Divide {x}^{3}-6{x}^{2}+11x-6 by x-2 and verify the division algorithm
Factorise: 12ax - 4ab + 18bx - 6b^2=0
Factorise x^4-5x^2+6.
Factorise 6x^{2}+11x+6
Factorise 8a^{2}-22ab+15b^{2}.
If a polynomial f(x) is divided by {x}^{2}-16 then remainder is 5x+3, what will be the remainder when the same polynomial is divided by (x+4)?
Factorize 125a^{3}+343b^{3}.
p(x)=x^{3}+3x^{2}+3x+1 is divided by x=-\dfrac{1}{2} p(a) x=-\dfrac{1}{2}=0 x=\dfrac{1}{2} p\left(\dfrac{1}{2}\right)= \left(\dfrac{1}{2}\right)^{3}+3\left(\dfrac{1}{2}\right)^{2}+3\left(\dfrac{1}{2}\right)+1
Factorize 4x^{2}-3x-7
Simplify:
a^2y^2+ay-(a+2)(a+1).
Answer any two of the following: factorize 4{ \left( a-1 \right) }^{ 2 }-4\left( a-1 \right) =3
Find the value of P for which polynomial x^{3}+x^{2}-3x-P is exactly divisible by polynomial (x+3).
Find the value of a, if {\text{x}}\;{\text{ - }}\;{\text{a}} is factor of {x^3} - {a^2}x + x + 2.
{ 2x }^{ 2 }-5x-2xy+5y
Factorise the following expression : 7x-42
Factorize:
x^2-9x+20
Find the factors of the polynomial given below. 2m^{2}+5m+3
Solve the equation : 3 n ^ { 3 } + 4 n ^ { 2 } + n=0
Find the product using the distributive law of multiplication. ( x + 7 ) ( x - 2 )
Factorize: (2x^{3}+54)
Factories x^{2}+11x+18
Define factorisation.
Write the following polynomials in factored from: (i) 90p^{3}q^{3}r^{3}+18p^{3}q^{3}r (ii) 48pqr+96qr^{3} (iii) 21x^{2}z^{2}+30y^{3}z (iv) 36x^{2}y^{3}z^{2}+72x^{2}y^{3}z^{3}
Solve : 6xy-4y+6-9x
Carry out the following division : 28 x ^ { 4 } \div 56 x
Simplify 21b-60+7b-20b
Factorise : 16w^{3}-u^{4}w^{3}
Factorize : \dfrac { 36{m}^{2} } { 289 } - 81
Factories : p ^ { 2 } + 6 p + 8
Factorize: x^{1}+x^{2}\times 25
Factorise. 4a^{2}+7a-2
Express the following as the product of exponent through prism factorization 1156
Factorize :
a^{2}-b^{2}-a-b
Factorise.
11{x}^{2}+17x+6
Factorise:25m^{2}-70mn+49n^{2}
Factorise. 4x^{2}+3x-7
Factorise: 2x^{2}-3x+1.
Factorise. 9x^{2}-6x+1
Factorise: 8xy+yz
(6x^{3}+11x^{2}-10x-7)\div (2x+1)
Factorise. 9x^{2}-8x-1
Divide 4(2x^{2}+5x+3) by 2(2x+3)
Factorise the expression am^{2}+bm^{2}+bn^{2}+an^{2}
Factorize the following: 3x-9
Factorise:14m-21
Factorise: 15ab^{2}-20a^{2}b
Factorise the expression (xy+y)+x+1
Solve: (5p^{2}-25p+20)\div (p-1)
Divide. (a) 12{ x }^{ 3 }\quad by\quad 3x
Carry out the following divisions -54l^{4}m^{3}n^{2} by 9l^{2}m^{2}n^{2}
Solve the following when x^{3}+3x^{2}+3x+1 is divisible by x
Factorise: 16(2p-3q)^{2}-4(2p-3q)
Factorise the following expression by finding common factor. p^{3}-16p^{2}=0
Find out the quotient and the remainder when P(x) = x^{3} + 4x^{2} - 5x + 6 is divided by g(x) = x + 1
Divide 3y^{3} + 2y^{2} + y by y.
Divide 4p^{2} + 2p + 2 by '2p' .
Laxmi does not want to disclose the length, breadth and height of a cuboid of her project. She has constructed a polynomial { x }^{ 3 }-6{ x }^{ 2 }+11x-6 by taking the values of length, breadth and height as its zeroes. Can you open the secret [i.e., find the measures of length, breadth and height]?
Factorise 3{ x }^{ 4 }-10{ x }^{ 3 }+5{ x }^{ 2 }+10x-8
Factorize: a^{2}x + abx + ac + aby + b^{2}y + bc
Factorize: x^{2} + \dfrac {2}{3}x + \dfrac {1}{9}
Factorize the following expressions: 2a^{5}b^{3} - 14a^{2}b^{2} + 4a^{3}b
Factorise : 2x^{2}+7x+3.
Rearrange the like terms: 7l^{3}m^{2} - 21lm^{2}n + 28lm
Factorize the following expressions: 3x^{3} - 5x^{2} + 6x
Factorize the following: ab(x^{2} + 1) + x (a^{2} + b^{2})
Find the remainder using remainder theorem, when:
2x^3-4x^2+7x+6 is divided by x-2
If the polynomials mx^3-2x^2+25x-26 and 2x^3-mx+9 leave the same remainder when they are divided by (x-2), find the value of m. Also find the remainder.
When the polynomial 2x^3-ax^2+9x-8 is divided byx-3 the remainder is Find the value of a.
Find the value of m if x^3-6x^2+mx+60 leaves the remainder 2 when divided by (x+2).
Determine whether (x+1) is a factor of the polynomial:
x^3-14x^2+3x+12
If (x-1) divides mx^3-2x^2+25x-26 with remainder 0, find the value of m.
Find the remainder using remainder theorem, when:
x^3-ax^2-5x+2a is divided by x-a
Determine whether (x+1) is a factor of the polynomial:
3x^3+8x^2-6x-5
Determine whether (x+4) is a factor of x^3+3x^2-5x+36.
Find the remainder using remainder theorem, when:
4x^3-3x^2+2x-4 is divided by x+3
Determine whether (2x+1) is a factor of 4x^3+4x^2-x-1.
Give possible expressions for the length and breadth of the following rectangles, in which their areas are given: Area: 35{y}^{2}+13y-12
Factorize x^3 + 3x^2 - x - 3
Find the remainder when x^3-7x^2-x+6 is divided by (x+2).
Using factor theorem show that (x- 1) is factor of 4x^3-6x^2+9x-7.
Find the value of a if 2x^3-6x^2+5ax-9 leaves the remainder 13 when it is divided by x-2.
Factorize the following
2x^2 - 15x + 27
Find the remainder when x^3+ax^2-3x+a is divided by x+a.
Find the quotient and the remainder when 10-4x+3x^2 is divided byx-2.
Find the quotient and the remainder (4x^3+6x^2-23x-15)\div (3+x)
Determine the value of p if (x+3) is a factor of x^3-3x^2-px+24.
If the polynomials 2x^3+ax^2+4x-12 and x^3+x^2-2x+a leave the same remainder when divided by (x-3), find the value of a. Also find the remainder.
Find the remainder when f(x)=12x^3-13x^2-5x+7 is divided by (3x+2).
Factorize: 6x^{2}+11x-10
If a+b+c=0, show that 6\left( { a }^{ 5 }+{ b }^{ 5 }+{ c }^{ 5 } \right) =5\left( { a }^{ 3 }+{ b }^{ 3 }+{ c }^{ 3 } \right) \left( { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } \right) .
Prove that { \left( a+b \right) }^{ 5 }-{ a }^{ 5 }-{ b }^{ 5 }=5ab\left( a+b \right) \left( { a }^{ 2 }+ab+{ b }^{ 2 } \right) .
Show that { \left( x+y \right) }^{ 7 }-{ x }^{ 7 }-{ y }^{ 7 }=7xy\left( x+y \right) { \left( { x }^{ 2 }+xy+{ y }^{ 2 } \right) }^{ 2 }.
Factorise : {y^2} - 4y + 3
Factorise: 2{x^2} + 11x - 21
The expression 2{ x }^{ 3 }+b{ x }^{ 2 }-cx+d\quad leaves the same remainder, when divided by x+1 or x-2 or 2x-1. Find b and c.
Factorise the following : \begin{array} { l } { (i)6 a + 6 b } \\ { (ii)a x + b x } \\ { (iii)3 x ^ { 2 } - 6 a ^ { 6 } } \end{array} \begin{array} { l } {(iv) 9 x ^ { 2 } + 3 x } \\ { (v)12 x ^ { 3 } y - 4 x y ^ { 2 } } \end{array} \begin{array} { l } {(vi) \dfrac { 1 } { 2 } x + \dfrac { 1 } { 2 } } \\ (vii){ c d m + c d t } \\ (viii){ 36 a ^ { 2 } b ^ { 3 } - 18 a ^ { 3 } b ^ { 2 } } \\(ix) { 25 m ^ { 2 } n ^ { 3 } - 5 m n } \\(x) { 3 a y + 3 a z } \end{array} \begin{array} { l } { (xi)185 a + 185 b } \\(xii) { 28 x - 14 y } \\ (xiii){ a x - a y } \\ (xiv){ 12 y ^ { 3 } + 6 a ^ { 3 } } \\ (xv){ 3 x + 9 y } \end{array}
Divide 4{x^2} - 8x + 3 by 2x - 1.
What is the remainder if { p }^{ 11 }+{ p }^{ 9 }+{ p }^{ 7 }+{ p }^{ 5 }+{ p }^{ 3 }+{ p }^{ 2 } divided by p + 1
(5p^2-25p+20)\div (p-1).
Divide the given polynomial by the given monomial: (i) \left( 5 x ^ { 2 } - 6 x \right) \div 3 x (ii) 8\left( x ^ { 3 } y ^ { 2 } z ^ { 2 } + x ^ { 2 } y ^ { 3 } z ^ { 2 } + x ^ { 2 } y ^ { 2 } z ^ { 3 } \right) \div 4 x ^ { 2 } y ^ { 2 } z ^ { 2 }
Solve \dfrac{x^2+5x+6}{x+3}.
Factories : am^2+bm^2+bn^2+an^2
Solve:
x^{2}-2x-8=0
Factorise x^{2}+19x-150
Show that \frac { x ^ { 2 } + 2 x y + y ^ { 2 } - a ^ { 2 } + 2 a b - b ^ { 2 } } { ( x + y - a + b ) } = ( x + y + a - b )
(3x+2x^2+4x^3)\div (x-4).
Factorize the expression and divide them as directed. 4yz(z^2+6z-16)\div 2y(z+8).
Solve for r:
41=400[\big[\frac{100+r}{100}\big]^{2}-1]
Factorise 4 u ^ { 2 } + 8 u
Factorise: 12{p^5} + 16{p^4} - 20{p^3}
Factorize:x ^ { 2 } - m ^ { 2 } + 6 m n - 9 n ^ { 2 }
Factorise: {p^3} - 3pq + p{q^2}
Prove that {n} ^ { 7 } - 7{ n} ^ { 5 } + 14 {n} ^ { 3 } - 8 n is divisible by 840 for all n \in N
Factorise : 6x^{2}+7x-3
Show that (2x+1) is a factor of { 4x }^{ 3 }+{ 12x }^{ 2 }+11x+3. Hence, factories { 4x }^{ 3 }+{ 12x }^{ 2 }+11x+3.
The polynomial 6{x^4} + 8{x^3} - 5{x^2} + ax + b is exactly divisible by polynomial 2x-5 then find the value of 2b-a
Factorise completely by removing a monomial factor 7{x^3} - 5{y^2}
Divides and write the quotient and the remainder. \left( { 6x }^{ 5 }-{ 4x }^{ 4 }+{ 8x }^{ 3 }+{ 2x }^{ 2 } \right) \div { 2x }^{ 2 }
Divide 6{x}^{3}-{x}^{2}-10x-2 by 2x-3
If {x}^{3}+a{x}^{2}+bx+6 is divisible by \left(x-2\right) and leaves remainder 3 when divided by \left(x-3\right) then find the value of a and b.
Divide x^{2}+3x+2 by x+1
Simplify : \dfrac { a ^ { 3 } - 27 } { 5 a ^ { 2 } - 16 a + 3 } \div \dfrac { a ^ { 2 } + 3 a + 9 } { 25 a ^ { 2 } - 1 }
simplify : a^{3}-12a-16
Divide and write the quotient and the remainder (21x^{4}-14x^{2}+7x)\div 7x^{3}
factorize
4x+8
Solve: 2a(3x+5y)-5b(3x+5y)
Divide the given polynomial by the given monomial 8\left( x ^ { 3 } y ^ { 2 } z ^ { 2 } + x ^ { 2 } y ^ { 3 } z ^ { 2 } + x ^ { 2 } y ^ { 2 } z ^ { 3 } \right) \div 4 x ^ { 2 } y ^ { 2 } z ^ { 2 }
Factorize: 3+2a-a^{2}
Solve the following (6x^{4}+4x^{2}+9x+5) \div (2x+3)
Divide and write the equation \left( {{y^2}+10y + 24} \right) \div \left( {y + 4} \right)
Factorise:{x}^{4}+{x}^{2}+1
Factorize - { ax }^{ 2 }+{ bx }^{ 2 }-{ ay }^{ 2 }-{ by }^{ 2 }
Find the factorss of x^{4}+3x^{3}-7x^{2}-27x-18
Factorise: (x^{3}-2x^{2}-5x+6)
Divide 15{x}^{3}-20{x}^{2}+13x-12 by 3x-6
Verify whether 2y-5 is a factor of 4{y}^{4}-10{y}^{3}-10{x}^{2}+30y-15
Write the factors of 15xy-6x+5y-2
Work out the following divisions (i) \left(11x-121\right)\div 11 (ii) \left(15x-25\right)\div \left(3x-5\right) (iii) 10y\left(9y+21\right)\div 2\left(3y+7\right) (iv)9{p}^{2}{q}^{2}(3z-12)\div 27pq\left(z-4\right)
Find the value of a and b, if the zeros of the polynomial. x^{3}-3x^{2}+x+1 are a-b,\ a,\ a+b
Look at several examples of rational numbers in the form \dfrac{p}{q}(q\neq 0), where p and q are integers with no common factors other than 1 and having terminating decimal representations. Can you guess what property q must satisfy?