Inverse circular
functions,Principal values of $${ \sin }^{ -1 }x,{ cos }^{ -1 }x,{ \tan }^{ -1
}x$$.
$${ \tan }^{ -1 }x+{ \tan }^{ -1 }y={ \tan }^{ -1 }\dfrac {
x+y }{ 1-xy } $$, $$xy<1$$
$$\pi +{ \tan }^{ -1 }\dfrac { x+y
}{ 1-xy } $$, $$xy>1$$.
Evaluate the following :
(a) $$\sin\left[ \dfrac { \pi }{ 3 } -{ \sin }^{ -1
}\left( -\dfrac { 1 }{ 2 } \right) \right] $$
(b) $$\sin\left[ \dfrac { \pi }{ 2 } -{ \sin }^{ -1
}\left( -\dfrac { \sqrt { 3 } }{ 2 } \right) \right] $$
Find the approximate value of $$\tan^{-1}{[1.001]}$$.