Enter 1 if true else enter 0.
The rational number $$\dfrac{-81}{15}$$ reduced to simplest form is $$\dfrac{-7}{13}$$.
Put the $$(\checkmark),$$ wherever applicable
Number | Natural Number | Whole Number | Integer | Fraction | Rational Number |
$$-19\dfrac{3}{4}$$ |
Add the following rational numbers:
(a) $$\dfrac{2}{7}$$ and $$\dfrac{3}{7}$$
(b) $$\dfrac{-4}{11}$$ and $$\dfrac{7}{11}$$
$$\dfrac{2}{3}$$ | $$\dfrac{4}{3}$$ | |
$$\dfrac{1}{3}$$ | $$\dfrac{2}{3}$$ | |
$$\dfrac{1}{2}$$ | $$\dfrac{1}{3}$$ | |
$$\dfrac{1}{3}$$ | $$\dfrac{1}{4}$$ | |
Name | Seema | Nancy | Megha | Soni |
Distance covered (km) | $$\dfrac{1}{25}$$ | $$\dfrac{1}{32}$$ | $$\dfrac{1}{40}$$ | $$\dfrac{1}{20}$$ |
From the following fractions, separate:
(i) Proper fractions
(ii) Improper fractions:
2 / 9, 4 / 3, 7 / 15, 11 / 20, 20 / 11, 18 / 23 and 27 / 35
Add the following fractions:
(i) $$1\dfrac { 3 }{ 4} $$ and $$\dfrac{3 }{ 8}$$
(ii) $$\dfrac{2}{ 5}$$, $$2\dfrac { 3 }{ 15} $$ and $$\dfrac{7} { 10}$$
(iii) $$1\dfrac { 7 }{ 8} $$, $$1\dfrac { 1 }{ 2} $$ and $$1\dfrac { 3 }{ 4} $$
(iv) $$3\dfrac { 3 }{ 4} $$, $$2\dfrac { 1 }{ 6} $$, and $$1\dfrac { 5 }{ 8} $$
(v)$$2\dfrac { 8 }{ 11} $$ , $$\dfrac{11}{ 18}$$ and $$3\dfrac { 5 }{ 6} $$