Inverse circular
functions,Principal values of { \sin }^{ -1 }x,{ cos }^{ -1 }x,{ \tan }^{ -1
}x.
{ \tan }^{ -1 }x+{ \tan }^{ -1 }y={ \tan }^{ -1 }\dfrac {
x+y }{ 1-xy } , xy<1
\pi +{ \tan }^{ -1 }\dfrac { x+y
}{ 1-xy } , xy>1.
Evaluate the following :
(a) \sin\left[ \dfrac { \pi }{ 3 } -{ \sin }^{ -1
}\left( -\dfrac { 1 }{ 2 } \right) \right]
(b) \sin\left[ \dfrac { \pi }{ 2 } -{ \sin }^{ -1
}\left( -\dfrac { \sqrt { 3 } }{ 2 } \right) \right]
Find the approximate value of \tan^{-1}{[1.001]}.