Let $$f:\left[ -2,3 \right] \rightarrow \left[ 0,\infty \right) $$ be a continuous function such that $$f\left( 1-x \right) -f\left( x \right) $$ for all $$x\epsilon \left[ -2,3 \right] $$.
If $${ R }_{ 1 }$$ is the numerical value of the area of the region bounded by $$y=f\left( x \right) ,x=-2,x=3$$ and the axis of x and $${ R }_{ 2 }=\int _{ 2 }^{ 3 }{ xf\left( x \right) dx } $$, then:-