Let f:\left[ -2,3 \right] \rightarrow \left[ 0,\infty \right) be a continuous function such that f\left( 1-x \right) -f\left( x \right) for all x\epsilon \left[ -2,3 \right] .
If { R }_{ 1 } is the numerical value of the area of the region bounded by y=f\left( x \right) ,x=-2,x=3 and the axis of x and { R }_{ 2 }=\int _{ 2 }^{ 3 }{ xf\left( x \right) dx } , then:-