 3$$ by $$2x - 1$$.



What is the remainder if $${ p }^{ 11 }+{ p }^{ 9 }+{ p }^{ 7 }+{ p }^{ 5 }+{ p }^{ 3 }+{ p }^{ 2 }$$ divided by p + 1



$$(5p^2-25p+20)\div (p-1)$$.



Divide the given polynomial by the given monomial:
(i) $$\left( 5 x ^ { 2 } - 6 x \right) \div 3 x$$
(ii) $$8$$ $$\left( x ^ { 3 } y ^ { 2 } z ^ { 2 } + x ^ { 2 } y ^ { 3 } z ^ { 2 } + x ^ { 2 } y ^ { 2 } z ^ { 3 } \right) \div 4 x ^ { 2 } y ^ { 2 } z ^ { 2 }$$ 



Solve  $$\dfrac{x^2+5x+6}{x+3}$$.



Factories : $$am^2+bm^2+bn^2+an^2$$



Solve:
$$x^{2}-2x-8=0$$



Factorise 
$$x^{2}+19x-150$$



Show that $$\frac { x ^ { 2 } + 2 x y + y ^ { 2 } - a ^ { 2 } + 2 a b - b ^ { 2 } } { ( x + y - a + b ) } = ( x + y + a - b )$$



$$(3x+2x^2+4x^3)\div (x-4)$$.



Factorize the expression and divide them as directed.
$$4yz(z^2+6z-16)\div 2y(z+8)$$.



Solve for r:
$$41=400$$ $$[\big[\frac{100+r}{100}\big]^{2}-1]$$



Factorise
$$4 u ^ { 2 } + 8 u$$



Factorise:
$$12{p^5} + 16{p^4} - 20{p^3}$$



Factorize:$$x ^ { 2 } - m ^ { 2 } + 6 m n - 9 n ^ { 2 }$$



Factorise:
$${p^3} - 3pq + p{q^2}$$



Prove that $${n} ^ { 7 } - 7{ n} ^ { 5 } + 14 {n} ^ { 3 } - 8 n$$ is divisible by $$840$$ for all $$n \in N$$



Factorise :
$$6x^{2}+7x-3$$



Show that (2x+1) is a factor of $${ 4x }^{ 3 }+{ 12x }^{ 2 }+11x+3$$. Hence, factories $${ 4x }^{ 3 }+{ 12x }^{ 2 }+11x+3$$. 



The polynomial $$6{x^4} + 8{x^3} - 5{x^2} + ax + b$$ is exactly divisible by polynomial $$2x-5$$ then find the value of $$2b-a$$



Factorise completely by removing a monomial factor
$$7{x^3} - 5{y^2}$$



Factorise: $$1+2ab-\left( { a }^{ 2 }{ +b }^{ 2 } \right) $$



Factorise:
$$2a{b^2} - 6bc + 8abc$$



factorise
$$9{y^2} + 15ya$$



If $$x^{3}+8y^{3}+24xy=64$$ then $$x+2y=$$



Factorise completely: $$2{x^3} + {x^2} - 2x - 1$$



Factorise the following expressions.
$$\left( i \right)\,\,\,\,{p^2} + 6p + 8\,\,\,\,\left( {ii} \right)\,\,\,{q^2} - 10q + 21\,\,\,\,\left( {iii} \right)\,\,\,{p^2} + 6p - 16$$



factorize
$$a^{2}-5b+ab-25$$



Factorise the following
(i) $$p^2 +6p+8$$



Factorise 
$$49a^{2}b^{4}-4a^{2}b^{6}$$



Find, in each case, the remainder when: $$x^{4}-3x^{2}+2x+1$$ is divided by $$x-1$$.



Factorise using 
$$12x+75x^{5}-60x^{8}$$



Factorise
(i) $$a^4 -b^4$$      (ii) $$p^4 -81$$       (iii) $$x^4 -(y+z)^4$$     (iv) $$x^4 -(x-z)^4$$       (v) $$a^4 -2a^2 b^2 +b^4$$



Factorise :
$$x^{2}+5x+1$$



$$\left( {{x^2} + 7x + 12} \right)/\left( {x + 3} \right)$$



Solve the following.
$$\dfrac{{x - 1}}{{x - 2}} + \dfrac{{x - 3}}{{x - 4}} = 3\dfrac{1}{3}(x \ne 2,4)$$



Factorise
$$18x^{2}+48x+32$$



Solve: $$(7x^4 - 21x^2 + 15) \div 7x^2$$.



Divides and write the quotient and the remainder.
$$\left( { 6x }^{ 5 }-{ 4x }^{ 4 }+{ 8x }^{ 3 }+{ 2x }^{ 2 } \right) \div { 2x }^{ 2 }$$



Divide $$6{x}^{3}-{x}^{2}-10x-2$$  by  $$2x-3$$  



If $${x}^{3}+a{x}^{2}+bx+6$$ is divisible by $$\left(x-2\right)$$ and leaves remainder $$3$$ when divided by $$\left(x-3\right)$$ then find the value of $$a$$ and $$b$$.



Divide $$x^{2}+3x+2$$ by $$x+1$$



Simplify : $$\dfrac { a ^ { 3 } - 27 } { 5 a ^ { 2 } - 16 a + 3 } \div \dfrac { a ^ { 2 } + 3 a + 9 } { 25 a ^ { 2 } - 1 }$$



simplify : $$a^{3}-12a-16$$



Divide and write the quotient and the remainder
$$(21x^{4}-14x^{2}+7x)\div 7x^{3}$$



factorize
$$4x+8$$



Solve:
$$2a(3x+5y)-5b(3x+5y)$$



Divide the given polynomial by the given monomial 
8$$\left( x ^ { 3 } y ^ { 2 } z ^ { 2 } + x ^ { 2 } y ^ { 3 } z ^ { 2 } + x ^ { 2 } y ^ { 2 } z ^ { 3 } \right) \div 4 x ^ { 2 } y ^ { 2 } z ^ { 2 }$$



Factorize:
$$3+2a-a^{2}$$



Solve the following 
$$(6x^{4}+4x^{2}+9x+5) \div (2x+3)$$



Divide and write the equation $$\left( {{y^2}+10y + 24} \right) \div \left( {y + 4} \right)$$



Factorise:$${x}^{4}+{x}^{2}+1$$



Factorize -
$${ ax }^{ 2 }+{ bx }^{ 2 }-{ ay }^{ 2 }-{ by }^{ 2 }$$



Find the factorss of $$x^{4}+3x^{3}-7x^{2}-27x-18$$



Factorise:
$$(x^{3}-2x^{2}-5x+6)$$



Divide $$15{x}^{3}-20{x}^{2}+13x-12$$ by $$ 3x-6$$ 



Verify whether $$2y-5$$  is a factor of $$4{y}^{4}-10{y}^{3}-10{x}^{2}+30y-15$$



Write the factors of 
$$15xy-6x+5y-2$$



Work out the following divisions 
(i) $$\left(11x-121\right)\div 11$$
(ii) $$\left(15x-25\right)\div \left(3x-5\right)$$
(iii) $$10y\left(9y+21\right)\div 2\left(3y+7\right)$$
(iv)$$9{p}^{2}{q}^{2}(3z-12)\div 27pq\left(z-4\right)$$



Find the value of $$a$$ and $$b$$, if the zeros of the polynomial. $$x^{3}-3x^{2}+x+1$$ are $$a-b,\ a,\ a+b$$



$$({ y }^{ 2 }+10y+24)\div (y+4)$$



Factorise.
$$6a^{2}+7a-5$$



Factorise $$ { \left( x-2y \right)  }^{ 2 }+7\left( x-2y \right) +12$$



Divide  $$-12a^{3}b+18a^{2b^{2}}-24ab^{3}$$ by $$-6ab$$



Factorise.
$$6x^{2}-11xy-10y^{2}$$



Factorize :
$$8(a+1)^{2}+2(a+1)(b+2)-15(b+2)^{2}$$



Factorise.
$$3x^{2}+11xy+6y^{2}$$



Factorize the following:
$$20a^{12}b^{2}-15a^{8}b^{4}$$



Simplify: $$30a^{3}b^{3}c^{3}+45abc$$



Factorise:$$4xy - x + 12y -3$$



Write the common factors of :$${ 4a }^{ 2 }b$$ and $$3ab$$



Factorize: $${x}^{2}-15x+56$$



Resolve $${x}^{8}+{x}^{4}+1$$ in to factors.



Solve
$$\left(x^ {4}+x^ {3}+3x^ {2}+3x+12\right)\div \left(x^ {2}+2\right)$$



Factorize:
$$pqr-{ p }^{ 2 }q+{ pq }^{ 2 }r$$



Solve:
$$x^{3}-x^{2}-14x+14$$



Factorize:
$$4x^2-12xy+9y^2+2x-3y$$



write the quotient and the remainder.
$$\left( { 2x }^{ 4 }+{ 3x }^{ 3 }+4x-2\right) \div \left( x+2 \right) $$



Divide $$(-x^6+2x^4+4x^3+2x^2)$$ by $$(2\sqrt2 x^2)$$



Factorize:
$$x^2-7x+10$$.



Solve the following 
$$8x^{3}-6x^{2}+x=0$$



Factorise.
$$x^{ 2 } + xy + 8x + 8y$$



Divide $$(5{p^2} - 25p + 20) \div (p-1)$$



Solve :
$$15x + 5$$



Factorise :-
$${a^4} - 2{a^2}{b^2} + {b^4}$$



Factorise:$$\sqrt{3} x^{2}+4x-7\sqrt{3}$$ 



Factorise: $$x^2+2x+1$$



Simplify :-
$$\dfrac{8({x^3}{y^2}{z^2} + {x^2}{y^3}{z^2} + {x^2}{y^2}{z^3})}{4{x^2}{y^2}{z^2}}$$



Factorise : $$ a^2x^2 +(ax^2 +1)x +a $$



Solve:
$$49(x^4-5x^3-24x^2)\div 11x(x-8)$$



Solve:
$$(m^2-14m-32)\div (m+2)$$



Simplify:
$$z - 7 + 7xy - xyz$$



Factorise the following expressions.
$$\left(1\right){p}^{2}+6p+8$$
$$\left(2\right){q}^{2}-10q+21$$
$$\left(3\right){p}^{2}+6p-16$$



Simplify:
$$15xy-6x+5y-2$$



Factorize:
$$x^2-100x+99$$



Factorise the expression 
$$am^{2}+bm^{2}+bn^{2}+an^{2}$$



Factorise:
$$z-7+7xy-xyz$$



Factorize:$${ q }^{ 2 }-10 q+21.$$



Factorise:
$$6xy(a^2+b^2)+8yz(a^2+b^2)-10xz(a^2+b^2)$$



Factorise:
 $$6xy(a^2+b^2)+8yz(a^2+b^2)-10xz(a^2+b^2)$$



Factorise:
$$36a^{2}+12abc-15b^{2}c^{2}$$



Divide 48a$$^{3}$$ by 6a



 Factorize:  $$(p - x) (p + x) + y (p - x) = 0$$



Simplify:
$$[4{ y }^{ 3 }+5{ y }^{ 2 }+6y]\div 2y$$



Simplify:
$$x^2-33x+90$$



Factorize $$y^2 + 10y + 24 $$



Divide as directed.
5$$ ( 2 x + 1 ) ( 3 x + 5 ) \div ( 2 x + 1 ) $$



Factorise the expression $${ 2a }^{ 3 }-{ 3a }^{ 2 }b+{ 5ab }^{ 2 }-ab$$



Factorise $$x^3-2x^2-x+2$$



Look at several examples of rational numbers in the form $$\dfrac{p}{q}(q\neq 0)$$, where $$p$$ and $$q$$ are integers with no common factors other than $$1$$ and having terminating decimal representations. Can you guess what property $$q$$ must satisfy?



Factorise : $$ax^{3}y^{2} + bx^{2}y^{3} + cx^{2}y^{2}z$$.



Divide :
$$x + 2x^{2} + 3x^{4} - x^{5}$$ by $$2x$$.



Factorize:
$$8{x}^{3}+27{y}^{3}+36{x}^{2}y+54x{y}^{2}$$



Divide :
$$9x^{2} y - 6xy + 12xy^{2}$$ by $$-\dfrac {3}{2} xy$$.



Divide :
$$3x^{3}y^{2} + 2x^{2}y + 15xy$$  by  $$3xy$$.



Divide :
$$5z^{3} - 6z^{2} + 7z$$ by $$2z$$.



Divide :
$$y^{4} - 3y^{3} + \dfrac {1}{2} y^{2}$$ by $$3y$$.



Divide :
$$-4a^{3} + 4a^{2} + a$$ by $$2a$$.



$$2\sqrt 2{a}^{3}+3\sqrt 3{b}^{3}+{c}^{3}-3\sqrt 6abc$$



Divide :
$$4z^{3} + 6z^{2} - z$$ by $$-\dfrac {1}{2}z$$.



Divide :
$$\sqrt {3}a^{4} + 2\sqrt {3} a^{3} + 3a^{2} - 6a$$ by $$3a$$.



Factorize the following.
$$a^4b-3a^2b^2-6ab^3$$.



Factorize the following.
$$x^4y^2-x^2y^4-x^4y^4$$.



Factorize the following.
$$20x^3-40x^2+80x$$.



Factorize the following.
$$10m^3n^2+15m^4n-20m^2n^3$$.



Factorize the following.
$$2l^2mn-3lm^2n+4lmn^2$$.



Factorize the following.
$$72x^6y^7-96x^7y^6$$.



Factorize the following expression.
$$3x^3y-243xy^3$$.



Factorize the following expression.
$$16(2x-1)^2-25y^2$$.



Divide the polynomial $$(9x^2 + 12x + 10) $$ by $$(3x + 2)$$ and write the quotient and the remainder.



Factorise : $$ 9x^2 + 12 xy $$



Factorise : $$ 18x^2 y -24xyz $$



Factorise : $$ a^3 +a -3a^2 -3 $$



Factorise : $$ 2x+4y-8xy-1 $$



Factorise :  $$ x^2 +y-xy -x  $$



Factorise : $$ abx^2+a^2x+b^2x+ab $$



Factorise : $$ 2a^2 + bc-2ab- ac $$



Factorise : $$ ab(x^2+y^2) -xy(a^2+b^2)$$



Factorise : $$ a^2 +ab(b+1)+b^3 $$



Factorise : $$ 20x^2 -45 $$



Factorise : $$ a(a+b-c)-bc $$



Factorise : $$ ab(x^2+ 1) +x(a^2 +b^2 ) $$



Factorise : $$ a^2 -b^2 -a -b $$



Factorise : $$ 9a^2 +6a+ 1 -36b^2 $$



Factorise : $$ 4a^2 -4b^2 +4a +1 $$



Factorise : $$ a^2 -b^2 -4ac +4c^2 $$



Factorise : $$ 5x^2 -16x -21 $$



Factorise : $$ 18x^2 + 3x -10 $$



Factorise : $$ 25x^2 -10x+ 1-36y^2 $$



Factorise : $$ a^2 +2ab +b^2 -9c^2 $$



Factorise : $$ x^3 - 5x^2 -x+5 $$



Factorise : $$ a^2 -b^2 +2bc - c^2$$



Factorise : $$ x^2 +y^2 -z^2 -2xy  $$



Divide:
$$8x^{2}y^{2}-6xy^{2}+10 x^{2}y^{3}$$ by $$2xy$$



Factorise: $$36x^3y –60x^2y^3z$$



Factorise : $$ x^4y^4 - xy $$



Divide $$12x^{4}+8x^{3}-6x^{2}$$ by $$-2x^{2}$$



Factorise : $$ 16x^4 +54 x $$



Factorise : $$ x - 8xy^3 $$



Divide:
$$9x^{2}y-6xy+12xy^{2}$$ by $$-3xy$$



Find the values of a and b so that the polynomial $$(x^4+ax^3-7x^2+8x+b)$$ is exactly divisible by $$(x+2)$$ as well as $$(x+3)$$.



Find the value of 'a' for which the polynomial $$(x^4-x^3-11x^2-x+a)$$ is divisible by $$(x+3)$$.



Factorise : $$ 1029 - 3x^3 $$



Factorise: 

$$16a^2 – 24ab$$



Factorise : 
$$14x^3+21x^4y-28x^2y^2$$ 



Factorise

$$9x^3 – 6x^2 + 12x$$



Factorise 

$$6a(a-2b) + 5b(a-2b)$$



Factorise 

$$10x^3 -15x^2$$



Factorise  

$$2m(1-n) + 3(1-n)$$



The sum of first $$n$$ natural numbers is given by the expression $$\dfrac{n^{2}}{2} + \dfrac{n}{2}$$. Factorise this expression.



Perform the following division:
$$(3pqr-6p^{2}q^{2}r^{2}) \div 3pq$$



Write the greatest common factor of the following terms $$-18a^{2}$$, $$108a$$



Write the greatest common factor of the following terms $$3x^{2}y$$, $$18xy^{2}$$, $$-6xy$$



The common factor method of factorisation for a polynomial is based on __________ property.



The factorisation of 2x + 4y is __________ .



Factorise the following polynomials : 
(i) $$ 25 abc^2 - 15a^2b^2c $$
(ii) $$ x^2yz + xy^2z + xyz^2 $$



Factorise the following polynomials : 
(i) $$ 8xy^3 + 12x^2 y^2 $$
(ii) $$ 15ax^3 - 9ax^2 $$



Factorise the following polynomials : 
$$ 10a( 2p +q)^3 - 15b ( 2p +q)^2 + 35 ( 2p + q) $$ 



Factorise the following polynomials : 
(i) $$  21 py^2 - 56 py$$
(ii) $$ 4x^3 - 6x^2 $$



Factorise the following polynomials : 
(i) $$ 8x^3 - 6x^2 + 10 x $$
(ii) $$ 14mn + 22m -62 p $$



Factorise the following polynomials : 
(i) $$ 6(x+2y)^3  + 8 ( x+ 2 y)^2 $$
(ii) $$ 14 (a -3b)^3 - 21 p(a -3b) $$



Factorise the following polynomials:
(i) $$ 18p^2q^2 -24pq^2 +30p^2q $$
(ii) $$ 27a^3b^3 - 18a^2 b^3 + 75 a^3 b^2 $$



Find the quotient and the remainder when $$ P(x)=3 x^{3}+x^{2}+2 x+5 $$ is divided by
$$g(x)=x^{2}+2 x+1 \qquad\qquad$$



Factorise the expressions and divide them as directed:
$$(x^{2}-22x+117) \div (x-13)$$



Factorise the following polynomials : 
(i) $$ 15a( 2p - 3p) - 10b ( 2 p - 3q) $$
(ii) $$ 3a(x^2 +y^2) + 6b ( x^2 +y^2 ) $$



Divide:
$$9x^4 - 8x^3 - 12x + 3$$ by $$3x$$



$$  2 \pi r^2 - 4 \pi  r $$



$$\text{Factorise } x^3 +x +2 $$



$$ 32x^4 -500 x $$



$$ (x^6 / 343) +( 343 / x^6 ) $$



$$ x^2 +x^5 $$



$$ a^3 - a -120 $$



$$ a^2(b+c) - ( b+c)^3 $$



$$ x^4 +5x^2 + 9 $$



$$ 2x^4 -32 $$



$$ x^4 - 1/ x^4 $$



$$ a^4 +b^4  - 7a^2b^2 $$



Divide:
$$ 9 x^3 - 6x^2\,\, by\,\, 3x$$



$$ 5a^4 - 5a^3 +30a^2 -30 a $$



$$ 15(2x-3)^3 - 10 (2x-3 ) $$



Factorize the following
$$a^{12}x^{4} - a^{4} x^{12} $$



Divide:
$$  15x^3y^2 + 25x^2y^3 - 36x^4y^4 \,\,by\,\, 5x^2y^2$$



$$ a^3 - ( 1/a^3) -2a +2/a$$



$$ a^{12}x^4 - a^4 x^{12} $$



$$ x^3 -(8 /x) $$



Carry out the following divisions:
$$(x^3 + 2x^2 + 3x) \div 2x$$



$$ 9x^3y +41x^2y^2 +20xy^3 $$



Divide:
$$ 6m^2 - 16 m^3 + 10 m^4\,\, by\,\, - 2m$$



Solve:
$$17a^6b^8-34a^4b^6+51a^2b^4$$



Solve:
$$4a^2-8ab$$



Divide:
$$ 36a^3x^5 - 24a^4x^4 + 18a^5x^3\,\, by\,\, - 6a^3x^3$$



Simplify:
$$a^3b-a^2b^2-b^3$$



Solve:
$$3x^2+6x^3$$



Solve:
$$a^3-a^2+a$$



Solve:
$$3x^5y-27x^4y^2+12x^3y^3$$



Solve:
$$6x^2y+9xy^2+4y^3$$



Solve:
$$2x^3b^2-4x^5b^4$$



Solve:
$$15x^4y^3-20x^3y$$



Solve:
$$12abc-6a^2b^2c^2+3a^3b^3c^3$$



Factorise by taking out the common factors :
$$ab(a^2 + b^2- c^2) - bc(c^2- a^2- b^2) + ca(a^2 + b^2- c^2)$$



Factorise by taking out the common factors:
$$2x(a - b) + 3y(5a - 5b) + 4z(2b - 2a)$$



Factorise :
$$3x^7y-81x^4y^4$$



Find the prime factorisation of the following numbers:
$${ 85 }^{ 3 }-{ 68 }^{ 3 }+{ 5 }^{ 3 }-{ 22 }^{ 3 }$$



Find the prime factorisation of the following numbers:
$${ 100 }^{ 3 }-{ 49 }^{ 3 }+{ 10 }^{ 3 }-{ 61 }^{ 3 } $$



Find the prime factoristion of the following numbers:
$${ 30 }^{ 3 }-{ 12 }^{ 3 }-{ 10 }^{ 3 }-{ 8 }^{ 3 }$$



Factorise: $$3{ x }^{ 2 }+6x+6$$



Factorise: $$2p(x+y)-3q(x+y)$$



Factorise: $$18{ x }^{ 2 }y=24xyz$$



Factorise: $$5{ x }^{ 2 }-20xy$$



Factorize: $$4{ (a+b) }^{ 2 }-6(a+b)$$



Factorise: $$3x^4 + 6x^3y + 9x^z$$



Solve: $$8x^{2}-72xy+12x$$



Factories the given algebraic expression by taking out the common terms. Also, write the common term
$$5pq+20p^{3}q^{3}-15p^{2}q$$



Factorise: $$3a^2bc + 6ab^2c + 9abc^2$$



Factorise: $$4p^2 + 5pq - 6pq^2$$



Factorise $$3x^2 + 6x^2 y + 9xy^2$$



Factorize the following expressions:
$$6x^{3}y - 12x^{2}y + 15x^{4}$$



Factorise:
$$x^2-17x+60$$



Find integers 'a' and 'b' such that $$(x^{2} - x- 1)$$ divides $$ax^{17} + bx^{16} + 1$$.



Factorise $$4x^2+4\sqrt{3}x+3=0$$.



Class 8 Maths Extra Questions