Integrals - Class 12 Commerce Maths - Extra Questions

Evaluate :
$$\displaystyle\int \sqrt{\dfrac{1-\cos 2x}{1+\cos 2x}}dx$$



Evaluate : $$\int_{-1}^{0} (e^{3x}+7x-5)dx$$.



$$\int_{0}^{1} \dfrac {xe^{x}}{(1 + x)^{2}}dx$$.



Find $$\displaystyle\int \dfrac{\sin^6x}{\cos^8x} \ dx$$



Evaluate the integrals
$$\int _{ 0 }^{ 2 }{ \cfrac { 1 }{ \left( { x }^{ 2 }+1 \right)  } dx } $$



Evaluate : $$\displaystyle \int_{0}^{1}\dfrac {2x + 3}{5x^{2} + 1} dx$$



Evaluate :
$$\int \dfrac{2\cos x}{3 \sin^2x} \ dx$$



Evaluate :
$$\displaystyle\int \dfrac{x^3-x^2+x-1}{x-1}dx$$



$$\int { \dfrac { 3x }{ 3x-1 } dx } $$



Evaluate :
$$\int \dfrac{dx}{x(x^5+3)}$$



Find the following integrals:
i) $$\displaystyle \int { \dfrac { { x }^{ 3 }-1 }{ { x }^{ 2 } } dx  }$$
ii) $$\displaystyle \int { \left( { x }^{ \cfrac { 2 }{ 3 }  }+1 \right) dx }$$

iii) $$\displaystyle \int { \left( { x }^{ \cfrac { 3 }{ 2 }  }+2{ e }^{ x }-\dfrac { 1 }{ x }  \right) dx }$$



The acceleration of a motorcycle is given by $$a_{x}(t) = At - Br^{2}$$, where $$A = 1.50\ ms^{-2}$$ and $$B = 0.120\ ms^{-4}$$. The motorcycle is at rest at the origin at time $$t = 0$$.
Find its position and velocity as functions of time.



$$\displaystyle _{0}^{5}\int \dfrac{4\sqrt{x+4}}{4\sqrt{x+4}+4\sqrt{9-x}}$$



Evaluate $$\int {x\ln \sqrt {xdx} } $$



Solve: $$\displaystyle\int\limits_{-\dfrac{\pi}{2}}^{\dfrac{\pi}{2}} \sin^5 x.\cos^{100} x \,dx $$



$$\int_1^{\sqrt 3 } {\dfrac{{dx}}{{1 + {x^2}}}} $$



$$\int \dfrac {1}{\sqrt {3x+5}-\sqrt {3x+2}}dx$$



Solve $$\displaystyle \int { \dfrac { 1 }{ \log _{ x }{ e }  } dx }$$



$$\displaystyle \int_{0}^\cfrac{\pi}{4} \sin 3x \sin 2x\ dx$$



Evaluate $$\int {\dfrac {\sin x}{\sin (x+a)}}dx$$



$$\displaystyle\int e^{log x}dx$$.



Integrate with respect to $$x$$:
$$\displaystyle \int \dfrac {1}{x^{6}{(1+x^{-5})}^{\frac {1}{5}}}dx$$



Solve $$\displaystyle\int\limits_0^x {\dfrac{{\sqrt x }}{{\sqrt x  + \sqrt {8 - x} }}dx} $$



Solve : $$\int \dfrac{dx}{x(n + 1) (n + 2)}$$



Solve:
$$\int {\dfrac{1}{{{a^2} - {x^2}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right|} $$



Evaluate $$\int \dfrac {1}{a^{x}b^{x}}dx$$



Solve
$$\displaystyle \int \dfrac {1-x^{2}}{x(1-2x)} = $$



Solve $$\displaystyle \overset{4}{\underset{2}{\int}} 2^x dx$$.



The value of $$\int _{ 0 }^{ { \pi  }/{ 2 } }{ \cfrac { dx }{ 1+\tan ^{ 3 }{ x }  }  } $$ is



 $$\int {x^2}{e^x} dx$$ =



Solve:
$$\frac{1}{2}\int {\frac{{2x}}{{{{\left( {1 + x} \right)}^2}}}dx} $$



$$\int{\dfrac{{x}^{2}dx}{{(1+{x}^{2})}^{2}}}$$.



Integerate:
$$\int {x\,\cos \,x\,dx} $$



$$\int \dfrac {\cos 2x}{\cos^{2}x.\sin^{2}x}dx$$



Solve $$\displaystyle\int_{}^{} {\dfrac{{\left( {3{{\tan }^2}x + 2} \right){{\sec }^2}x}}{{{{\left( {{{\tan }^3}x + 2\tan x + 5} \right)}^2}}}dx} $$



Solve $$\displaystyle\int\limits_b^a {\frac{x}{{\sqrt {{a^2} + {x^2}} }}dx} $$



$$\int x{\sin ^{ - 1}}x$$



Evalute $$\int\limits_0^a x {\left( {{a^2} - {x^2}} \right)^{\frac{7}{2}}}dx$$



Evaluate: $$\int \,lnx \cdot \dfrac{1}{(x + 1)^2}dx$$ equals



The value of $$\displaystyle\int_1^{37\pi } {\dfrac{{\pi \sin \left( {\pi \log x} \right)}}{x}} \,dx$$



$$\int \cot^{2}xdx = $$



$$\displaystyle\int 2x\sqrt{x} dx$$.



$$\displaystyle\int \left(\dfrac{e^x+e^{-x}}{e^x-e^{-x}}\right)^2dx$$.



$$\displaystyle\int \dfrac{1}{1+\cot}dx$$.



Solve : $$\displaystyle \int \dfrac{x^2}{(4 + x)^{3/2}} dx$$



Evaluate :
$$\displaystyle \int x.(\log x)^2 \ dx$$



Solve : $$\displaystyle \int\limits_{-\pi/2}^{\pi/2} \sin^7x \ dx$$



Evaluate :
$$\displaystyle \int\limits_{0}^{\pi/2} \dfrac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx$$



Evaluate : $$\displaystyle \int\limits_{0}^{\pi/4} \log(1+\tan x)dx$$



Evaluate :
$$\displaystyle \int x \ \sin x \ dx$$



Solve :-
$$I = \displaystyle \int_0^{\infty}\dfrac{dx}{e^x+e^{-x}}$$



$$\displaystyle\int x\left(\dfrac{\sec 2x-1}{\sec 2x+1}\right)dx$$.



Evaluate:

$$\int x.\sin{2x}dx$$



Evaluate :

$$\displaystyle\int_{0}^{\pi} \dfrac{1}{1+\sin x} dx$$



$$\displaystyle\int e^x\left(\dfrac{x-1}{x^2}\right)dx$$.



$$\displaystyle\int (x+1)e^xlog (xe^x)dx$$.



$$\displaystyle\int x \sin^3x dx$$.



Solve:
$$ \int_0^1 x^3 \sqrt{1 +3x^4 } dx $$



Integrate:
$$\int \sin^4xdx$$



$$\int \frac{2x^{2}}{3x^{4}2x} dx$$



$$\int {\dfrac{{{e^x}dx}}{{\left( {1 + {e^{2x}}} \right)}}} $$



Evaluate :
$$\displaystyle \int e^{ax} \cos(bx+c) \ dx$$



Evaluate; $$\int {\left( {\frac{{3{x^4} - 5{x^3} + 4{x^2} - x + 2}}{{{x^3}}}} \right)dx} $$



$$I = \int\limits_0^1 {\frac{{\left( {1 - x} \right)dx}}{{\left( {1 + x} \right)}}} $$



Calculate $$\int \frac{x}{x^{2}+1}dx$$



Solve: $$\displaystyle \int \dfrac{x^3}{2x + 1}dx$$.




Evaluate: $$ \displaystyle\int \dfrac { \dfrac{- 1} 6 } { ( x + 3 ) } d x + \int \dfrac { \dfrac1 6 } { ( x - 3 ) } d x$$



Find the following integrals:
$$\int (ax^{2} + bx + c) dx$$.



Evaluate 
$$\int \sqrt{1+t^{3}} dt$$



Solve:
$$\int\limits_0^1 {{{\tan }^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)dx} $$



Evaluate $$\displaystyle\int_{0}^{\pi/2}\dfrac{\cos^{2}x}{1+3\sin^{2}x}\ dx$$



Evaluate $$\int_0^n { xdx} $$.



$$\displaystyle \int { \dfrac { 1 }{ \sqrt { 9-25{ x }^{ 2 } }  }  } dx$$



Evaluate:
$$\int \dfrac{\sqrt{x^{2}-a^{2}}}{x}dx$$



Prove that:
$$\displaystyle \int x^5(x+7)dx$$



Evaluate $$\displaystyle\int_{0}^{\pi/4}\sin^{3}2t\cos 2t\ dt$$



Evaluate : $$\int _{ 0 }^{ \pi /2 }{ sinxdx } $$.



Solve $$\int _ { 0 } ^ { \frac { \pi } { 2 } } \cos ^ { 2 } x d x$$



Solve  it 
$$2I=\int _{ O }^{ Q }{ dx } $$



Evaluate:
$$\displaystyle\int\limits_{0}^{1} \dfrac{dx}{1+x^2}$$



Prove that:
$$\displaystyle \int \dfrac {1}{4x^{2}-1}dx$$



Evaluate $$\displaystyle\int { \left( \dfrac { { x }^{ 2 }+3x+4 }{ \sqrt { x }  }  \right)  } dx$$



Evaluate:
$$\displaystyle \int _{0}^\dfrac {\pi}{2}{}(2\log \sin x-\log \sin 2x)dx$$



Evaluate :   $$\displaystyle I = \int {\cfrac{{{{\sin }^{ - 1}}x}}{{\sqrt {\,1 - {x^2}} }}} dx$$



Evaluate the following definite integrals :
$$\displaystyle \int _{0}^{\pi /2} \cos^2 x\ dx$$



Evaluate $$\displaystyle\int_{0}^{\pi/3}\dfrac{\cos x}{3+4\sin x}dx$$



Evaluate the definite integral :
$$\displaystyle \int_{0}^{5}x^4\ dx$$ 



Evaluate the definite integral:
$$\displaystyle \int_{0}^{\pi /2} \cos x\ dx$$



Evaluate: $$\displaystyle\int_{0}^{1}\dfrac{\sqrt{\tan^{-1}x}}{1+x^{2}}dx$$



Evaluate $$\displaystyle\int_{0}^{1}\dfrac{\tan^{-1}x}{1+x^{2}} \ dx$$



Evaluate $$\displaystyle\int_{4}^{12}x\ dx$$



Evaluate $$\displaystyle \int_{2}^{3}x^{2}dx$$



$$\int \dfrac{1}{1-cos\dfrac{x}{2}}$$ dx



Evaluate:
$$\displaystyle\int \dfrac{1}{2x+3}dx$$



Evaluate the following definite integrals :
$$\displaystyle \int_{0}^{\frac {\pi} {2}}\sin^3 x\cos x\ dx$$



Evaluate:
$$\displaystyle\int_{2}^{1}|x-3|\ dx$$



Evaluate the definite integral:
$$\displaystyle\int_{-1}^{1}5x^{4}\sqrt{x^{5}+1}\ dx$$



Evaluate the definite integral :
$$\displaystyle \int_{0}^{\pi /2} \sin x \ dx$$ 



Evaluate $$\displaystyle\int_{0}^{1}\sqrt x \ dx$$



Evaluate the definite integral:
$$\displaystyle\int_{0}^{\pi/2}\dfrac{\cos^{2}x}{1+3\sin^{2}x}\ dx$$



Evaluate the definite integral:
$$\displaystyle \int_{0}^{\pi /2} \sin 2x\ dx$$



$$\displaystyle \int _0^{\pi/2} \sin x \cos x dx $$ is equal to:



Evaluate $$\displaystyle\int_{0}^{\pi/4}\sin^{3}2t\cdot \cos 2t\ dt$$



Evaluate the following integral :
$$\displaystyle\int_{0}^{\pi}x\sin x\cos^{4}x\ dx$$



Evaluate the following definite integral:

$$\displaystyle\int_{0}^{2}x\sqrt{x+2}dx$$



Evaluate the following definite integral :
$$\displaystyle \int _{0}^{\pi /2} \cos^2 x\ dx$$



Evaluate $$\displaystyle \int_{0}^{1} \dfrac {1}{\sqrt {1+x}-\sqrt {x}} \, dx$$



Evaluate the given integral: $$\displaystyle \int_{0}^{1}  (1+x)^5 dx$$ 



Solve $$\displaystyle \int_{0}^{\pi}  {1+ \dfrac {x}{2}}dx$$



Evaluate the following integral :
$$\displaystyle\int_{0}^{\pi} ({1+\sin x})\ dx$$



Evaluate the following definite integral:
$$\displaystyle \int_{0}^{1} \dfrac {1}{\sqrt {1+x-\sqrt x}}dx$$



Evaluate the following integral:

$$\displaystyle \int_{0}^{1} \ x+x^2 dx$$



Evaluate $$\displaystyle\int_{0}^{1}\dfrac{\tan^{-1}x}{1+x^{2}}dx$$



Evaluate the following definite integral:
$$\displaystyle \int_{1}^{2}\dfrac {1}{\sqrt {(x-1) (2-x)}}dx$$



Evaluate the following definite integral:

$$\displaystyle\int_{0}^{1}\sqrt x \ dx$$



Evaluate $$\displaystyle \int_{1}^{2} \dfrac {x}{(x+1)(x+2)}dx$$



$$\displaystyle \int_{0}^{\pi /2}\frac{\cos ^{2}x\sin x}{\sqrt{(1+\cos ^{2}x)}}dx=\frac{1}{n}[\sqrt{k}-log(\sqrt{m}+1)]$$.Find $$k+m+n$$ ?



$$\displaystyle \int_{-1}^{1}\frac{x\sin ^{-1}x}{\sqrt{\left ( 1-x^{2} \right )}}dx= ??$$



The value of $$ \displaystyle 3\int _{ 0 }^{ \pi/2 }{ \sqrt { \cos  x-\cos ^{ 3 } x } dx }  $$ is



The value of $$\displaystyle \int_{0}^{1/2}\frac{dx}{\sqrt{\left ( x-x^{2} \right )}}$$is $$\displaystyle \frac{\pi }{k}.$$ Find the value of $$k$$.



$$\displaystyle \int_{0}^{\pi. }\frac{dx}{1+2\sin ^{2}x}= \frac{\pi }{\sqrt{\left ( k \right )}}$$
what is k?



Solve $$\displaystyle \int_{0}^{\infty }\log \left ( x+\frac{1}{x} \right )\frac{dx}{1+x^{2}}$$



Prove that $$\displaystyle \int_{0}^{\infty }\frac{\log \left ( 1+x^{2} \right )}{1+x^{2}}dx=  {\pi}  \log 2$$



$$\displaystyle I= \int_{0}^{\pi }\frac{x\tan x}{\sec x+\tan x}dx= \frac{\pi }{C}\left ( \pi -2 \right ).$$
What is C?



Evaluate: $$\int_{2}^{4} \dfrac {x}{x^{2} + 1}dx$$



Evaluate $$\displaystyle\int _{ 0 }^{ \pi  }{ \log { \left( 1-\cos { x }  \right)  } dx } $$.



If $$\int (x^6+x^4+x^2)\sqrt{2x^4+3x^2+6}dx=\dfrac{(\alpha x^6+\beta x^4+\gamma x^2)^{3/2}}{18}+C$$ where C is constant then find the value of $$(\beta + \gamma-\alpha).$$



Evaluate:
$$\displaystyle \int _{ 1 }^{ e }{ \left( \frac{1}{\sqrt{x \ln x}} + \sqrt{\frac{\ln x}{x}} \right) dx }$$



Solve $$ \int {r^5} {e^x} dx $$:
(Given $$r$$ is constant)



Evaluate: $$\displaystyle \int_{2}^{3} \dfrac {x\ dx}{x^{2} + 1}$$.



Prove that $$\displaystyle \int_{0}^{a}f(x)dx = \int_{0}^{a} f(a - x)dx$$ and hence evaluate $$\displaystyle \int_{0}^{a} \dfrac {\sqrt {x}}{\sqrt {x} + \sqrt {a - x}} dx$$.



Solve:
$$\displaystyle \int { \dfrac { \sqrt { 1+{ x }^{ 2 } }  }{ { x }^4 }  } dx$$



For what $$a < 0$$ does the inequality $$\displaystyle\, \int_{a}^{0}(3^{-2x} \, \,  2.3^{-x})dx \geqslant  0$$ hold true?



Calculate the following integrals.
$$\displaystyle \int_{0}^{2e} \, \frac{dx}{0.5x \, + \, 1}.$$



Evaluate $$\int_{0}^{1} x \tan^{-1} x\ dx$$.



Evaluate: $$\int_{0}^{\pi/2} \dfrac {x}{a^{2}\cos^{2} x + b^{2}\sin^{2}x} dx$$.



Evaluate: $$\int { \tan ^{ -1 }{ x }  } dx$$



Sita is driving along a straight highway in her car. At time $$t = 0$$, when Sita is moving at $$10\ ms^{-1}$$ in the positive x-direction, she passes a signpost at $$x = 50\ m$$. Here acceleration is a function of time:
$$a = 2.0\ ms^{-2} - \left (\dfrac {1}{10} ms^{-3}\right )t$$
Derive expressions for her velocity and position as functions of time.



$$\int\limits_0^{\pi /2} {{1 \over {{a^2}{{\sin }^2}x + {b^2}{{\cos }^2}x}}dx} $$



Evaluate the integral:
$$\displaystyle \int e^x\left(\frac{1+sinx}{1+cosx}\right) dx$$



Find  $$ \int { \dfrac { ({ x }^{ 2 }+1)({ { x }^{ 2 } }+2) }{ ({ { x }^{ 2 } }+3)({ { x }^{ 2 } }+4) } dx }$$



Integrate:
$$\int { \dfrac { 2+\sin { 2x }  }{ 1+\cos { 2x }  }  } { e }^{ 2 }dx$$



Integrate:
$$\int { \dfrac { \left( x-3 \right) { e }^{ x } }{ { \left( x-1 \right)  }^{ 3 } } dx }$$



Evaluate :
$$e^{2x}\left(\dfrac{1-\sin 2x}{1-\cos 2x}\right)dx$$



Evaluate : 
$$\int\limits_0^{\pi /2} {\dfrac{{\cos x\,dx}}{{\left( {\,\cos \,x\, + \,\sin x} \right)}}}  $$



$$\displaystyle\int\limits_0^{\frac{\pi }{2}} {\left( {2\log \sin x - \log \sin 2x} \right)dx} $$



$$\int \sin^{-1} \ (\dfrac{2x +2}{\sqrt{4x^{2} +8x +13}}\ )dx$$ = 



Integrate $$\int x\log 2x \, dx$$



$$\displaystyle\int^{1/2}_0\dfrac{x\ dx}{(y^2+x^2)^{3/2}}$$



$$\displaystyle \int_{0}^{2}2x dx=$$



$$\int (\log x)^{2}dx$$



Solve $$\displaystyle\int { \left[ \dfrac { \sqrt { { x }^{ 2 }+1 } \left[ \ln { \left( { x }^{ 2 }+1 \right) -2\ln { x }  }  \right]  }{ { x }^{ 4 } }  \right]  } dx$$



$$\int { \sqrt { \left( \dfrac { x-1 }{ x+1 }  \right)  }  } dx$$



 Find the value of $$\displaystyle\int { \dfrac { d\left( { x }^{ 2 }+1 \right)  }{ \sqrt { \left( { x }^{ 2 }+2 \right)  }  }  }$$



$$\int_{0}^{\frac{\pi}{2}}\dfrac{\sin\ x-\cos\ x}{1+\sin x\ \cos\ x}dx$$



Solve:
$$\displaystyle \int x^{2} \sin^{2}x dx$$



Integrate with respect to $$x$$.:
$$e^{x}(\text{sec}^2 {x}+\tan x)$$



$$\int { x\left( \dfrac { \sec { 2x } -1 }{ \sec { 2x } +1 }  \right) dx } $$



Evaluate:
$$\displaystyle\int{{(\ln x)}^{4}dx}$$



$$ \int { \dfrac { arc\sin { \sqrt { x }  }  }{ \sqrt { 1-x }  } dx }$$



$$\displaystyle\int x\cos^3x\sin x dx$$.



$$\int {x{{\sin }^2} x\times dx} $$



$$\int {x\sin 3xdx} $$



Solve $$\displaystyle\int x\sin^{-1} xdx$$.



Let $$f:\left[ -2,3 \right] \rightarrow \left[ 0,\infty  \right) $$ be a continuous function such that $$f\left( 1-x \right) -f\left( x \right) $$ for all $$x\epsilon \left[ -2,3 \right] $$.
If $${ R }_{ 1 }$$ is the numerical value of the area of the region bounded by $$y=f\left( x \right) ,x=-2,x=3$$ and the axis of x and $${ R }_{ 2 }=\int _{ 2 }^{ 3 }{ xf\left( x \right) dx } $$, then:-



Evaluate $$\displaystyle\int\limits_4^9 {\dfrac{{dx}}{{\sqrt {\left( {9 - x} \right)\left( {x - 4} \right)} }}} $$



Integrate:
$$\displaystyle \int \dfrac{2}{(x^{2}+1)^{2}}dx$$



$$\displaystyle\int \dfrac{dx}{3x^2+13x -10}$$



Integrate 
$$\int_0^1 {\frac{{{x^3}}}{{{x^2} + 1}}dx} $$



$$\int_{0}^{\pi/2}\dfrac {\sin x \cos x}{1+\sin^{4}x}dx$$



Solve $$\int\sin 4x\sin 8xdx$$



Solve : $$\displaystyle \underset{0}{\overset{\infty}{\int}} \dfrac{x \, \ln \, x}{(1 + x^2)^2}$$



Solve :
$$\displaystyle \int_0^{\pi}\dfrac{1}{a^2-2a \cos x+1}dx$$



Evaluate:
$$\displaystyle \int _{ 0 }^{ 1 } x^2+ 2x $$ dx



Solve$$\displaystyle\int\dfrac{{\cos x}}{{1 + \cos x}}dx$$



Solve : $$\displaystyle \int \, \dfrac{dx}{\sqrt{2x - x^2}}$$



Evaluate the integrals using substitution.
$$\displaystyle\int^1_0\dfrac{x^2}{x^2+1}dx$$.



$$\int x\log (1-x^{2})dx =$$



Solve:
$$\int {\sin x\left( {2 + 5x} \right)} dx$$



Solve:
$$\int {{e^x}} \left( {\frac{{x - 1}}{{{x^2}}}} \right)dx$$



$$\displaystyle\int^1_0\tan^{-1}(1-x+x^2)dx$$.



Solve : $$\int \dfrac{t^4 - 3 t^2 + 2}{t^2 (1 + t^2)} , dt$$



Solve : $$\displaystyle2 \underset{0}{\overset{\pi / 2}{\int}} x \, sin \, x \, dx$$



Solve: $$\displaystyle \int_0^{\pi}(\sqrt{1+\sin t}).dt$$



$$\displaystyle\int^2_1\left(\dfrac{1}{x}-\dfrac{1}{2x^2}\right)e^{2x}dx$$.



$$\displaystyle\int x^2\sin^{-1}x dx$$.



$$\displaystyle \int { \dfrac { 1 }{ 2 } \cos ^{ -1 }{ x } dx } $$



Evaluate:
$$\displaystyle\int\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)^2dx$$.



Evaluate: $$\displaystyle\int \dfrac {dx}{x(1 + x^{2})}$$.



Evaluate :

$$\displaystyle\int _{0}^{\pi/2} x\cos{2x}dx$$



Solve:$$\displaystyle \int_0^1 \dfrac{x\tan^{-1}x}{(1+x^2)^{3/2}}dx$$



$$I=\int_{0}^{1}{\tan^{-1}(\frac{2x-1}{1+x-x^{2}})}$$



Evaluate $$ \int x ^ { 3 } \log 2 x d x $$



Solve: $$\displaystyle \overset{\frac{\pi}{2}}{\underset{0}{\int}} \sqrt{\cos \theta}\cdot \sin^3 \theta d\theta$$



$$\int _{ -1 }^{ 1 }{ \frac { dx }{ { x }^{ 2 }+2x+5 }  }$$



$$\int x\sqrt{3x-2}dx$$



Find the following integral.
$$\displaystyle\int (x^{\frac{2}{3}}+1)dx$$.



Evaluate $$\displaystyle \int { \frac { 1 }{(1-2x)  }  }dx $$



If $$ g(x) =\displaystyle \int _{ 0 }^{ x }{ \cos { 4t\ dt, }  } $$ then $$g(x+\pi)$$ equals



$$\int\limits_0^{\pi /2} {\dfrac{{\cos x}}{{1 + \cos x + \sin x}}dx} $$



Evaluate
$$\int\limits_0^\infty  {\frac{{\log \left( {1 + {x^2}} \right)dx}}{{1 + {x^2}}}}  = $$



$$\displaystyle\int_{\frac{1}{9}}^{\frac{1}{4}} {\dfrac{{dx}}{{(1 - x)\sqrt x }}}  = \,\log \dfrac{3}{2}$$



Evaluate:
$$\displaystyle \int { { \left( a\tan { x+b\cot { x }  }  \right)  }^{ 2 }dx }$$



Evaluate :$$\int { { 2x }^{ 3 }{ e }^{ { x }^{ 2 } } } dx$$



Integrate  $$\int x.sin2xdx$$



$$\int_{\frac{\pi }{6}}^{\frac{\pi }{6}}\frac{sin x +cos x}{\sqrt{sin 2x}}dx$$



Integrate $$\int_{-\dfrac {\pi}{4}}^{\dfrac {\pi}{4}} \dfrac {1}{1 - \sin x} dx$$.



Solve:$$\displaystyle \int_0^{2\pi}\dfrac{\cos x }{1+\sin^2 x} dx$$



Evaluate 
$$\int {x\,{e^{ - x}}} \,\,dx$$



Solve:
$$\int \dfrac{1}{\sqrt{1-e^{2x}}}dx$$



If $$f(x)=\displaystyle \int_{0}^{x}{t(\sin x-\sin t)dt}$$ then $$f'(x)$$?



$$\int\limits_0^{\pi /2} {\dfrac{{a\sin x + b\cos x}}{{\sin x + \cos x}}dx} $$



Solve:$$\displaystyle \int_1^2 \dfrac{1}{x(1+x^2)}dx$$



$$\displaystyle \int \left(\dfrac{1-\tan{x}}{1-\tan{x}}\right)^{2}dx$$



$$\int\limits_0^1 {{{\sin }^{ - 1}}\left( {\frac{{2x}}{{1 + {x^2}}}} \right)dx} $$



Evaluate; $$\displaystyle\int _ { 0 } ^ { \pi/2 } \log \sin  { 2 } x d x$$



Integrate : $$\displaystyle\int _ { 1 } ^ { 2 } \frac { \ln x } { x ^ { 2 } } d x$$



Prove:
$$\int _ { 0 } ^ { \pi } \dfrac { x \sin x } { 1 + \cos ^ { 2 } x } d x = \dfrac { \pi ^ { 2 } } { 4 }$$



Evaluate: $$\displaystyle \int^{\frac{\pi}{2}}_{0} log \,\sin x \,dx$$



Evaluate $$\int _ { 0 } ^ { 1 } \frac { 2 x + 3 } { 5 x ^ { 2 } + 1 } d x$$



Evaluate : $$\displaystyle \int _{0}^{\pi/2}2\sin{x}\cos{x}\tan^{-1}{(\sin{x})}dx$$



Solve
$$\int\dfrac{\cos 5x+\cos 4x}{1-2 \cos 3x} dx$$



If $$\int \frac { 1 } { 5 + 4 \cos 2 \theta } d \theta = A \tan ^ { - 1 } ( B \tan \theta ) + c$$ then $$( A , B ) =$$



Evaluate:-
$$\int\limits_0^{\pi /2} {\operatorname{\sin x} .\sin 2xdx} $$



$$\displaystyle \int _{0}^{1}\cot^{-1}{(1-x+x^{2})}dx$$



Integrate: $$\dfrac { 3 x ^ { 2 } } { x ^ { 6 } + 1 }$$



Solve:
$$\displaystyle \int \dfrac { \sin ^ { 3 } x + \cos ^ { 3 } x } { \sin ^ { 2 } x \cos ^ { 2 } x } d x$$




Evaluate:$$\displaystyle\frac { 1 } { 15 } \int \frac { d t } { 4 + t ^ { 2 } } + \frac { 4 } { 15 } \int \frac { 6 d t } { 1 + 4 t ^ { 2 } }$$



Prove that
$$\displaystyle \int _ { 0 } ^ { 1 } \cfrac { 2 n + 3 } { 5 n ^ { 2 } + 1 } d x$$



Evaluate : $$\int \frac{dx}{a+be^{cx}}$$



Evaluate :
$$\int \dfrac{(x^{4}-x)^{1/4}}{x^{5}}dx$$



Evaluate:$$\displaystyle\int_{0}^{\frac{\pi}{4}}{\ln{\left(1+\tan{x}\right)}dx}$$



Evaluate:$$\displaystyle\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}}{\dfrac{x\,dx}{1+\sin{x}}}$$



Evaluate: $$\int _ { 0 } ^ { \pi } \dfrac { x \sin x } { 1 + \cos ^ { 2 } x } d x$$



Evaluate : $$\displaystyle \int \dfrac{x}{x-\sqrt{x^2-1}}dx$$



Evaluate: $$\displaystyle \int e^{2x} \sin 3x \ dx $$



Evaluate:
$$\displaystyle \int_{0}^{\dfrac {\pi}{4}}\dfrac {\sin x+\cos x}{9+16\sin 2x}dx$$ 



Evaluate: $$\displaystyle\int \dfrac { 1 } { 7 + 5 \cos x } d x =$$



Evaluate:
$$\displaystyle\int_{-\pi}^{\pi}{\dfrac{{\cos}^{2}{x}}{1+{a}^{x}}dx}$$ where $$a>0$$



$$\int \sqrt { \sec x - 1 } d x$$ is equal to



Integrate:
$$\frac { 1 } { \sqrt { 16 - 9 x ^ { 2 } } }$$



Solve:
$$\displaystyle \int_{0}^{T/2}{I_{0}\sin(wt)dt}$$



Evaluate: $$\displaystyle\int \dfrac { \cos ^ { 3 } x } { \sin ^ { 2 } x + \sin x }$$



Evaluate:$$\displaystyle\int{\dfrac{\left(x+1\right)dx}{x{\left(1+x{e}^{x}\right)}^{2}}}$$



Evaluate:
$$\displaystyle\int { x\log { \left( x+1 \right)  } dx } $$



Evaluate: $$\displaystyle \int {\dfrac {dx } { \sqrt { 1 - {e} ^ { 2 x } } } }$$



Integrate: $$\sin ^ { 3 } x \cos ^ { 3 } x$$



Evaluate:$$\displaystyle\int{\left({e}^{\ln{x}}+\sin{x}\right)\cos{x}dx}$$



Evaluate the following:
$$\displaystyle\int \dfrac { 2 x + 7 } { ( x - 4 ) ^ { 2 } } d x$$



Evaluate:$$\displaystyle\int{\sqrt{1+\csc{x}}dx}$$



Evaluate :
$$\displaystyle \int \dfrac{x^2}{\sqrt{1-x^2}}dx$$.



Evaluate the following definite integral:
$$\displaystyle \int _{\pi /6}^{\pi /4} \csc x \ dx$$



Integrate $$\dfrac{x^{2}+5x+5}{x^{2}+3x+2}$$ with respect to $$x$$.



solve the following.
$$\int\limits_0^1 {\frac{{\log (1 + t)}}{{(1 + {t})^2}}} dt$$



Evaluate $$\int {\dfrac{{{{\cos }^2}x}}{{{{\sin }^3}x{{\left( {{{\sin }^5}x + {{\cos }^5}x} \right)}^{\frac{3}{5}}}}}dx} $$



$$\int_0^{\pi /2} {\dfrac{1}{{1 + {{\tan }^3}x}}} dx$$



Evaluate :
$$\displaystyle\int { \dfrac { \sin { \left( x-a \right)  }  }{ \sin { \left( x+a \right)  }  } dx } $$



Evaluate: $$\displaystyle \int{\dfrac{dx}{(2x-7)\sqrt{(x-3)(x-4)}}}$$.



Prove that
$$\displaystyle \int \dfrac {x^{2}}{x^{6}+1}dx$$



Solve:
$$\displaystyle \int{\dfrac{dx}{\cos(x-a)\cos (x-b)}}$$



Solve:
$$\displaystyle\int { \sqrt { ax+b }  } dx$$



Evaluate the integral $$\displaystyle\int_{0}^{2}x\sqrt{x+2}dx$$.



$$\int _{ 0 }^{{ \pi /2 }  }{ { x }^{ 2 } } { cos }^{ 2 }$$ x dx



Evaluate  :  $$\displaystyle \int \dfrac{\tan^{ - 1}x}{1+x^2}\ dx $$



Integrate $$\int {({{\sin }^{ - 1}}} x{)^2}dx$$



$$\displaystyle\int ^{\pi/2}_{\pi/4} \sqrt{1-\sin 2 x} d x=?$$



$$\displaystyle\int\dfrac{1}{3\sin x-4\sin^3x}dx$$.



Solve $$\int \dfrac{cos^{9}x}{sin x} dx $$



Evaluate $$\displaystyle\int \dfrac {x^3+4x^2+9x}{x^2+4x+9} dx$$



Using integration, find the area of the triangle formed by negative $$x - axis$$ and tangent and normal to the circle $${x^2} + {y^2} = 9$$ at $$( - 1,2\sqrt 2 )$$.



Evaluate: $$\displaystyle \int{\dfrac{(2x+3)dx}{x^2+3x+6}}$$



$$\displaystyle \int{ \sin }^{ 4 }x \cos x dx$$



$$\int _{ 0 }^{ 1 }{ \frac { x }{ \sqrt { 1+{ x }^{ 2 } }  }  } dx$$



Evaluate :
$$\int x^2 (1-\dfrac{1}{x^2})dx$$



Evaluate $$\displaystyle\int^\pi_0 \dfrac{x}{a^2cos^2x+ b^2sin^2x} dx$$




Evaluate: $$\displaystyle \int  (x^3+5x^2+6)(3x^2+5x)d x $$



Evaluate: $$\displaystyle \int  (x^2+5x+6)(2x+5)d x $$



Find:
$$\int _{ 1 }^{ 2 }{ \dfrac { \ell nx }{ { x }^{ 2 } }  } dx$$



Integrate:$$\displaystyle\int{{\tan}^{3}{x}dx}$$



Find :
$$\int { xsinxdx }  $$.



Evaluate: $$ \displaystyle \int \dfrac{2 x}{\left(x^{2}+4\right)} d x $$



Simplify:
$$\int { \dfrac { secx }{ secx+tanx }  } $$



$$\int _{ -5 }^{ 5 }{ \left(x+2\right)} dx$$



$$\int _{ 1 }^{ 3 }{ a^{ x } } dx$$



Evaluate: $$I =\displaystyle \int \log \sin x dx$$



Evaluate :
$$\int { \log x } dx$$



Find :
$$\int { \dfrac { { sec }^{ 2 }x }{ { tan }^{ 2 }x+4 } dx } $$



Find :
$$\int { xcosxdx } $$.



Evaluate : $$\int sin4x . sin8x dx$$.



Evaluate:
$$\int { { x }^{ 2 }.{ e }^{ -2 } } dx$$



Evaluate: $$\displaystyle \int_{0}^{\frac{\pi}{4}}\dfrac{dx}{5+4 cos x}$$



Evaluate :$$\displaystyle \int { \log } x{dx}$$



Evaluate the following definite integrals:

$$\displaystyle \int _{0}^{1/3} \dfrac {1}{\sqrt {1-x^2}}dx$$



Evaluate $$\displaystyle\int_{1}^{2}\dfrac{3x}{9x^{2}-1}dx$$



Solve : $$\displaystyle \int _{ 0 }^{ \pi  }{ \dfrac { x\tan{ x } }{ \sec { x } +\tan { x }  }  } dx$$



Evaluate the following definite integrals :

$$\displaystyle \int _{0}^1 \dfrac {1}{1+x^2}dx$$



$$\displaystyle\int_{0}^{1}\dfrac{e^{x}}{1+e^{2x}}dx$$



Find the value of $$\int x \tan^2x \, dx$$.



Evaluate $$\displaystyle\int_{2}^{4}\dfrac{x}{x^{2}+1}dx$$



Evaluate $$\displaystyle\int_{0}^{\pi/2}\dfrac{\cos x}{1+\sin^{2}x}dx$$



Evaluate:

$$\displaystyle\int_{0}^{\pi/2}\dfrac{\sin\theta}{\sqrt{1+\cos\theta}}d\theta$$



Evaluate the following definite integrals:
$$\displaystyle \int _{\pi /6}^{\pi /4} cosec \  x \ dx$$ 



Evaluate $$\displaystyle\int_{0}^{a}\sqrt{a^{2}-x^{2}}dx$$



Evaluate the following definite integrals :
$$\displaystyle \int _{0}^{\pi} \dfrac {1}{1+\sin x}dx$$



Evaluate the integral $$\displaystyle\int_{0}^{1/2}\dfrac{x\sin^{-1}x}{\sqrt{1-x^{2}}}dx$$.



Evaluate $$\displaystyle\int_{0}^{\pi/4}(\sqrt{\tan}x+\sqrt{\cot}x)dx$$



Evaluate $$\displaystyle\int_{0}^{2}x\sqrt{x+2} \ dx$$



Evaluate the following definite integral.

$$\displaystyle \int _{2}^3 \dfrac {x}{x^2+1}dx$$



Evaluate $$\displaystyle\int_{0}^{1}\dfrac{2x}{1+x^{4}}dx$$



Evaluate the definite integral :
$$\displaystyle \int_{0}^{1} \dfrac {2x+3}{5x^2 +1}dx$$



Evaluate the  definite integral :
$$\displaystyle \int_{0}^{1}  (1+x)^5 dx$$ 



Evaluate the definite integral:
$$\displaystyle\int_{0}^{\pi/4}\sin^{3}2t\cos 2t\ dt$$



Evaluate: $$\displaystyle\int_{0}^{\pi/4}\sin^{3}2t\cos 2t\ dt$$.



Evaluate:
$$\displaystyle\int \sec x\tan x dx$$



Evaluate the following definite integral:
$$\displaystyle \int_{1}^{2} e^{2x} \left (\dfrac {1}{x}-\dfrac {1}{2x^2}\right)dx$$



Evaluate:
$$\displaystyle\int_{0}^{\pi}\log (1-\cos x)\ dx$$



$$\displaystyle \int \dfrac 1{\sqrt {3-x^2}}dx$$



Evaluate $$\displaystyle\int_{0}^{\pi/2}\dfrac{\sin x+\cos x}{3+\sin 2x}dx$$



Evaluate:
$$\displaystyle\int_{0}^{\pi/4}\dfrac{\tan^{3}x}{1+\cos 2x}dx$$



Evaluate the following integral :
$$\displaystyle\int_{0}^{\pi/2}\dfrac{x\sin x\cos x}{\sin^{4}x+\cos^{4}x}\ dx$$



Evaluate the definite integral :
$$\displaystyle \int_{1}^{2}\dfrac {1}{\sqrt {(x-1) (2-x)}}dx$$



Evaluate the integral $$\displaystyle\int_{0}^{\pi/4}\sin^{3}2t\cos 2t\ dt$$.



$$\displaystyle\int_{0}^{\pi/4}\sec ^2 x \ dx$$



Evaluate $$\displaystyle\int_{0}^{1}\dfrac{\tan^{-1}x}{1+x^{2}}dx$$



Evaluate the following definite integral:
$$\displaystyle \int_{-1}^{1}\dfrac {1}{x^2 +2x+5}dx$$



$$\displaystyle\int_{0}^{1}\dfrac{1-x^{2}}{(1+x^{2})^{2}}dx$$



Evaluate the following definite integrals :
$$\displaystyle \int _{0}^{\pi /2} \cos^2 x\ dx$$



Evaluate the integral $$\displaystyle\int_{-1}^{1}5x^{4}\sqrt{x^{5}+1}\ dx$$.



Evaluate the following definite integral:
$$\displaystyle \int_{e}^{e^2} \left\{\dfrac {1}{\log x} -\dfrac {1}{(\log x)^2}\right\} dx$$ 



Evaluate the following integral:
$$\displaystyle\int { \cfrac { \cos { x }  }{ \cos { 3x }  }  } dx$$



Evaluate the following definite integral:

$$\displaystyle\int_{4}^{9}\dfrac{\sqrt{x}}{(30-x^{3/2})^{2}}\ dx$$



Evaluate the following integral:
$$\displaystyle \int { \cfrac { 1 }{ 2{ x }^{ 2 }-x-1 }  } dx\quad $$



Evaluate $$\displaystyle \int_{0}^{3}(2x^2+3x +5)dx$$



Solve :
$$\displaystyle \int { \left( x+2 \right) \sqrt { 3x+5 }  } dx$$



Evaluate the following integral:
$$\displaystyle \int { \cfrac { 1 }{ \left( \sin { x } -2\cos { x }  \right) \left( 2\sin { x } +\cos { x }  \right)  }  } dx$$



Evaluate the following integrals:
$$\displaystyle\int { \cfrac { 1 }{ 4\sin ^{ 2 }{ x } +5\cos ^{ 2 }{ x }  }  } dx$$



Evaluate the following integral:
$$\displaystyle\int { \cfrac { 1 }{ 3+2\cos ^{ 2 }{ x }  }  } dx\quad $$



Evaluate the following integrals:
$$\displaystyle \int { \cfrac { 2 }{ 2+\sin { 2x }  }  } dx\quad $$



Evaluate the following definite integral:

$$\displaystyle \int_{e}^{e^2} \left\{\dfrac {1}{\log x} -\dfrac {1}{(\log x)^2}\right\} dx$$ 



Evaluate the following integrals:
$$\int { \cfrac { 1 }{ 5-4\sin { x }  }  } dx\quad $$



Evaluate the following integral:
$$\displaystyle \int { \cfrac { 1 }{ \sin ^{ 2 }{ x } +\sin { 2x }  }  } dx\quad $$



Evaluate the following integrals:
$$\int { \cfrac { 1 }{ 1-2\sin { x }  }  } dx\quad $$



Evaluate the following integral:
$$\displaystyle\int { \cfrac { 1 }{ \cos { 2x } +3\sin ^{ 2 }{ x }  }  } dx$$



Evaluate $$\displaystyle \int_{1}^{3}(2x^2+5x)dx$$



Evaluate the following integrals
$$\int { \cfrac { 1 }{ \sin { x } -\sqrt { 3 } \cos { x }  }  } dx\quad $$



Evaluate the following integrals
$$\int { \cfrac { 1 }{ 5+7\cos { x } +\sin { x }  }  } dx$$



Evaluate the following integrals
$$\int { \cfrac { 1 }{ 1-\cot { x }  }  } dx\quad $$



Evaluate the following integrals
$$\int { \cfrac { 1 }{ \sin { x } +\cos { x }  }  } dx$$



Evaluate the following integrals:
$$\int { \cfrac { 1 }{ 4\cos { x } -1 }  } dx\quad $$



Evaluate the given integral.
$$\displaystyle \int { \cfrac { \log { \left( \log { x }  \right)  }  }{ x }  } dx$$



Evaluate the following integrals
$$\int { \cfrac { 2\sin { x } +3\cos { x }  }{ 3\sin { x } +4\cos { x }  }  } dx\quad $$



Evaluate the following integrals
$$\int { \cfrac { 1 }{ 3+4\cot { x }  }  } dx\quad $$



Evaluate the following integral:

$$\displaystyle \int { \cfrac { { x }^{ 2 } }{ { x }^{ 4 }-{ x }^{ 2 }-12 }  } dx$$



Evaluate the given integral.
$$\int { \log { (x+1) }  } dx$$



$$\displaystyle\int_{0}^{\pi/4}\sin^{3}2t\cos 2t\ dt$$.



Evaluate the following integrals
$$\int { \cfrac { 1 }{ p+q\tan { x }  }  } dx\quad $$



Evaluate the given integral.
$$\int { { x }^{ 3 }\log { x }  } dx$$



Evaluate the following integrals
$$\int { \cfrac { 1 }{ 1-\tan { x }  }  } dx\quad $$



Evaluate: $$\displaystyle\int \dfrac{-\sin x }{5+\cos x}dx$$



Evaluate: $$\displaystyle\int \sec x\tan x dx$$



Evaluate: $$\displaystyle \int \cot x dx$$. 



Solve : $$\displaystyle\int_{0}^{3}|3x-1|\ dx$$



Evaluate the following definite integral:

$$\displaystyle\int_{0}^{\pi/2}\dfrac{\sin^{3/2} x}{\sin^{3/2}x+\cos^{3/2} x}\ dx$$



Evaluate the following definite integral:

$$\displaystyle\int_{-1}^{1}5x^{4}\sqrt{x^{5}+1}\ dx$$



Evaluate the following integrals :
$$\displaystyle\int_{0}^{\pi} x\ dx$$



Solve : $$\displaystyle\int_{-2}^{2}|2x+3|\ dx$$



Evaluate $$\displaystyle \int _0^2 \dfrac x 3  \, dx $$



Evaluate the following integrals 
$$\displaystyle\int_{0}^{\pi/2}\dfrac{\sin^{3/2} x}{\sin^{3/2}x+\cos^{3/2} x}\, dx$$



Evaluate $$\displaystyle\int^{16}_0x^{3/4}dx$$.



Evaluate $$\displaystyle\int^4_1\sqrt{x}dx$$.



Evaluate $$\displaystyle\int^3_1x^4dx$$.



Evaluate $$\displaystyle\int^4_1\dfrac{dx}{\sqrt{x}}$$.



Evaluate : $$\displaystyle \int \dfrac{dx}{x^2+4x+8}$$



Evaluate $$\displaystyle\int^1_0\dfrac{dx}{\sqrt [3]{x}}$$.



Evaluate $$\displaystyle\int^{-1}_{-4}\dfrac{dx}{x}$$.



Evaluate $$\displaystyle\int^2_1x^{-5}dx$$.



Evaluate $$\displaystyle\int^{1/2}_{1/4}\dfrac{dx}{\sqrt{x-x^2}}$$.



Evaluate $$\displaystyle\int^8_1\dfrac{dx}{x^{2/3}}$$.



Evaluate $$\displaystyle\int^2_1\dfrac{dx}{\sqrt{x^2+4x+3}}$$.



Evaluate $$\displaystyle\int^4_3\dfrac{dx}{(x^2-4)}$$.



Evaluate $$\displaystyle\int^1_0\dfrac{dx}{\sqrt{1-x^2}}$$.



Evaluate $$\displaystyle\int^1_0\dfrac{dx}{(1+x^2)}$$.



Evaluate $$\displaystyle\int^4_23dx$$.



Evaluate $$\displaystyle\int^1_0\dfrac{dx}{(1+x+2x^2)}$$.



Evaluate $$\displaystyle\int^4_0\dfrac{dx}{\sqrt{x^2+2x+3}}$$.



Evaluate $$\displaystyle\int^{\infty}_0\dfrac{dx}{(1+x^2)}$$.



Evaluate the following integral:
$$\displaystyle\int^1_0\dfrac{e^x}{(1+e^{2x})}dx$$.



Evaluate $$\displaystyle\int^2_1\dfrac{5x^2}{(x^2+4x+3)}dx$$.



Evaluate $$\displaystyle\int^3_1\dfrac{dx}{x^2(x+1)}$$.



Evaluate the following integral:
$$\displaystyle\int^1_0\dfrac{dx}{(2x-3)}$$.



Evaluate the following integral:
$$\displaystyle\int^1_0\dfrac{2x}{(1+x^2)}dx$$.



Evaluate $$\displaystyle\int^1_0\sqrt{x(1-x)}dx$$.



Evaluate the following integral:
$$\displaystyle\int^2_1\dfrac{3x}{(9x^2-1)}dx$$.



Evaluate $$\displaystyle\int^2_1\dfrac{dx}{x(1+2x)^2}$$.



Evaluate the following integral:
$$\displaystyle\int^1_0\dfrac{2x}{(1+x^4)}dx$$.



Evaluate  $$\displaystyle \int_{a}^{b} \sqrt{\dfrac{x-a}{b-x}}dx$$



$$\text { Evaluate: } \displaystyle \int_{0}^{1} \dfrac{d x}{1+x^{2}}$$



$$\text { Evaluate: } \displaystyle \int_{0}^{1 / \sqrt{2}} \dfrac{\mathrm{d} \mathrm{x}}{\sqrt{1-x^{2}}}$$



Evaluate  $$\displaystyle \int_{a}^{b} \dfrac{1}{\sqrt{(x-a)(b-x)}}dx,b>a$$



$$\displaystyle \int_{1}^{2}\dfrac{dx}{\sqrt{x}-\sqrt{x-1}}$$



$$\text { Evaluate: } \displaystyle \int \dfrac{d x}{x+x \log x}$$



If $$\int_{0}^{1}\left(3 x^{2}+2 x+k\right) \mathrm{dx}=0,$$ then find the value of $$k$$.



Find the value of the following integrals:
$$\displaystyle \int^{1}_{0} \frac{x^2}{1 + x^2} dx$$



$$\text { Evaluate: } \displaystyle \int_{0}^{1} \dfrac{d x}{\sqrt{2 x+3}} d x$$



$$\displaystyle \int_{0}^{\pi} log \;(1 - cos \;x) dx $$



Find the value of the following integrals:
$$\displaystyle \int^{3}_{0} \sqrt{\frac{x}{3 - x}} dx$$



If $$\displaystyle \int _a^x t \ y (t)dt = x^2 + y(x)$$, then find $$y(x)$$.



$$\text { Evaluate: } \int x \sin ^{-1} x d x$$



$$\text { Evaluate: } \displaystyle \int_{2}^{3} \dfrac{1}{x} \mathrm{d} \mathrm{x}$$



Find the value of the following integrals:
$$\displaystyle \int^{2}_{1} \frac{dx}{(x + 1)(x + 2)}$$



If $$f(x)$$ is a function satisfying, $$\displaystyle f\left(\frac{1}{x}\right)+x^2f(x)=0$$ for all non-zero $$x$$, 
then evaluate $$\displaystyle\int_{\displaystyle\sin{\theta}}^{\displaystyle\csc{\theta}}{f(x)dx}$$.



If $$\displaystyle\int_{0}^{\pi /2}\frac{dx}{3+4\sin x}dx=\frac{1}{\sqrt{\left ( k \right )}}\log \left ( \frac{4+\sqrt{7}}{3} \right )$$ then find the value of $$k$$.



For $$ x > 0 $$ , let $$ f\left ( x \right )= \displaystyle \int_{1}^{x}\displaystyle \frac{\log t}{t+1}dt $$. The value of $$ 98\left ( f\left ( e \right )+f\left ( 1/e \right ) \right ) $$  is



Let $$\displaystyle I= \int_{3n\pi }^{\left ( n+\frac{1}{n} \right )3\pi }\frac{4x dx}{\left [ \left ( a^{2}+b^{2} \right )+\left ( a^{2}-b^{2} \right )\cos \frac{2nx}{3} \right ]^{2}}$$ (where a,b>0)
prove that $$\displaystyle  I=\frac{9\left ( 2n^{2}+1 \right )\pi }{n^{2}}\frac{a^{2}-b^{2}}{a^{3}b^{3}}$$



If $$\displaystyle  \int_{0}^{1}\frac{dx}{(1+x)(2+x)\sqrt{x(1-x)}}=\frac{\pi A}{\sqrt{6}(\sqrt{3}+1) (157)} $$, then $$A$$ is equal to



Evaluate: $$\displaystyle\int_{0}^{\dfrac{\pi}{2}}\sqrt{sin\,\phi} \, cos^5\,\phi\,d\,\phi$$



Evaluate $$\int_{0}^{\pi}e^{|\cos x|}\left (2\sin \left (\dfrac {1}{2}\cos x\right ) + 3\cos \left (\dfrac {1}{2}\cos x\right )\right )\sin x dx$$.



Evaluate: $$\displaystyle\int \dfrac{tan\,x}{(a^2+b^2tan^2x)}dx$$



The value of $$\displaystyle \int_{1/3}^{3}\dfrac {\tan \left (x^{2} + \dfrac {1}{x^{2}}\right )}{\sin \left (x + \dfrac {1}{x}\right )} \dfrac {dx}{x}$$ is



Evaluate $$\displaystyle \int { \dfrac { \left( \cos { 5x+\cos { 4x }  }  \right)  }{ 1-2\cos { 3x }  }  } dx$$



Solve $$\displaystyle\int \dfrac {dx}{\sin x+\sec x}$$



Evaluate $$\int\limits_0^{\frac{\pi }{4}} {{{\cos }^{\frac{3}{2}}}\left( {2x} \right)cos\left( x \right)dx} $$



Solve : $$\displaystyle\int sec^{-1} \sqrt{x} \, dx$$



Solve $$\int_0^1 {{{\cot }^{ - 1}}} (1 - x + {x^2})dx$$.



Evaluate $$ \ \int _{ 0 }^{ \pi  }{ \dfrac { xdx }{ 1+\cos ^{ 2 }{ x }  }  }$$



Evaluate:
$$\displaystyle \int^{\frac{\pi}{4}}_{0}e^{\sin x}(1 + \tan x \sec x)dx$$



$$\int {x{{\sin }^{ - 1}}xdx} $$



If $$f\left( x \right) =\int { \dfrac { ({ x }^{ 2 }+\sin ^{ 2 }{ x } ) }{ 1+{ x }^{ 2 } }  } \sec ^{ 2 }{ x } dx$$ and $$f\left( 0 \right)=0$$, then $$ f\left( 1 \right)$$ is equal to



Evaluate:
$$\displaystyle \int_0^1 \dfrac {2x}{x^2+1}dx $$



Find solution in terms of indefinite integration, using substitution 
   $$\int_0^1 {x\cos \left( {{{\tan }^{ - 1}}x} \right)} \,dx$$



Evaluate: $$\displaystyle {\int {\left( {\dfrac{{1 - x}}{{1 + {x^2}}}} \right)} ^2}{e^x}\,dx$$



$$\int (\sec^{2} x+\csc^{2} x)dx$$



Find the following integral.
$$\displaystyle\int \dfrac{x^3-1}{x^2}dx$$.



Find the following integral.
$$\displaystyle\int (x^{\frac{1}{2}}+2e^x-\frac{1}{x})dx$$.



$$\displaystyle\int^{\pi/2}_0\dfrac{\sin 8xlog (\cot x)dx}{\cos 2x}$$.



Find : $$\int {\log
x.dx} $$



Evaluate: $$\int\limits_0^{\pi /2} {\dfrac{{\left( {\sin x + \cos x} \right)dx}}{{9 + 16\,\sin 2x}}} $$



Integrate $$\dfrac{1}{x(x^n+1)}$$ with respect to x.



Evaluate:
$$\displaystyle\int_{\tfrac{-3\pi}{2}}^{\tfrac{-\pi}{2}}{\left[{\left(x+\pi\right)}^{3}+{\cos}^{2}{\left(x+3\pi\right)}\right]dx}$$



Evaluate
1225560_a4f2e0d959a1450e848ccaed7e8dac57.jpg



Find $$\displaystyle \int \dfrac{x^{4}dx}{(x-1)(x^{2}+1)}$$



Let $$f\left(y\right)={e}^{y},\,\,g\left(y\right)=y,\,\,y>0$$ then $$F\left(t\right)=\displaystyle\int_{0}^{t}{f\left(t-y\right)g\left(y\right)dy}=$$



Integrate:
$$\int { \frac { dx }{ 3cosx+4sinx+6 }  } $$



$$I=\displaystyle \int x^{3}\log{x}\ dx$$



$$\int\dfrac{dx}x({x^{3/2}+1})$$ Solve it.



Evaluate $$\int (\log x)^{2}dx$$.



Evaluate:
$$\displaystyle\int \dfrac {\sin x\ dx}{\sin^{3}x+\cos^{3}x}$$



$$ \int _ { - 5 } ^ { 5 } | x + 2 | d x $$



Prove that $$\displaystyle \int^b_a f(x)dx = \int^b_a f(a + b - x) dx$$ and evaluate $$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\dfrac{dx}{1+\sqrt{\tan x}}$$



Evaluate: $$\displaystyle \int \sqrt{4-3x-2x^{2}} dx$$



Evaluate the following:
$$\displaystyle \int e^{-3x}  \,cos^3 \,xdx$$



Evaluate the following integrals:
$$\int { \cfrac { 1 }{ 5+4\cos { x }  }  } dx$$



If f(x) is a function satisfying $$f\left( \dfrac{1}{x}\right)+x^2f(x)=0$$ for all non-zero x, then $$\displaystyle \int_{sin\Theta}^{cosec\Theta}f(x)dx$$ is equal to



Evaluate : $$\int_0^{\pi/2}{\cfrac{x}{\sin{x}+\cos{x}}}dx$$



Class 12 Commerce Maths Extra Questions