Processing math: 0%

Factorisation - Class 8 Maths - Extra Questions

Factorise ab(x2+y2)xy(a2+b2).



Divide the polynomial 3x^{4} -4x^{3} -3x - 1 by x -1.



Find  the root of given equation  {x}^{2}+6x+5



Factorize x\left( {x + z} \right) - y\left( {y + z} \right)



Factorise the expression and divide them as directed.
(5p^2-25p+20)\div (p-1).



Factousation, 16{p^2}{q^2}{r^3} - 24{p^3}{q^2}{r^2} + 8{p^3}{q^2}{r^2}



factorise 
3 x ^ { 2 } + 6 x ^ { 3 }



Factorise:
ab^{2}+b(a-1)-1



Factorize:
4 a ^ { 2 } - 8 a b



Factorize 
x ^ { 2 } + 7 x + 12 = 0



Factorize:
2 x ^ { 3 } b ^ { 2 } - 4 x ^ { 5 } b ^ { 4 }



Factorize: 15 x ^ { 4 } y ^ { 3 } - 20 x ^ { 3 } y



Factorize:.15 x + 5



Factorise completely by removing a monomial factor.
5m+5n



Factorise completely by removing a monomial factor.
5a+8b



Factorise completely by removing a monomial factor.
2x-4



Factorize: 
a ^ { 3 } b - a ^ { 2 } b ^ { 2 } - b ^ { 3 }



Factorise completely by removing a monomial factor.
5x+10



Solve : (x^3+2x^2+3x) \div 2x



Factorise completely by removing a monomial factor.
-3m-15n



Factorise completely by removing a monomial factor.
7x-14y



Factorise completely by removing a monomial factor.
3y-9



Factorize:
6 x ^ { 2 } y + 9 x y ^ { 2 } + 4 y ^ { 3 }



Factorise completely by removing a monomial factor.
-7p-14q



Factorise completely by removing a monomial factor.
ax+bx



Factorise completely by removing a monomial factor.
4 + 12{x^2}



Factorise completely by removing a monomial factor.
{x^2}{y^{}} + x{y^2}



Factorize:
6{x^2} - 11x



Factorise :
a{x^2} + a{b^3}



Factorise completely by removing a monomial factor
{x^2}{y^2} + {x^2}



divide
({y^2} + 10y + 24) \div (y + 4)



Factorise completely by removing a monomial factor
ax+ay+az



Factories:-
6n+12n^2



Factories:-
6n+12n^2+21n



Factorize x^3+13x^2+32x+20, if it is given that x+2 is its factor.



Factorise
12{x^2} - 9x



12xy(9x^{2}-16y^{2})\div 4xy(3x+4y)



Factorize: {x^3} + 6{x^2}y + 9x{y^2}.



Factorize:
(a^2-b^2)x^2+2ax+1.



Factorise : 
1.  2x^{2}-x-3
2.  -2x^{2}+3x+9



Solve:
z^2-16z+55=0.



Factorize: {x}^{2}+10x+24



(4x^4-5x^3-7x+1)\div (4x-1).



Divide \left( { 2y }^{ 3 }+{ 4y }^{ 2 }+3 \right) \div { 2y }^{ 2 }



Factorise : 150 -6x^2



Factorise : 8ab^2 - 18a^3



Factorise : x^2 +\dfrac {1}{x^2} - 2 -3x +\dfrac {3}{x}



Factorise : a (a-2b-c) +2bc



Factorise : 4a^2 -9b-2bc  -c^2



Factorise the following expressions:
(i) 32a^2b - 72b^3
(ii) 9 (a +b)^3 - 25 ( a+b)



18 m +16 n



20x^2 -45y^2



  x^3 -25x



14 (a-3b)^3 - 21p (a -3b)



Factorise 27a^3b^3 - 18 a^2b^3 + 75a^3b^2



10 (2p +q)^3 -15b( 2p +q)^2 + 35(2p +q)



  150 -6a^2



32x^2 -18y^2



3a(x^2 +y^2) +6b ( x^2 +y^2 )



x(x^2+y^2-x^2) +y(-x^2-y^2 +z^2) -z (x^2 +y -z^2)



\pi a^5 - \pi^3 ab^2



Factorise m^2+m+1=0.



Factorize:
{a}^{3}-3{a}^{2}b+3a{b}^{2}-{b}^{3}+8



Factorise:
x^{2}+20x-69



Divide \sqrt{2}a^3+3\sqrt{2}a^2+6a by 2a.



Factorize \dfrac {1}{6}a^{2}-a+\dfrac {4}{3}.



Factorise:
4u^2+8u



Factorise
- 3{x^2} + 3xy - 4xza



Factorise:
\left( {a - b} \right) + {\left( {a - b} \right)^2}



Factorise:
- 5{a^2} + 4a + 5\left( { - {a^2} + 5} \right)



Factorize x^{3}+13x^{2}+32x+20



Resolve 2{b}^{2}-5b-3 in to factors.



Factorise: { 7x }^{ 3 }z-{ 21x }z^{ 2 }



{ ab }^{ 2 }+(a-1)b-1



Factorise: { x }^{ 2 }+18x+45



 Factorize  p^2+1.5p+0.5.



Find the quotient and remainder on dividing the polynomials a{x^2} + \left( {b + ac} \right)x + bc\;by\;x + c



Resolve into factors 3x^2-6x



Divide : a^2 + 7a +12  by  (a+4).



Find the quotient and remainder.
(2p^{2}+7p-9)\div (p-6)



Factorise 

18a^3b^3−27a^2b^3+36a^3b^2



Factorise 

12x^2y^3 - 21 x^3y^2



Factorise 

15ab^2 – 20a^2b



Factorise the following:
27 - 125x^{3} - 135x + 225x^{2}



Resolve in to factors x^2+xy



Factorise 9{x}^{2}+12xy.



Factorise the following:
125x^{3} + 64y^{3} - 300x^{2}y + 240xy^{2}



5x^2-10x



Factorise 6xy + 9y^2



Divide -8x^{9} by 2x^{7}



Find the common factors of the terms 8x and 24.



Factorise: 25-50p-100q.



Factorise: 2p(a-b)+3q(5a-5b)+4r(2b-2a).



Factorise 25a^2 b + 35ab^2



Factorise the following:
64a^{3} + 21b^{3}



Factorise 6ab - b^2 - 2bc + 12 ac



Factorise: 7p^2 + 49pq



Factorise:
a^4-343a



Factorise: 4ab{ x }^{ 2 }+8abx+12aby



factorise : { 27p }^{ 3 }\left( { 4q-2r }^{ 3 } \right) +{ 64q }^{ 3 }\left( { 2r-3p }^{ 3 } \right) +{ 8r }^{ 3 }\left( { 3p-4q }^{ 3 } \right)



Find the factors of y^{2}-7y+12.



(p^{2}+5p+4)\div(p+1)



Factorise: 36a^2b - 60a^2bc



Factorise the following:
2x^3y^2-4x^2y^3+8xy^4



Factorize the following.
20a^{12}b^2-15a^8b^4.



Find the common factors of the given terms: 4m^2, 6m^2, 8m^3



Factorize the following.
2a^4b^4-3a^3b^5+4a^2b^5.



Factorize the following.
28a^2+14a^2b^2-21a^4.



Factorize the following expression.
abx^2+(ay-b)x-y.



Factorize the following expression.
a(a-2b-c)+2bc.



Factorize the following algebraic expression.
6x(2x-y)+7y(2x-y).



Factorize the following.
16m-4m^2.



Factorize the following.
9x^2y+3axy.



Factorize the following expression.
a(a+b-c)-bc.



Factorize the following expression.
16(a-b)^3-24(a-b)^2.



Find the common factors of the given terms: 7xy, 35x^2y^3



Factorise the polynomial: 3ax - 6xy + 8by - 4bx



Factorise: 5x^2 - 25xy



Factorize the following expression.
a^2x^2+(ax^2+1)x+a.



Factorize the following expression.
x^2+xy+xz+yz.



Factorize the following.
x^2yz+xy^2z+xyz^2.



Factorize the following algebraic expression.
49-a^2+8ab-16b^2.



Factorize the following expression.
ab-a-b+1.



Factorize the following expression.
x-y-x^2+y^2.



Factorize the following expression.
x^4-625.



Factorize the following expression.
x^2+y-xy-x.



Find the common factors of the given terms: 12x^2y, 18xy^2



Find the common factors of the given terms: 15p, 20qr, 25rp.



Factorise: ut + at^2



Factorise the polynomial: x^3 + 2x^2 + 5x + 10



Factorise: 25x^2 + 9y^2 - 30xy



Factorize the following quadratic polynomial by using the method of completing the square.
p^2+6p+8.



Factorize the following expressions:
17l^{2} + 85m^{2}



Factorize the following expression.
4(xy+1)^2-9(x-1)^2.



Factorize the following expression.
p^2q^2-p^4q^4.



Factorize the following expressions:
-12y + 20y^{3}



Factorize the following expressions:
5a^{2} + 35a



Factorize the following expressions:
pq - pqr



Factorize: 6xy - 4y + 6 - 9x



Factorize the following expressions:
18m^{3} - 45mn^{2}



Factorize:
mx - my - nx + ny



Factorize:
ax^{3} - bx^{2} + ax - b



Factorize:
2m^{3} + 3m - 2m^{2} - 3



Factorize:
2x + 3xy + 2y + 3y^{2}



Factorize:
p^{2} - 6p + 8



Factorize the polynomial:
a^{2} + 13a + 12



Factorize:
a^{2} + 11b + 11ab + a



Factorize:
15b^{2} - 3bx^{2} - 5b + x^{2}



Factorize:
169p^{2} - 625q^{2}



Factorize:
a^{2}x^{2} + axy + abx + by



Work out the following divisions:
(9x^{5} - 15x^{4} - 21x^{2}) \div (3x^{2})



Work out the following divisions:
(5x^{3} - 4x^{2} + 3x) \div (2x)



Factorize the polynomial:
x^{2} - 14xy + 24y^{2}



Factorize the polynomial:
m^{2} - 21m - 72



Work out the following divisions:
(8x^{4}yz - 4xy^{3}z + 3x^{2}yz^{4})\div (xyz)



Simplify the following expressions:
(x^{2} + 7x + 10)\div (x + 2)



Work out the following divisions:
4x^{2}y - 28xy + 4xy^{2} \div (4xy)



Work out the following divisions:
5y^{3} - 4y^{2} + 3y \div y



Simplify:
(7m^{2} - 6m)\div m



Factorize the polynomial:
x^{2} - 5x + 6



Factorize the following:
2m^{2} - 10mn - 2m + 10n



Factorise:
4a - 8b + 5ax - 10 bx



Resolved into factor 
ap+ap^{2}



Solve 2x^2 - 5x =0



Factorize:
{ ab }^{ 2 }-ab-{ a }^{ 2 }b+{ a }^{ 2 }



Factorisation of 721 ? 



Factorize of a^{2}+10\ a+24



Divide the following:
({ x }^{ 3 }-64)\div (x-4)



Divide, Write the quotient and the remainder.
40a^{3}\div (-10a)



Divide: 3{a}^{3}-9{a}^{2}b-6a{b}^{2} by -3a



Factorize:
99x^2-202xy+99y^2.



Simplify :
3x(2+5x)-6(1-2x)



Factorise
6{ x }^{ 2 }-5x-6



Factories the expressions. 
y(y+z)+9(y+z)



Factorize:
x ^ { 2 } - 23 x + 132



Factorise :
6x^{2}+5x-6



Factorise the following expression. 
{q^2} - 10q + 21 



Factorise the expression 
ax^{2}+bx



Factorise:
q^2-10q+21



Solve : 3\left( x-4 \right) ^{ 2 }-5\left( x-4 \right)



Solve it :- 
x^2 + (a + \frac{1}{a}) x + 1 = 0



Factorize;{ g }^{ 2 }-10 g+21.



Factorise:
\sqrt {2}x-\sqrt {3}x^{2}



Factorise : { a }^{ 2 }-\left( b+5 \right) a+5b



Find 
\sqrt { 3} { x }^{ 2 } -2x\sqrt { 3 }



Factorize
21 py^2 -56py



Divide :
x^{5} - 15x^{4} - 10x^{2} by -5x^{2}



Divide :
8m - 16 by -8



Divide :
4a^{2} - a by -a



Divide :
3y^{3} - 9ay^{2} - 6ab^{2}y by - 3y



Divide :
10x^{3}y - 9xy^{2} - 4x^{2}y^{2} by xy



Divide :
8x + 24 by 4



4x^3 -6 x^2



Factorise the expression m^2 - 4m - 21



Factorise : 14{x^2} + 9x + 1



Solve
3x^{4}-4x^{3}



Facrorise m(m-1)-n(n-1)



Identify the terms and factors in the following expression.
i) 5ab^2 + 7a^2b
ii) 12xyz - 6xy



Divide (4{x}^{2}-17xy+4{y}^{2} ) by  ( x-4y)



Factorize:
p^2+p-(a+2)(a+1).



Factorize:
6(x-y)^2-(x-y)-15.



Factorise
5y^{2}+5y-10



Factorise 64xy+8xy^{2}



Divided (32{x}^{4}{y}^{3}-16{x}^{3}{y}^{4}) by (-8{x}^{2}y)



Factorise:
24x^3 – 36x^2y



38x^{3}y^{2}z + 19xy^{2} is equal to __________ .



Factorise
12x^2-27



Factorise 

x(a-3) + y(3-a)



Factorise 

x^3(2a-b) + x^2(2a-b)



Factorise
16p^3-4p



9+6z+9a^2



Factorise
3x^5-48x^3



Factorise
20a^2-45b^2



Perform the following division:
(ax^{3}-bx^{2}+cx) \div (-dx)



Factorise the following polynomials : 
(i) a^2b+ab^2 -abc - b^2c +axy +bxy
(ii) ax^2 -bx^2 + ay^2 -by^2 + az^2 - bz^2



8x^2 - 6x^2 + 10x



Divide:
14p^2q^3 - 32p^3q^2 + 15pq^2 - 22p + 18q by -2p^2q.



28 p^2q^2 r - 42 pq^2r^2



Factorise the following :
12x^3 -14x^2 -10x



Factorise the following :
10x^2 -18x^3 +14x^4



Factorise by taking out the common factors:
2(2x - 5y)( 3x + 4y) - 6(2x - 5y) (x - y)



Solve:
x^2(a-b)-y^2(a-b)+z^2(a-b)



Factorise: 
3a^5-108a^3



Factorise: 
50a^3-2a



Resolve in to factors: 5 -  10m -  20n.



Factorise :
4x^2+\dfrac{1}{4x^2}+1



Solve:
4x(3x-2y)-2y(3x-2y)



Factorise : 
24a^3-37a^2-5a



Find and correct errors of the following mathematical expressions:
\dfrac{3x^{2}+1}{3x^{2}} =1+1 =2 



Resolve in to factors:(1.6)a^2 - (0.8)a



Resolve in to factors : x^2+xy



Divide the given polynomial by the given monomial : (5x^2 - 6x)\div 3x



Factorise the expression: 5y^2 -20y - 8z+ 2yz



Factorise the expression: 6xy-4y+6 -9x



Factorise the expression: y(y + z)+ 9(y + z)



Divide 64y^3-1000 by 8y -20.



Write down all possible factors of 3x^2y



(n^{3} - n) is divisible by 3. Explain the reason



Factorise the polynomial: m^2 - mn + 4m - 4n



Factorise: x^2 - 36



Factorise: x^2 - 81



Factorise: 36x^2 + 96xy + 64y^2



Factorise: m^2 - 121



Factorise: 25m^2 - 40mn + 16n^2



Factorise: a^2 + 10 a + 25



Factorise: 49x^2 - 25y^2



Factorise: x^4 - y^4



Find the errors in the following mathematical sentence:
(3x + 2) \div 3x = \dfrac{2}{3x}



Factorise: x^2 -ax - bx + ab



Factorise: x(y + z) - 5(y + z)



Factorise: mn + m + n + 1



Factorise the polynomial: lx^2 + mx



Check whether the given expression is correct?
\dfrac{4x + 3}{3} =x + 1



Factorise: 7y^2 + 35z^2



Verify whether the given mathematical statement is correct?
3x + 5 \div 3 = 5



Factorise: a^4 - (b + c)^4



Factorize the following expressions:
15a^{2}b + 35ab



Factorize the following expressions:
7x - 14y



Factorize the following expressions:
3x - 45



Simplify:-
2ab + 2b + 3a



Solve: (x^{6} - 3x^{4} + 2x^{2})\div 3x^{2}



Factorize the following expressions:
2x + 6



Factorize the following:
x^{3} - 3x^{2} + x - 3



Factorize the following:
2xy - 3ab + 2bx - 3ay



Factorize the following expressions:
4x^{2} + 20xy



Simplify: 3(5y^{2} - 3y + 2)



Factorize the following expressions:
3x^{2} - 12xy



Solve: (8x^{3} - 5x^{2} + 6x) \div 2x



Solve: (7x^{2} - 5x)\div x



Factorise the following:
6a^5 - 18a^3 + 42a^2



Factorise:
2a^3 + 4a^2



Find the remainder using remainder theorem, when:
3x^3+4x^2-5x+8 is divided by x-1 



Find the remainder using remainder theorem, when:
8x^4+12x^3-2x^2-18x+14 is divided by x+1



Find the factors of a(b - c)^{3} + b(c - a)^{3} + c(a - b)^{3}.



Find the remainder using remainder theorem, when:
4x^3-12x^2+11x-5 is divided by 2x-1  



Determine whether (x+1) is a factor of the polynomial:
6x^4+7x^3-5x-4



Determine whether (x+1) is a factor of the polynomial:
2x^4+9x^3+2x^2+10x+15



Find the factors of a^{4} (b^{2} - c^{2}) + b^{4}(c^{2} - a^{2}) + c^{4} (a^{2} - b^{2}).



Factorise: {x^2} + 7x - 18



Factorize:
m^3-m.



Simplify:
2\left(a^2+\dfrac{1}{a^2}\right)-\left(a-\dfrac{1}{a}\right)-7.



Factorize  {(y - (b - a))^2}



Simplify:
x(x-4)-y(y-4).



Factorize
{x^2} - x + 10



Simplify:
x^6+6x^3+8.



Simplify:
a^2-3b^2-c^2-2ab+4bc.



Divide {x}^{3}-6{x}^{2}+11x-6 by x-2 and verify the division algorithm



Factorise: 12ax - 4ab + 18bx - 6b^2=0



Factorise x^4-5x^2+6.



Factorise
6x^{2}+11x+6



Factorise 8a^{2}-22ab+15b^{2}.



If a polynomial f(x) is divided by {x}^{2}-16 then remainder is 5x+3, what will be the remainder when the same polynomial is divided by (x+4)?



Factorize 125a^{3}+343b^{3}.



p(x)=x^{3}+3x^{2}+3x+1 is divided by x=-\dfrac{1}{2}
p(a) x=-\dfrac{1}{2}=0
x=\dfrac{1}{2}
p\left(\dfrac{1}{2}\right)= \left(\dfrac{1}{2}\right)^{3}+3\left(\dfrac{1}{2}\right)^{2}+3\left(\dfrac{1}{2}\right)+1



Factorize 4x^{2}-3x-7



Simplify:
a^2y^2+ay-(a+2)(a+1).



Answer any two of the following:
factorize 4{ \left( a-1 \right)  }^{ 2 }-4\left( a-1 \right) =3



Find the value of P for which polynomial x^{3}+x^{2}-3x-P is exactly divisible by polynomial (x+3).



Divide 4x^3 + 3x^2 - 2x + 8 by x - 2



Divide 6{a}^{4}-2{a}^{2}-a by {a}^{2}



Factorise: {x}^{2}+6x+5 = 0



Factorise ab\left( {{x^2} + {y^2}} \right) - xy\left( {{a^2} + {b^2}} \right)



Factorize {x^2} - 2x - 8



Simplify:
(a^2-b^2)(x^2-y^2)+4abxy



Factorize 8x^2-128.



Simplify:
p^2+p-(a+1)(a+2).



Divide 2x^3-9x^2+10x by (2x+5) and also verify the result.



Simplify:
x^2+4x-y^2+4y



Simplify: \cfrac{\cfrac{y}{6} + \cfrac{2y}{3}}{y +\cfrac{2y-1}{3}}.



Divide 3x^3+2x^2+13x+42 by (x+2) and also verify the result.



Factorize:
a^2+b^2



Simplify: x^2 + 6x + 9 - 4y^2.



Factorize : (x+y) (2x+3y)- (x+y) (x+1)



Simplify: \left(n^2 + \dfrac{1}{n^2}\right) - 4\left(n + \dfrac{1}{n}\right) + 6



Factorise: 8{y^2} - y



Factorize 6{ x }^{ 2 }+17x+5 by using the Factor Theorem.



Divide 3{y^4} - 8{y^3} - {y^2} - 5y - 5 by y-3 and find the quotient and the reminder.



Factorise.
m^2-23m+120.



Factorise: 
{x^2} + 8x + 16



Solve: 16a^{2}-b^{2}+4a+b



Find the remainder when x^3+3x^2+3x+1 is divided by x+1



Factorize by factorisation method 15x^5y^2+3x^3y+19 



Find the remainder when x^3 + x^2 + x + 1 is divided by x - \frac{1}{2}, by using remainder theorem. 



Factorise:
c+bc^2-ba^2-a.



Factorise: 27{x^3} - 21{x^2} + 15{x^4}



Solve:
8{a^2}b - 3ab + 5{b^2} \ by \ 6ab



Evaluate
(5x^{3}-3x^{2})\div x^{2}



Simplify
\left( {5{a^3}b - 7a{b^3}} \right) \div ab



Simplify {x^4} + 2{x^3}y - 2x{y^3} - {y^4}



24a^{3}b^{2} + 8a^{2}b^{2} + 12ab by 6ab.



Divide  {2{x^3} - 4{x^2} - 3x - 1} by {x + 2}



Divide 3x^{4}+2x^{2}-3 by (x+1) and find quotient and remainder.



The volume of a cuboid is given by the expression 3x^{3}-12x. Find the possible expression for its dimensions.



Factorize: 12x^{2}-7x+1



Convert into factorials:
3 \times 6 \times 9 \times 12 \times 15 \times 18



Solve:-
a^{2}-11a+30 by (a-5)



Divide :
15{p^3} \div 3p



\left( { m }^{ 2 }-14m-32 \right) \div \left( m+2 \right) 



Factorise the expressions using the common factor method.
8x^2y + 4x



Solve :-
 \left( {3{x^2} + 5x - 9} \right) \times \left( {3x - 5} \right)



Solve: 21 m ^ { 2 } \div 7 m



Divide. Write the quotient and the remainder.
(a) 21{m}^{2}\div 7m
(b) 40{a}^{3}\div (-10a)



Factories : 2xy+2y+3x+3



Factorise:
6{x}^{2}{y}^{3}-12{x}^{2}{y}^{2}+18{x}^{3}y



Divide the given polynomial by the given monomial.
(p^{3}q^{6}-p^{6}q^{3})\div p^{3}q^{3} 



Factorize :
7x(3x-y)+7y(3x-y) 



the product of two polynomials is 7.5{ a }^{ 3 }{ b }^{ 2 }-2.5ab+10{ a }^{ 2 }{ b }^{ 2 } . if one of them is 2.5ab,find the other polynomial.



Solve 18a^{3}b-27a^{2}b



Solve by factorization method: \sqrt{3}x^2+10x+7 \sqrt{3}=0



Divide the polynomial {x^3} - 2{x^2} - 4x - 1 by x - 1 and find the
remainder.



Factorise
10x{y^2} - 15{x^2}y



Facrtorise
9x^2-6x+1=0



Factorise

3x(5a - 6b) - 12{a^2}(5{a^{}} - 6b)



-20 x^{4}   by 5x



Factorise \left( {a - b} \right) + {\left( {a - b} \right)^2}



Factorize:-
2x^2-7x-15



Divide : -36x^{4}/(-9x)



Divide 2{x^2} - 7{x^3} + 17{x^2}+17x +5 by 2{x^2}



Find the value of a, if {\text{x}}\;{\text{ - }}\;{\text{a}} is factor of {x^3} - {a^2}x + x + 2.



{ 2x }^{ 2 }-5x-2xy+5y



Factorise the following expression :
7x-42



Factorize:
x^2-9x+20



Find the factors of the polynomial given below.
2m^{2}+5m+3



Solve the equation : 3 n ^ { 3 } + 4 n ^ { 2 } + n=0



Find the product using the distributive law of multiplication.
( x + 7 ) ( x - 2 )



Factorize:
(2x^{3}+54)



Factories
x^{2}+11x+18



Define factorisation.



Write the following polynomials in factored from:
(i) 90p^{3}q^{3}r^{3}+18p^{3}q^{3}r
(ii) 48pqr+96qr^{3}
(iii) 21x^{2}z^{2}+30y^{3}z
(iv) 36x^{2}y^{3}z^{2}+72x^{2}y^{3}z^{3}



Solve :
6xy-4y+6-9x



Carry out the following division :
28 x ^ { 4 } \div 56 x



Simplify 
21b-60+7b-20b



Factorise : 16w^{3}-u^{4}w^{3}



Factorize : \dfrac { 36{m}^{2} } { 289 }  - 81



Factories : p ^ { 2 } + 6 p + 8



Factorize:
x^{1}+x^{2}\times 25 



Factorise.
4a^{2}+7a-2



Express the following as the product of exponent through prism factorization
1156



Factorize :
a^{2}-b^{2}-a-b



Factorise.
11{x}^{2}+17x+6



Factorise:25m^{2}-70mn+49n^{2}



Factorise.
4x^{2}+3x-7



Factorise: 2x^{2}-3x+1.



Factorise.
9x^{2}-6x+1



Factorise:
8xy+yz



(6x^{3}+11x^{2}-10x-7)\div (2x+1)



Factorise.
9x^{2}-8x-1



Divide 4(2x^{2}+5x+3)   by  2(2x+3)



Factorise the expression
am^{2}+bm^{2}+bn^{2}+an^{2}



Factorize the following:
 3x-9



Factorise:14m-21



Factorise: 15ab^{2}-20a^{2}b



Factorise the expression
(xy+y)+x+1



Solve: (5p^{2}-25p+20)\div (p-1)



Divide.
(a) 12{ x }^{ 3 }\quad by\quad 3x



Carry out the following divisions 
-54l^{4}m^{3}n^{2} by 9l^{2}m^{2}n^{2}



Solve the following when x^{3}+3x^{2}+3x+1 is divisible by 
x



Factorise: 16(2p-3q)^{2}-4(2p-3q)



Factorise the following expression by finding common factor.
p^{3}-16p^{2}=0



Factorise  { x }^{ 2 }+x-2



Factorise:
4x^{2}+9y^{2}+25z^{2}+12xy+30yz+20zx



Simplify:
3{\left( {a - 2b} \right)^2} - 5\left( {a - 2b} \right)



Factorise 
{ 5 b }^{ 2 }-6b+1



Factorise:{ a }^{ 2 }{ x }^{ 2 }+\left( { ax }^{ 2 }+1 \right) x+a



Simplify:
(x^2-5)(x+5)+25



Simplify:\left(3{x}^{2}-x\right)\div\left(-x\right).



Factorise the following expression. 
{p^2} + 6p + 8   



Factorise:
2a+36c



On dividing   p\left(4 p^{2}-16\right)  by   4 p(p-2),  we get (a)   2 p+4  (b)   p+2



Find :
{ 9x }^{ 2 }-15x+6=?



36\left( x+4 \right) \left( { x }^{ 2 }+7x+10 \right) \div 9\left( x+4 \right)



In the division algorithm of polynomials the divisor is (x+2), quotient is (x+1) and the remainder is 4 . Find the dividend?



Factorise the given polynomial expression:
{a}^{2}{x}^{2}+(a{x}^{2}+1)x+a



Factorise : 27 a^3b^3 - 45 a^4 b^2



Factorise 14p^{2} + 21pq.



Factorise the quadratic expression:
{x}^{2}+y-xy-x



Factorise : x^5 +x^2



Factorise the given polynomial expression:
{x}^{3}+x-3{x}^{2}-3



Factorise completely:
18{x}^{2}-24x



Factorise :  x^3-x^2+ax+x-a-1



Factorise :  32x^4 -500 x



Factorise:
6d^2e-9e^2.



Divide 5m^{3}-30m^{2}+45m by 5m



Write the greatest common factor of the following terms 2xy, -y^{2}, 2xy



Common factor of  ax^{2} + bx is _____ .



Factorise the following expressions: -xy - ay



Factorise :  3a^7 b - 81 a^4b^4



Factorise the following expressions: ax^{2} - bx^{2} + cx



Factorise the following expressions: 6ab + 12bc



15ax^3 -9ax^2



If factorised form of 18mn + 10mnp is amn (b + 5p). Then product of a and b is



Factorise the following expressions: l^{2}m^{2}n - lm^{2}n^{2} l^{2}mn^{2}



Divide:
5x^{2} - 3x by x



Factorize :  a^{2}(b+c)^{2}+b^{2}(c+a)^{2}+c^{2}(a+b)+abc(a+b+c)+(a^{2}+b^{2}+c^{2})(bc+ca+ab)



Factorise xy^2 - xz^2, Hence, find the value of
40 \times 5.5^2 - 40 \times 4.5^2



What are the possible expressions for the dimension of the cuboids whose volumes are given as in image?

463700.png



Factorise the following using appropriate identities:
(i) 9x^2+6xy+y^2
(ii) 4y^2-4y+1
(iii) x^2-\displaystyle\frac{y^2}{100}



 Find the common factors of the given terms.
(i) 12x, 36

(ii) 2y, 22xy

(iii) 14 pq, 28  p^{2}q^{2}

(iv) 2x,  3x^{2}, 4

(v) 6abc , 24 ab^{2} , 12a^{2}b

(vi) 16x^{3}, -4x^{2}, 32x

(vii) 10 pq, 20qr, 30rp

(viii) 3x^{2}y^{3}, 10x^{3}y^{2}, 6x^{2}y^{2}z



Factorise: { x }^{ 2 }+14x+45



Factorise: 36{ x }^{ 2 }+25+60x



Find and correct errors of the following mathematical expressions:
\dfrac{4x+5}{4x} =5



Factorise
(i) x^{2}+xy +8x+8y
(ii) 15xy-6x+5y-2
(iii) ax+by-ay-by
(iv) 15pq+15+9q+25p
(v) z-7+7xy-xyz



Factorise
(i) 4p^{2} - 9q^{2}
(ii) 63a^{2}-112b^{2}
(iii) 49x^{2}-36
(iv) 16x^{5}-144x^{3}
(v) (l+m)^{2}-(l-m)^{2}
(vi) 9x^{2}y^{2}-16
(vii) (x^{2}-2xy+y^{2})-z^{2}
(viii) 25a^{2}-4b^{2}+28bc-49c^{2}



Factorise: 2a\left( x-y \right) +3b\left( 5x-5y \right) +4c\left( 2y-2x \right)



Find and correct errors of the following mathematical expressions:
\dfrac{7x+5}{5} =7x



Divide the polynomial by the given monomial
(i) (5x^{2}-6x) \div 3x
(ii) (3y^{8}-4y^{6}+5y^{4})\div y^{4}  
(iii) 8(x^{3}y^{2}z^{2}+x^{2}y^{3}z^{2} +x^{2}y^{2}z^{3})\div 4x^{2}y^{2}z^{2}  
(iv) (x^{3}+2x^{2}+3x) \div 2x  
(v) (p^{3}q^{6}-p^{6}q^{3}) \div p^{3}q^{3}  



Find the remiander if we divide \left( 15{ y }^{ 4 }-16{ y }^{ 3 }+9{ y }^{ 2 }-\dfrac { 1 }{ 3 } y-\dfrac { 50 }{ 9 }  \right) by \left( 3y-2 \right)



Factorise: 7xa-70xb



Find the common factor of the given terms: 4x^2, \ 6xy, \ 8y^2x



Factorise: \sqrt { 3 } { y }^{ 2 }+11y+6\sqrt { 3 }



Factorise: 13{ m }^{ 2 }+156{ n }^{ 2 }



Factorise: a^3 - a^2 b^2 - ab + b^3



Factorise the expression x^2 + 10 x + 25



Factorise: 12{ \left( { a }^{ 2 }+7a \right)  }^{ 2 }-8\left( { a }^{ 2 }+7a \right) \left( 2a-1 \right) -15{ \left( 2a-1 \right)  }^{ 2 }



Factorise 48a^2 - 243b^2



Factorise the expression 4x^2 + 20x - 96



Factorise:
16z^2 - 48z + 36



Factorise the expression p^4 - 256



Divide 30(a^2bc + ab^2 c + abc^2) by 6abc



Factorise: 81x^2 - 198xy + 121y^2



Factorise the expression x^2 + 2xy + y^2 - 4z^2



Find out the quotient and the remainder when
P(x) = x^{3} + 4x^{2} - 5x + 6 is divided by g(x) = x + 1



Divide 3y^{3} + 2y^{2} + y by y.



Divide 4p^{2} + 2p + 2 by '2p' .



Laxmi does not want to disclose the length, breadth and height of a cuboid of her project. She has constructed a polynomial { x }^{ 3 }-6{ x }^{ 2 }+11x-6 by taking the values of length, breadth and height as its zeroes. Can you open the secret [i.e., find the measures of length, breadth and height]?



Factorise 3{ x }^{ 4 }-10{ x }^{ 3 }+5{ x }^{ 2 }+10x-8



Factorize:
a^{2}x + abx + ac + aby + b^{2}y + bc



Factorize:
x^{2} + \dfrac {2}{3}x + \dfrac {1}{9}



Factorize the following expressions:
2a^{5}b^{3} - 14a^{2}b^{2} + 4a^{3}b



Factorise : 2x^{2}+7x+3.



Rearrange the like terms: 
7l^{3}m^{2} - 21lm^{2}n + 28lm



Factorize the following expressions:
3x^{3} - 5x^{2} + 6x



Factorize the following:
ab(x^{2} + 1) + x (a^{2} + b^{2})



Find the remainder using remainder theorem, when:
2x^3-4x^2+7x+6 is divided by x-2 



If the polynomials mx^3-2x^2+25x-26 and 2x^3-mx+9 leave the same remainder when they are divided by (x-2), find the value of m. Also find the remainder.



When the polynomial 2x^3-ax^2+9x-8 is divided byx-3 the remainder is Find the value of a.



Find the value of m if x^3-6x^2+mx+60 leaves the remainder 2 when divided by (x+2).



Determine whether (x+1) is a factor of the polynomial:
x^3-14x^2+3x+12



If (x-1) divides mx^3-2x^2+25x-26 with remainder 0, find the value of m.



Find the remainder using remainder theorem, when:
x^3-ax^2-5x+2a is divided by x-a  



Determine whether (x+1) is a factor of the polynomial:
3x^3+8x^2-6x-5



Determine whether (x+4) is a factor of x^3+3x^2-5x+36.



Find the remainder using remainder theorem, when:
4x^3-3x^2+2x-4 is divided by x+3  



Determine whether (2x+1) is a factor of 4x^3+4x^2-x-1.



Give possible expressions for the length and breadth of the following rectangles, in which their areas are given:
Area: 35{y}^{2}+13y-12



Factorize x^3 + 3x^2 - x - 3



Find the remainder when x^3-7x^2-x+6 is divided by (x+2).



Using factor theorem show that (x- 1) is factor of 4x^3-6x^2+9x-7.



Find the value of a if 2x^3-6x^2+5ax-9 leaves the remainder 13 when it is divided by x-2.



Factorize the following
2x^2 - 15x + 27



Find the remainder when x^3+ax^2-3x+a is divided by x+a.



Find the quotient and the remainder when 10-4x+3x^2 is divided byx-2.



Find the quotient and the remainder (4x^3+6x^2-23x-15)\div (3+x)



Determine the value of p if (x+3) is a factor of x^3-3x^2-px+24.



If the polynomials 2x^3+ax^2+4x-12 and x^3+x^2-2x+a leave the same remainder when divided by (x-3), find the value of a. Also find the remainder.



Find the remainder when f(x)=12x^3-13x^2-5x+7 is divided by (3x+2).



Factorize:
6x^{2}+11x-10



If a+b+c=0, show that 6\left( { a }^{ 5 }+{ b }^{ 5 }+{ c }^{ 5 } \right) =5\left( { a }^{ 3 }+{ b }^{ 3 }+{ c }^{ 3 } \right) \left( { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } \right) .



Prove that { \left( a+b \right)  }^{ 5 }-{ a }^{ 5 }-{ b }^{ 5 }=5ab\left( a+b \right) \left( { a }^{ 2 }+ab+{ b }^{ 2 } \right) .



Show that { \left( x+y \right)  }^{ 7 }-{ x }^{ 7 }-{ y }^{ 7 }=7xy\left( x+y \right) { \left( { x }^{ 2 }+xy+{ y }^{ 2 } \right)  }^{ 2 }.



Factorise : {y^2} - 4y + 3



Factorise: 2{x^2} + 11x - 21



The expression 2{ x }^{ 3 }+b{ x }^{ 2 }-cx+d\quad leaves the same remainder, when divided by x+1 or x-2 or 2x-1. Find b and c.



Factorize : x^2-24x-180



Factorise : 6 - x - {x^2}



Factorise : {x^2} - 11x - 80



Simplify :
i) \cfrac{-14x^8y^5+21x^{10}y-28x^7y^6}{7x^7y^8}
ii) \cfrac{15a^4x^8-30a^{7}x^5-45a^6x^6}{20a^{14}x^5}
iii) \cfrac{-60x^4a^5-75x^{3}a^6+8x^5a^4}{-20x^8a^4}



Factorise : {z^2} - 32z - 105



Factorise : 6{x^2} + 17x + 12



Resolve into factors of 4{x^2} - 25{y^2} + 2x + 5y



Factorise
x^3 - 2x^2 - x + 2



Express in standard form
(x-a) (x-b)



Factorise: 6{x^2} + 11x - 10



Factorise: 18{x^2} + 3x - 10



Factorize y^2-( a+ b) y + ab



Factorize:
x^2+3\sqrt{2}x+4=0



Divide P(x) by g(x)
P(x) ={x^4} - 3{x^2} - 4
g(x) = x + 2



Factorize:
(i)\ \ \ {x^2} + 9x + 18
(ii)\ \ 6{x^2} + 7x - 3
(iii)\ 2{x^2} - 7x - 15
(iv)\ \ 84 - 2r - 2{r^2}



If you divide f\left( x \right) = {x^3} + 3{x^2} - kx - 12 by \left( {x - 3} \right), you get remainder 30. Find k and also find the quotient.



Simplify \dfrac {{x}^{2}}{9}-\dfrac {{y}^{2}}{4}



Let p(x) = x^{4}-3x^{2}+2x + 5. Find the remainder when p(x) is divided by (x-1).



factorise
9x^{2}+12xy



Divide ({x^2} + 5x + 6 ) by ( x + 2).



Factorize: 2x^{2}-7x-15



Factorise:15x+5



Factorize the following:8{x}^{2}-14x+8x-14



Factorise {X}^{2}-7X+10=0



Factorize the following:
(16-81{x}^{2})



Find the remainder when {x^2}\, - \,a{x^2}\, + \,8x\, + \,a is divided by (x - a)



Divide p(x) = 2x^3 - 11x^2 + 19x - 10 by g(x) = 2x -Find the quotient and remainder.



Factorize the following:3x-{3}^{2}



Factorize:
3x^{2}-14x+18



Factorize y^{2}-10y+25



Factorise (i) x^{2}+3\sqrt{3}x+6
(ii) 6x^{2}+\sqrt{5}x-10



Factorise : x^{2}+3\sqrt{3}x+6



Find the remainder when the polynomial 4y^3 - 3y^2 - 5y + 1 is divided by 2y + 3.



Express in the product of two polynomialx^4+y^4+x^2y^2.



Factorize: 
(1){ \quad x }^{ 3 }-{ 2x }^{ 2 }-x+2\\  (2)\quad { x }^{ 3 }-{ 3x }^{ 2 }-9x-5\\ (3)\quad { x }^{ 3 }+{ 13x }^{ 2 }+32x+20\\  (4)\quad { y }^{ 3 }+{ y }^{ 2 }-y-1



Find the remainder when x^4+4x^3-5x^2-6x+7 is divisible by x-3.



Factorise x^2-3x+2.



Divide :
{2x}^{3}-{5x}^{2}-{3x}\ by (x-1) ?



Factorise the following:
27a^{3} - 8b^{3} - 54a^{2}b + 36ab^{2}



Find the remainder when x^4+4x^3-5x^2-6x+7 is divided by x+1.



Find the remainder when x^4+4x^3-5x^2-6x+7 is divided by x-2.



Find the remainder when x^3-ax^2+6x-a is divided by x-a.



Find the remainder when x^4+4x^3-5x^2-6x+7 is divided by x+2.



Find the remainder when x^4+4x^3-5x^2-6x+7 is divided by x-1.



Solve:
x^2+9x+18.



Find the remainder:
 \left( {{x^3} - 4{x^2} + 7x - 2} \right) \div \left( {x - 2} \right).



Evaluate:
\dfrac{1}{2}x^2-3x+4.



Factorise a^3-36a.



Factorise
12x +15



3x^2-x-4.



Solve:
5{x^2} - 22x - 15 = 0



Factorize - {x^2} + \dfrac{1}{{{x^2}}} - 2x - \dfrac{2}{x} + 2 



Give possible expressions for the length and breadth of the following rectangles, in which their areas are given:
Area: 25{a}^{2}-35a+12



4x^2+4\sqrt{3}x+3=0.



Factorise:
a^2 + 12a+32



Factorise:
z^2+13z+40



Factorise:
s^2+12s+27



Factorize 1+2p + p^2



Factorise
a^2+4b^2-4ab-4c^2.



Factories the given algebraic expression by taking out the common terms. Also, write the common term
8ab+14a^{2}b-2a^{3}-12ab^{2}



Factorise each of the following:
9x^2-6x+1



Factorise:
p^2 + p - 132



\frac{{10{x^2} + 15x + 63}}{{5{x^2} - 25x + 12}} = \frac{{2x + 3}}{{x - 5}}



Factorise:
a^2+5a-104



Factorize 2x^2+x-4=0.



Find the common factor of the given term.
3a, 21ab.



Solve the factorisation method:x + \frac{1}{x} = 11\frac{1}{{11}}



Enter 1 if it is true else 0.
 (25m^{4}-15m^{3}+10m+8)\div5m^{3} =5m-3+\dfrac {2}{m^2}+\dfrac {8}{5m^3}



Find the common factor of the given term : 8x, 24



Factorize:  3 a ^ { 2 } b - 12 a ^ { 2 } - 9 b + 36



Factors : \left(5x-\dfrac{1}{x}\right)^2 + 5 \left(5x- \dfrac{1}{x}\right)+6



Divide the polynomial 3x^{4}-4x^{3}-3x-1 by x-1. B using long division method only. Also check whether x+1 is a factor or not.



If x+a is a common factor of f\left( x \right) = {x^2} + x - 6 and g\left( x \right) = {x^2} + 3x - 18 Then find the value of a



Divide {4x}^{3}+{20x}^{2}+33x+18\ by \left (x+2\right)



Factorize using identities
t^{4}-625



Find  the remainder when f(x) = 2{x^3} - 6{x^2} + 4x - 2 is divided by g(x)=2x - 1



 Simplify:
\left(1+\dfrac{x^2-y^2-z^2}{2yz}\right)\left(\dfrac{1}{x+y-z}+\dfrac{1}{z+x-y}\right)



Divide. Write the quotient and the remainder.
(5x^{3}-3x^{2}) \div x^{2}



Divide : (6x^{5}-4x^{4}+8x^{3}+2x^{3})\div 2x^{2}



factorise : 
12(x^2 + 7x )^2 - 8(x^2 + 7x)(2x - 1) -15 (2x - 1)^2



Factorise
2 a ^ { 2 } + 10 a - 28 = 0



Factorise :x^{4}+5x^{3}+5x^{2}-5x-6.



Solve :(2x^4+3x^3+4x-2x^2)\div (x+3)



Solve:6x-3y



Simplify:
{a^2} + 4{b^2} - 4a -8b +4ab



Simplify:
a{x^2}y - bxyz - a{x^2}z + bx{y^2}



Factorize the given polynomial
 x^{3}-3x^{2}-9x-5



Factories {p}^{2}-36p+99



Factorise the following :
\begin{array} { l } { (i)6 a + 6 b } \\ { (ii)a x + b x } \\ { (iii)3 x ^ { 2 } - 6 a ^ { 6 } } \end{array}
\begin{array} { l } {(iv) 9 x ^ { 2 } + 3 x } \\ { (v)12 x ^ { 3 } y - 4 x y ^ { 2 } } \end{array}
\begin{array} { l } {(vi) \dfrac { 1 } { 2 } x + \dfrac { 1 } { 2 } } \\ (vii){ c d m + c d t } \\ (viii){ 36 a ^ { 2 } b ^ { 3 } - 18 a ^ { 3 } b ^ { 2 } } \\(ix) { 25 m ^ { 2 } n ^ { 3 } - 5 m n } \\(x) { 3 a y + 3 a z } \end{array}
\begin{array} { l } { (xi)185 a + 185 b } \\(xii) { 28 x - 14 y } \\ (xiii){ a x - a y } \\ (xiv){ 12 y ^ { 3 } + 6 a ^ { 3 } } \\ (xv){ 3 x + 9 y } \end{array}



Divide 4{x^2} - 8x + 3 by 2x - 1.



What is the remainder if { p }^{ 11 }+{ p }^{ 9 }+{ p }^{ 7 }+{ p }^{ 5 }+{ p }^{ 3 }+{ p }^{ 2 } divided by p + 1



(5p^2-25p+20)\div (p-1).



Divide the given polynomial by the given monomial:
(i) \left( 5 x ^ { 2 } - 6 x \right) \div 3 x
(ii) 8 \left( x ^ { 3 } y ^ { 2 } z ^ { 2 } + x ^ { 2 } y ^ { 3 } z ^ { 2 } + x ^ { 2 } y ^ { 2 } z ^ { 3 } \right) \div 4 x ^ { 2 } y ^ { 2 } z ^ { 2 } 



Solve  \dfrac{x^2+5x+6}{x+3}.



Factories : am^2+bm^2+bn^2+an^2



Solve:
x^{2}-2x-8=0



Factorise 
x^{2}+19x-150



Show that \frac { x ^ { 2 } + 2 x y + y ^ { 2 } - a ^ { 2 } + 2 a b - b ^ { 2 } } { ( x + y - a + b ) } = ( x + y + a - b )



(3x+2x^2+4x^3)\div (x-4).



Factorize the expression and divide them as directed.
4yz(z^2+6z-16)\div 2y(z+8).



Solve for r:
41=400 [\big[\frac{100+r}{100}\big]^{2}-1]



Factorise
4 u ^ { 2 } + 8 u



Factorise:
12{p^5} + 16{p^4} - 20{p^3}



Factorize:x ^ { 2 } - m ^ { 2 } + 6 m n - 9 n ^ { 2 }



Factorise:
{p^3} - 3pq + p{q^2}



Prove that {n} ^ { 7 } - 7{ n} ^ { 5 } + 14 {n} ^ { 3 } - 8 n is divisible by 840 for all n \in N



Factorise :
6x^{2}+7x-3



Show that (2x+1) is a factor of { 4x }^{ 3 }+{ 12x }^{ 2 }+11x+3. Hence, factories { 4x }^{ 3 }+{ 12x }^{ 2 }+11x+3



The polynomial 6{x^4} + 8{x^3} - 5{x^2} + ax + b is exactly divisible by polynomial 2x-5 then find the value of 2b-a



Factorise completely by removing a monomial factor
7{x^3} - 5{y^2}



Factorise: 1+2ab-\left( { a }^{ 2 }{ +b }^{ 2 } \right)



Factorise:
2a{b^2} - 6bc + 8abc



factorise
9{y^2} + 15ya



If x^{3}+8y^{3}+24xy=64 then x+2y=



Factorise completely: 2{x^3} + {x^2} - 2x - 1



Factorise the following expressions.
\left( i \right)\,\,\,\,{p^2} + 6p + 8\,\,\,\,\left( {ii} \right)\,\,\,{q^2} - 10q + 21\,\,\,\,\left( {iii} \right)\,\,\,{p^2} + 6p - 16



factorize
a^{2}-5b+ab-25



Factorise the following
(i) p^2 +6p+8



Factorise 
49a^{2}b^{4}-4a^{2}b^{6}



Find, in each case, the remainder when: x^{4}-3x^{2}+2x+1 is divided by x-1.



Factorise using 
12x+75x^{5}-60x^{8}



Factorise
(i) a^4 -b^4      (ii) p^4 -81       (iii) x^4 -(y+z)^4     (iv) x^4 -(x-z)^4       (v) a^4 -2a^2 b^2 +b^4



Factorise :
x^{2}+5x+1



\left( {{x^2} + 7x + 12} \right)/\left( {x + 3} \right)



Solve the following.
\dfrac{{x - 1}}{{x - 2}} + \dfrac{{x - 3}}{{x - 4}} = 3\dfrac{1}{3}(x \ne 2,4)



Factorise
18x^{2}+48x+32



Solve: (7x^4 - 21x^2 + 15) \div 7x^2.



Divides and write the quotient and the remainder.
\left( { 6x }^{ 5 }-{ 4x }^{ 4 }+{ 8x }^{ 3 }+{ 2x }^{ 2 } \right) \div { 2x }^{ 2 }



Divide 6{x}^{3}-{x}^{2}-10x-2  by  2x-3  



If {x}^{3}+a{x}^{2}+bx+6 is divisible by \left(x-2\right) and leaves remainder 3 when divided by \left(x-3\right) then find the value of a and b.



Divide x^{2}+3x+2 by x+1



Simplify : \dfrac { a ^ { 3 } - 27 } { 5 a ^ { 2 } - 16 a + 3 } \div \dfrac { a ^ { 2 } + 3 a + 9 } { 25 a ^ { 2 } - 1 }



simplify : a^{3}-12a-16



Divide and write the quotient and the remainder
(21x^{4}-14x^{2}+7x)\div 7x^{3}



factorize
4x+8



Solve:
2a(3x+5y)-5b(3x+5y)



Divide the given polynomial by the given monomial 
8\left( x ^ { 3 } y ^ { 2 } z ^ { 2 } + x ^ { 2 } y ^ { 3 } z ^ { 2 } + x ^ { 2 } y ^ { 2 } z ^ { 3 } \right) \div 4 x ^ { 2 } y ^ { 2 } z ^ { 2 }



Factorize:
3+2a-a^{2}



Solve the following 
(6x^{4}+4x^{2}+9x+5) \div (2x+3)



Divide and write the equation \left( {{y^2}+10y + 24} \right) \div \left( {y + 4} \right)



Factorise:{x}^{4}+{x}^{2}+1



Factorize -
{ ax }^{ 2 }+{ bx }^{ 2 }-{ ay }^{ 2 }-{ by }^{ 2 }



Find the factorss of x^{4}+3x^{3}-7x^{2}-27x-18



Factorise:
(x^{3}-2x^{2}-5x+6)



Divide 15{x}^{3}-20{x}^{2}+13x-12 by 3x-6 



Verify whether 2y-5  is a factor of 4{y}^{4}-10{y}^{3}-10{x}^{2}+30y-15



Write the factors of 
15xy-6x+5y-2



Work out the following divisions 
(i) \left(11x-121\right)\div 11
(ii) \left(15x-25\right)\div \left(3x-5\right)
(iii) 10y\left(9y+21\right)\div 2\left(3y+7\right)
(iv)9{p}^{2}{q}^{2}(3z-12)\div 27pq\left(z-4\right)



Find the value of a and b, if the zeros of the polynomial. x^{3}-3x^{2}+x+1 are a-b,\ a,\ a+b



({ y }^{ 2 }+10y+24)\div (y+4)



Factorise.
6a^{2}+7a-5



Factorise { \left( x-2y \right)  }^{ 2 }+7\left( x-2y \right) +12



Divide  -12a^{3}b+18a^{2b^{2}}-24ab^{3} by -6ab



Factorise.
6x^{2}-11xy-10y^{2}



Factorize :
8(a+1)^{2}+2(a+1)(b+2)-15(b+2)^{2}



Factorise.
3x^{2}+11xy+6y^{2}



Factorize the following:
20a^{12}b^{2}-15a^{8}b^{4}



Simplify: 30a^{3}b^{3}c^{3}+45abc



Factorise:4xy - x + 12y -3



Write the common factors of :{ 4a }^{ 2 }b and 3ab



Factorize: {x}^{2}-15x+56



Resolve {x}^{8}+{x}^{4}+1 in to factors.



Solve
\left(x^ {4}+x^ {3}+3x^ {2}+3x+12\right)\div \left(x^ {2}+2\right)



Factorize:
pqr-{ p }^{ 2 }q+{ pq }^{ 2 }r



Solve:
x^{3}-x^{2}-14x+14



Factorize:
4x^2-12xy+9y^2+2x-3y



write the quotient and the remainder.
\left( { 2x }^{ 4 }+{ 3x }^{ 3 }+4x-2\right) \div \left( x+2 \right)



Divide (-x^6+2x^4+4x^3+2x^2) by (2\sqrt2 x^2)



Factorize:
x^2-7x+10.



Solve the following 
8x^{3}-6x^{2}+x=0



Factorise.
x^{ 2 } + xy + 8x + 8y



Divide (5{p^2} - 25p + 20) \div (p-1)



Solve :
15x + 5



Factorise :-
{a^4} - 2{a^2}{b^2} + {b^4}



Factorise:\sqrt{3} x^{2}+4x-7\sqrt{3} 



Factorise: x^2+2x+1



Simplify :-
\dfrac{8({x^3}{y^2}{z^2} + {x^2}{y^3}{z^2} + {x^2}{y^2}{z^3})}{4{x^2}{y^2}{z^2}}



Factorise : a^2x^2 +(ax^2 +1)x +a



Solve:
49(x^4-5x^3-24x^2)\div 11x(x-8)



Solve:
(m^2-14m-32)\div (m+2)



Simplify:
z - 7 + 7xy - xyz



Factorise the following expressions.
\left(1\right){p}^{2}+6p+8
\left(2\right){q}^{2}-10q+21
\left(3\right){p}^{2}+6p-16



Simplify:
15xy-6x+5y-2



Factorize:
x^2-100x+99



Factorise the expression 
am^{2}+bm^{2}+bn^{2}+an^{2}



Factorise:
z-7+7xy-xyz



Factorize:{ q }^{ 2 }-10 q+21.



Factorise:
6xy(a^2+b^2)+8yz(a^2+b^2)-10xz(a^2+b^2)



Factorise:
 6xy(a^2+b^2)+8yz(a^2+b^2)-10xz(a^2+b^2)



Factorise:
36a^{2}+12abc-15b^{2}c^{2}



Divide 48a^{3} by 6a



 Factorize:  (p - x) (p + x) + y (p - x) = 0



Simplify:
[4{ y }^{ 3 }+5{ y }^{ 2 }+6y]\div 2y



Simplify:
x^2-33x+90



Factorize y^2 + 10y + 24



Divide as directed.
5 ( 2 x + 1 ) ( 3 x + 5 ) \div ( 2 x + 1 )



Factorise the expression { 2a }^{ 3 }-{ 3a }^{ 2 }b+{ 5ab }^{ 2 }-ab



Factorise x^3-2x^2-x+2



Look at several examples of rational numbers in the form \dfrac{p}{q}(q\neq 0), where p and q are integers with no common factors other than 1 and having terminating decimal representations. Can you guess what property q must satisfy?



Factorise : ax^{3}y^{2} + bx^{2}y^{3} + cx^{2}y^{2}z.



Divide :
x + 2x^{2} + 3x^{4} - x^{5} by 2x.



Factorize:
8{x}^{3}+27{y}^{3}+36{x}^{2}y+54x{y}^{2}



Divide :
9x^{2} y - 6xy + 12xy^{2} by -\dfrac {3}{2} xy.



Divide :
3x^{3}y^{2} + 2x^{2}y + 15xy  by  3xy.



Divide :
5z^{3} - 6z^{2} + 7z by 2z.



Divide :
y^{4} - 3y^{3} + \dfrac {1}{2} y^{2} by 3y.



Divide :
-4a^{3} + 4a^{2} + a by 2a.



2\sqrt 2{a}^{3}+3\sqrt 3{b}^{3}+{c}^{3}-3\sqrt 6abc



Divide :
4z^{3} + 6z^{2} - z by -\dfrac {1}{2}z.



Divide :
\sqrt {3}a^{4} + 2\sqrt {3} a^{3} + 3a^{2} - 6a by 3a.



Factorize the following.
a^4b-3a^2b^2-6ab^3.



Factorize the following.
x^4y^2-x^2y^4-x^4y^4.



Factorize the following.
20x^3-40x^2+80x.



Factorize the following.
10m^3n^2+15m^4n-20m^2n^3.



Factorize the following.
2l^2mn-3lm^2n+4lmn^2.



Factorize the following.
72x^6y^7-96x^7y^6.



Factorize the following expression.
3x^3y-243xy^3.



Factorize the following expression.
16(2x-1)^2-25y^2.



Divide the polynomial (9x^2 + 12x + 10) by (3x + 2) and write the quotient and the remainder.



Factorise : 9x^2 + 12 xy



Factorise : 18x^2 y -24xyz



Factorise : a^3 +a -3a^2 -3



Factorise : 2x+4y-8xy-1



Factorise :   x^2 +y-xy -x 



Factorise : abx^2+a^2x+b^2x+ab



Factorise : 2a^2 + bc-2ab- ac



Factorise : ab(x^2+y^2) -xy(a^2+b^2)



Factorise : a^2 +ab(b+1)+b^3



Factorise : 20x^2 -45



Factorise : a(a+b-c)-bc



Factorise : ab(x^2+ 1) +x(a^2 +b^2 )



Factorise : a^2 -b^2 -a -b



Factorise : 9a^2 +6a+ 1 -36b^2



Factorise :  4a^2 -4b^2 +4a +1



Factorise : a^2 -b^2 -4ac +4c^2



Factorise : 5x^2 -16x -21



Factorise : 18x^2 + 3x -10



Factorise : 25x^2 -10x+ 1-36y^2



Factorise : a^2 +2ab +b^2 -9c^2



Factorise : x^3 - 5x^2 -x+5



Factorise : a^2 -b^2 +2bc - c^2



Factorise : x^2 +y^2 -z^2 -2xy 



Divide:
8x^{2}y^{2}-6xy^{2}+10 x^{2}y^{3} by 2xy



Factorise: 36x^3y –60x^2y^3z



Factorise :  x^4y^4 - xy



Divide 12x^{4}+8x^{3}-6x^{2} by -2x^{2}



Factorise :  16x^4 +54 x



Factorise : x - 8xy^3



Divide:
9x^{2}y-6xy+12xy^{2} by -3xy



Find the values of a and b so that the polynomial (x^4+ax^3-7x^2+8x+b) is exactly divisible by (x+2) as well as (x+3).



Find the value of 'a' for which the polynomial (x^4-x^3-11x^2-x+a) is divisible by (x+3).



Factorise :  1029 - 3x^3



Factorise: 

16a^2 – 24ab



Factorise : 
14x^3+21x^4y-28x^2y^2 



Factorise

9x^3 – 6x^2 + 12x



Factorise 

6a(a-2b) + 5b(a-2b)



Factorise 

10x^3 -15x^2



Factorise  

2m(1-n) + 3(1-n)



The sum of first n natural numbers is given by the expression \dfrac{n^{2}}{2} + \dfrac{n}{2}. Factorise this expression.



Perform the following division:
(3pqr-6p^{2}q^{2}r^{2}) \div 3pq



Write the greatest common factor of the following terms -18a^{2}, 108a



Write the greatest common factor of the following terms 3x^{2}y, 18xy^{2}, -6xy



The common factor method of factorisation for a polynomial is based on __________ property.



The factorisation of 2x + 4y is __________ .



Factorise the following polynomials : 
(i) 25 abc^2 - 15a^2b^2c
(ii) x^2yz + xy^2z + xyz^2



Factorise the following polynomials : 
(i) 8xy^3 + 12x^2 y^2
(ii) 15ax^3 - 9ax^2



Factorise the following polynomials : 
10a( 2p +q)^3 - 15b ( 2p +q)^2 + 35 ( 2p + q)  



Factorise the following polynomials : 
(i)   21 py^2 - 56 py
(ii) 4x^3 - 6x^2



Factorise the following polynomials : 
(i) 8x^3 - 6x^2 + 10 x
(ii) 14mn + 22m -62 p



Factorise the following polynomials : 
(i) 6(x+2y)^3  + 8 ( x+ 2 y)^2
(ii) 14 (a -3b)^3 - 21 p(a -3b)



Factorise the following polynomials:
(i) 18p^2q^2 -24pq^2 +30p^2q
(ii) 27a^3b^3 - 18a^2 b^3 + 75 a^3 b^2



Find the quotient and the remainder when P(x)=3 x^{3}+x^{2}+2 x+5 is divided by
g(x)=x^{2}+2 x+1 \qquad\qquad



Factorise the expressions and divide them as directed:
(x^{2}-22x+117) \div (x-13)



Factorise the following polynomials : 
(i) 15a( 2p - 3p) - 10b ( 2 p - 3q)
(ii) 3a(x^2 +y^2) + 6b ( x^2 +y^2 )



Divide:
9x^4 - 8x^3 - 12x + 3 by 3x



  2 \pi r^2 - 4 \pi  r



\text{Factorise } x^3 +x +2



32x^4 -500 x



(x^6 / 343) +( 343 / x^6 )



x^2 +x^5



a^3 - a -120



a^2(b+c) - ( b+c)^3



x^4 +5x^2 + 9



2x^4 -32



x^4 - 1/ x^4



a^4 +b^4  - 7a^2b^2



Divide:
9 x^3 - 6x^2\,\, by\,\, 3x



5a^4 - 5a^3 +30a^2 -30 a



15(2x-3)^3 - 10 (2x-3 )



Factorize the following
a^{12}x^{4} - a^{4} x^{12}



Divide:
  15x^3y^2 + 25x^2y^3 - 36x^4y^4 \,\,by\,\, 5x^2y^2



a^3 - ( 1/a^3) -2a +2/a



a^{12}x^4 - a^4 x^{12}



x^3 -(8 /x)



Carry out the following divisions:
(x^3 + 2x^2 + 3x) \div 2x



9x^3y +41x^2y^2 +20xy^3



Divide:
 6m^2 - 16 m^3 + 10 m^4\,\, by\,\, - 2m



Solve:
17a^6b^8-34a^4b^6+51a^2b^4



Solve:
4a^2-8ab



Divide:
 36a^3x^5 - 24a^4x^4 + 18a^5x^3\,\, by\,\, - 6a^3x^3



Simplify:
a^3b-a^2b^2-b^3



Solve:
3x^2+6x^3



Solve:
a^3-a^2+a



Solve:
3x^5y-27x^4y^2+12x^3y^3



Solve:
6x^2y+9xy^2+4y^3



Solve:
2x^3b^2-4x^5b^4



Solve:
15x^4y^3-20x^3y



Solve:
12abc-6a^2b^2c^2+3a^3b^3c^3



Factorise by taking out the common factors :
ab(a^2 + b^2- c^2) - bc(c^2- a^2- b^2) + ca(a^2 + b^2- c^2)



Factorise by taking out the common factors:
2x(a - b) + 3y(5a - 5b) + 4z(2b - 2a)



Factorise :
3x^7y-81x^4y^4



Find the prime factorisation of the following numbers:
{ 85 }^{ 3 }-{ 68 }^{ 3 }+{ 5 }^{ 3 }-{ 22 }^{ 3 }



Find the prime factorisation of the following numbers:
{ 100 }^{ 3 }-{ 49 }^{ 3 }+{ 10 }^{ 3 }-{ 61 }^{ 3 }



Find the prime factoristion of the following numbers:
{ 30 }^{ 3 }-{ 12 }^{ 3 }-{ 10 }^{ 3 }-{ 8 }^{ 3 }



Factorise: 3{ x }^{ 2 }+6x+6



Factorise: 2p(x+y)-3q(x+y)



Factorise: 18{ x }^{ 2 }y=24xyz



Factorise: 5{ x }^{ 2 }-20xy



Factorize: 4{ (a+b) }^{ 2 }-6(a+b)



Factorise: 3x^4 + 6x^3y + 9x^z



Solve: 8x^{2}-72xy+12x



Factories the given algebraic expression by taking out the common terms. Also, write the common term
5pq+20p^{3}q^{3}-15p^{2}q



Factorise: 3a^2bc + 6ab^2c + 9abc^2



Factorise: 4p^2 + 5pq - 6pq^2



Factorise 3x^2 + 6x^2 y + 9xy^2



Factorize the following expressions:
6x^{3}y - 12x^{2}y + 15x^{4}



Factorise:
x^2-17x+60



Find integers 'a' and 'b' such that (x^{2} - x- 1) divides ax^{17} + bx^{16} + 1.



Factorise 4x^2+4\sqrt{3}x+3=0.



Class 8 Maths Extra Questions