Processing math: 6%

Inverse Trigonometric Functions - Class 12 Commerce Maths - Extra Questions

Solve tan1(1x1+x)=12tan1x,(0<x<1) 



Solve for x and y; sin1x+sin1y=2π3 and cos1xcos1y=π3



Solve tanx<2



Find the inverse of the following functions:
f(x)=sin1(x3),x[3,3]
then f1(π/2)



Prove: cos145+cos11213=cos13365



12tan1x=cos1{1+1+x221+x2}12.



tan1211+tan1724=tan112



Find the value of sin{2sin135}



The range of arcsinx+arccosx+arctanx is



Prove that tan11+x21x=12tan1x,x0



Evaluate sin1(cosx)



Write the range of sin1x.



Solve for x :
(tan1x)2+(cos1x)2=5π28



If y= cot1(cosx)tan1(cosx), then prove that siny=tan2x2.



Simplify: tan1(ax1+ax)



Write the function in simplest form : tan1(xa2x2)where,|x|<a.



Calculating the principal value, find the value of cos[sin1(35)].



Solve for x : cos1x+sin1(x2)=π6



Prove that: cot(π22 cot13)=34



Evaluate: sec1(2) 



Solve tan1(tan2π3)



Evaluate 
cos112+2sin112



Solve:sin1(1x21+x2)



Solve:-
cos1(12)2sin1(12)



Differentiate tan1(acosxbsinxbcosx+asinx).



sin(2tan11x1+x).



Solve:
sin1(cosx)



sin1(cosx)



Solve:
sin1(cosx)



sin1sin15+cos1cos20+tan1tan25=



Prove tan112+tan1211=tan134



sin1(2x1+x2)



Find the value of  cot1(3)



tan1(2)+tan1(3)=



Solve:
sin1xcos1xsin1xcos1x,xϵ[0,1]



Solve:
{\sin ^{ - 1}}x + {\sin ^{ - 1}}\sqrt {1 - {x^2}}



Prove:
\tan^{-1}\sqrt{x}=\dfrac{1}{2}\cos^{-1}\left (\dfrac{1-x}{1+x}\right),x\epsilon [0,1]



tan^{-1}(tan\,5)



Solve:
{ \cos }^{ -1 }\left( \dfrac { 3\cos x-4\sin x }{ 5 }  \right)



Evaluate :
\cos(2\cos^{-1}x+\sin^{-1}x) at x=\dfrac{1}{5}.



Simplify {\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}{3}} \right)



Prove that : { cos }^{ -1 }\left( \dfrac { 3 }{ 5 }  \right) +{ cos }^{ -1 }\left( \dfrac { 4 }{ 5 }  \right) =\dfrac { \pi  }{ 2 }



{\cos ^{ - 1}}\left( { - \cfrac{{\sqrt 3 }}{2}} \right)



Simplify: \sin.{ \cot }^{ -1 }{  \cot  x } 



Solve for x:
4\sin^{-1}x+\cos^{-1}x=\pi.



If \sin^{-1}x=\tan^{-1}y then prove that \dfrac{1}{x^2}-\dfrac{1}{y^2}=1.



Prove that 3sin^{-1}=sin^{-1} (3x-4x^{3}),x\epsilon[\frac{-1}{2},\frac{1}{2}]



Find the value of \tan^{-1}{\left(\tan{\dfrac{2\pi}{3}}\right)}



Solve:
3\tan ^{ -1 }{ x } =\tan ^{ -1 }{ \left( \dfrac { 3x-{ x }^{ 3 } }{ 1-3{ x }^{ 2 } }  \right)  } 



Evaluate the following :
\sin^{-1} (\sin 10)



if \sin x=1 then find \sin 2x



y = \sin ^ { - 1 } \left( \frac { 2 n } { 1 + n ^ { 2 } } \right) + \sec ^ { - 1 } \left( \frac { 1 + n ^ { 2 } } { 2 n } \right)



If {\left( {{{\tan }^{ - 1}}x} \right)^2} + {\left( {{{\cot }^{ - 1}}x} \right)^2} = \dfrac{{5{\pi ^2}}}{8}, then find x.



Prove that :
\cos^{-1}\left(\dfrac{12}{13}\right)+\sin^{-1}\left(\dfrac{3}{5}\right)=\sin^{-1}\left(\dfrac{56}{65}\right).



Find the value of \sin^{-1}\left (\sin \dfrac{3\pi}{5}\right).



Write the value of \cos^{-1} (\cos 6).



Prove that :
\tan^{-1} 1 +\tan^{-1} 2 +\tan^{-1} 3=\pi



If \tan^{-1} 2 +\tan^{-1} 3 +\theta =\pi, find the value of \theta.



Prove that :
\tan^{-1} 2 +\tan^{-1}3=\dfrac{3\pi}{4}



Solve 
{\sin }^{ -1 }(\cos x).



Evaluate
\tan (\tan^{-1}(-4))



Evaluate \cos \left[\cos^{-1}\left (\dfrac {-\sqrt 3}{2}\right) +\dfrac {\pi}{6}\right]



Find the value of \tan^{-1}\left(\tan \dfrac {5\pi}{6}\right)+ \cos^{-1} \left(\cos \dfrac {13\pi}{6}\right).



Prove that \cos \left(\dfrac {\pi}{4}-2\cot^{-1} 3\right)=7.



If \displaystyle x > y > 0 then find the value of \displaystyle \tan^{-1} \frac{x}{y} + \tan^{-1} \left [ \frac{x + y}{x - y} \right ]



If \displaystyle x + y + z = xyz, and \displaystyle x, \: y, \: z > 0, then find the value of \displaystyle \tan^{-1}x + \tan^{-1} y + \tan^{-1} z



Prove: \displaystyle { \tan }^{ -1 }\sqrt { x } =\frac { 1 }{ 2 } { \cos }^{ -1 }\left( \frac { 1-x }{ 1+x }  \right) ,x\in \left[ 0,1 \right] 



Write the function in the simplest form:
\displaystyle { \tan }^{ -1 }\frac { \sqrt { 1+{ x }^{ 2 } } -1 }{ x } ,x\neq 0



If y = \sin (\cos^{-1} x) and x = 99, then 1/y^2 is equal to



Write the function in the simplest form:
\displaystyle { \tan }^{ -1 }\left( \sqrt { \frac { 1-\cos { x }  }{ 1+\cos { x }  }  }  \right) ,x<\pi 



Prove that : \displaystyle { \sin }^{ -1 }\frac { 5 }{ 13 }+{ \cos }^{ -1 }\frac { 3 }{ 5 }={ \tan }^{ -1 }\frac { 63 }{ 16 }



Write the function in the simplest form:
\displaystyle { \tan }^{ -1 }\left( \frac { 3{ a }^{ 2 }x-{ x }^{ 3 } }{ { a }^{ 3 }-3{ ax }^{ 2 } }  \right) ,a>0;\frac { -a }{ \sqrt { 3 }  } \le x\le \frac { a }{ \sqrt { 3 }  } 



Prove the following:
\cos^{-1}\left (\dfrac {12}{13}\right )+ \sin^{-1}\left (\dfrac {3}{5}\right ) = \sin^{-1}\left (\dfrac {56}{65}\right )



If \tan^{-1}x + \tan^{-1} y = \dfrac {\pi}{4}, xy < 1, then write the value of x + y + xy.



Write the principal value of \cos^{-1}\left (\dfrac {1}{2}\right )-2 \sin^{-1} \left (-\dfrac {1}{2}\right ).



Prove that: \tan^{-1} \dfrac {1}{5} + \tan^{-1} \dfrac {1}{7} + \tan^{-1} \dfrac {1}{3} + \tan^{-1} \dfrac {1}{8} = \dfrac {\pi}{4}



If \sin^{-1}x + \sin^{-1} y = \pi and x = ky, then find the value of 39^{2k} + 5^k



Show that:
\cos ^{ -1 }{ \left[ \dfrac { \cos { \alpha  } +\cos { \beta  }  }{ 1+\cos { \alpha  } \cos { \beta  }  }  \right]  } =2\tan ^{ -1 }{ \left( \tan { \dfrac { \alpha  }{ 2 }  } \tan { \dfrac { \beta  }{ 2 }  }  \right)  }



\sin ^{ -1 }{ \left( \dfrac { 2\sec { x }  }{ 1+\sec ^{ 2 }{ x }  }  \right) =y } 



Solve for x: \cos { \left( \sin ^{ -1 }{ x }  \right)  } =\dfrac{ 1 }{ 7 }.



Solve: \tan^{-1}2x+\tan^{-1}3x=\displaystyle\frac{\pi}{4}.



Solve: 3\tan^{-1}x+\cot^{-1}x=\pi.



Prove that \cos ^{ -1 }{ \left( -x \right)  } =\pi -\cos ^{ -1 }{ \left( x \right)  }, -1\le x\le 1



Solve : \cos^{-1}\sqrt{\dfrac{1+\cos x}{2}}



Prove that
\tan^{-1} \left (\dfrac {\cos x}{1 + \sin x}\right ) = \dfrac {\pi}{4} - \dfrac {x}{2}.



Inverse circular functions,Principal values of { sin }^{ -1 }x,{ cos }^{ -1 }x,{ tan }^{ -1 }x.
{ tan }^{ -1 }x+{ tan }^{ -1 }y={ tan }^{ -1 }\dfrac { x+y }{ 1-xy } ,      xy<1
       \pi +{ tan }^{ -1 }\dfrac { x+y }{ 1-xy } ,         xy>1.
Prove
(a) { sin }^{ -1 }\dfrac { 4 }{ 5 } +{ sin }^{ -1 }\dfrac { 5 }{ 13 } +{ sin }^{ -1 }\dfrac { 16 }{ 65 } =\dfrac { \pi  }{ 2 }
(b) { sin }^{ -1 }\dfrac { 3 }{ 5 } +{ sin }^{ -1 }\dfrac { 8 }{ 17 } ={ cos }^{ -1 }\dfrac { 36 }{ 85 }
(c) { sin }^{ -1 }\dfrac { 3 }{ 5 } +{ cos }^{ -1 }\dfrac { 12 }{ 13 } ={ cos }^{ -1 }\dfrac { 33 }{ 65 }



Solve the equation \tan ^{ -1 }{ \left( \cfrac { 1-x }{ 1+x }  \right)  } =\cfrac { 1 }{ 2 } \tan ^{ -1 }{ x } ,\,x > 0



Inverse circular functions,Principal values of { \sin }^{ -1 }x,{ cos }^{ -1 }x,{ \tan }^{ -1 }x.
{ \tan }^{ -1 }x+{ \tan }^{ -1 }y={ \tan }^{ -1 }\dfrac { x+y }{ 1-xy } ,      xy<1
       \pi +{ \tan }^{ -1 }\dfrac { x+y }{ 1-xy } ,         xy>1.
Evaluate the following :
(a) \sin\left[ \dfrac { \pi  }{ 3 } -{ \sin }^{ -1 }\left( -\dfrac { 1 }{ 2 }  \right)  \right]
(b) \sin\left[ \dfrac { \pi  }{ 2 } -{ \sin }^{ -1 }\left( -\dfrac { \sqrt { 3 }  }{ 2 }  \right)  \right]



Show that: \sin ^{ -1 }{ \left( 2x\sqrt { 1-{ x }^{ 2 } }  \right)  } =2\cos ^{ -1 }{ x },\, \cfrac { 1 }{ \sqrt { 2 }  } \le x\le 1\quad



Find the set of values of 'a' for which the equation 2\cos^{-1} x = a + a^{2}(\cos^{-1} x)^{-1} posses a solution.



If \theta = \sin^{-1} x + \cos^{-1} x - \tan^{-1} x, 1 \le x < \infty, the smallest interval in which \theta lies is



Inverse circular functions,Principal values of { sin }^{ -1 }x,{ cos }^{ -1 }x,{ tan }^{ -1 }x.
{ tan }^{ -1 }x+{ tan }^{ -1 }y={ tan }^{ -1 }\frac { x+y }{ 1-xy } ,      xy<1
       \pi +{ tan }^{ -1 }\frac { x+y }{ 1-xy } ,         xy>1.
Solve 
(a) cos(2{ sin }^{ -1 }x)=1/9
(b) { cos }^{ -1 }(3/5)-{ sin }^{ -1 }(4/5)={ cos }^{ -1 }x
(c) If sin({ sin }^{ -1 }\frac { 1 }{ 5 } +{ cos }^{ -1 }x)=1, then prove that x is equal to 1/5.



Find the value of \ \tan^2(\dfrac{1}{2} \ \sin^{-1} \dfrac 2 3)



If \tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) + \tan \left( {\dfrac{\pi }{4} - \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) = \dfrac{{mb}}{a}.Find m



Solve \sin^{-1}(\cos \dfrac {2\pi}{3})



Simplify : \tan^{-1} \left[\dfrac{\sqrt{1 + x^2} - 1}{x}\right]



Let \sin^{-1}x=\theta then the value of cosec^{-1}\dfrac{1}{\sqrt{1-x^2}}.



Find the approximate value of \tan^{-1}{[1.001]}.



Find the value of {\sin ^{ - 1}}\left\{ {\sin \left( { - {{600}^0}} \right)} \right\}.



If \sin^{-1} \left(\dfrac{x}{5}\right) + cosec^{-1} \left(\dfrac{5}{4}\right) = \dfrac{\pi}{2} then a value of x is



Solve the equation 3{\sin ^{ - 1}}\left( {\frac{{2x}}{{1 + {x^2}}}} \right) - 4{\cos ^{ - 1}}\left( {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right) + 2{\tan ^{ - 1}}\left( {\frac{{2x}}{{1 - {x^2}}}} \right) = \dfrac{\pi }{3}



Prove that  \cot^{-1} 9+cosec^{-1} \dfrac{41}{4}=\dfrac{\pi}{4}



If \cot { \left( \cos ^{ -1 }{ \dfrac { 3 }{ 5 } +\sin ^{ -1 }{ x }  }  \right)  } =0, find the value of x.



{({\tan ^{ - 1}}x)^2}\, + \,{({\cot ^{ - 1}}x)^2} = 5\pi . Find the value of x



Let y=\tan^{-1}\dfrac{1-\cos 2x}{\sin 2x}, then prove that \dfrac{dy}{dx}=-1.



If (\sin^{-1}x)^{2}+(\cos^{-1}x)^{2}=\dfrac {17\pi^{2}}{36}, find x.



Simplify sin^{-1}(2x \sqrt{1-x^2}), \frac{1}{\sqrt{2}}\leq x \leq 1



Find the value of \tan { \left\{ \dfrac { 1 }{ 2 } \sin ^{ -1 }{ \left( \dfrac { 2x }{ 1+{ x }^{ 2 } }  \right) +\dfrac { 1 }{ 2 } \cos ^{ -1 }{ \left( \dfrac { 1-{ y }^{ 2 } }{ 1+{ y }^{ 2 } }  \right)  }  }  \right\}  }; if x> y> 1.



Find the derivative of f given by f(x)=\sin ^{ -1 }{ x } assuming it exists.



If y=\tan^{-1}\left(\dfrac{x\sin \alpha}{1-x\cos\alpha}\right). Find \cot y 



Show that \tan ^{ -1 }{ \cfrac { 2 }{ 11 }  } +\tan ^{ -1 }{ \cfrac { 7 }{ 24 }  } =\tan ^{ -1 }{ \cfrac { 1 }{ 2 }  }



Find the value of \tan^{-1}1+\tan^{-1}2+\tan^{-1}3.



\tan^{-1}(1)+\cos^{-1}(-\dfrac {1}{2})+\sin^{-1}(-\dfrac {1}{2})



If \sec ^{ -1 }{ x } =cosec ^{ -1 }{ y } , then find the value of \cos ^{ -1 }{ \cfrac { 1 }{ x }  } +\cos ^{ -1 }{ \cfrac { 1 }{ y }  }



The value of a for which a{x^2} + {\sin ^{ - 1}}\left( {{x^2} - 2x + 2} \right) + \cos^{ - 1}\left( {{x^2} - 2x + 2} \right) = 0 has real solution is



Find the value of x 
If, \sin ^{ -1 }{ x } +\sin ^{ -1 }{ 2x= } \frac { \pi  }{ 3 }



Evaluate \sin \left(\dfrac{\pi}{6} + \cos^{-1} \dfrac{1}{4} \right)



Find the range of f(x)=\sin^{-1}x+\cos^{-1}x+\tan^{-1}x.



Solve : \sin^{-1} \left\{ \dfrac{\sin \, x + \cos \, x}{\sqrt{2}} \right \} , - \dfrac{3 \pi}{4} < x < \dfrac{\pi}{4}



Solve :
\displaystyle \tan^{-1} \left(\dfrac { \frac { 1 }{ 2 } +\frac { 2 }{ 11 }  }{ 1-\frac { 1 }{ 2 } \times \frac { 2 }{ 11 }  } \right)



Prove that \sin ^{ -1 }{ \dfrac { 3 }{ 5 }  } +\sin ^{ -1 }{ \dfrac { 8 }{ 17 }  } =\cos ^{ -1 }{ \dfrac { 36 }{ 85 }  }



2\tan ^{ -1 }{ \dfrac { 1 }{ 2 }  } +\tan ^{ -1 }{ \dfrac { 1 }{ 7 }  } =\tan ^{ -1 }{ \dfrac { 31 }{ 17 }  }



If \tan^{-1} \left\{2\cos \left(2\sin^{-1}\dfrac{1}{2}\right)\right\}



Find the domain of the function:
y=\sin^{-1}(2x-3)



If y=\cot^{-1}(\sqrt{\cos x})-\tan^{-1}(\sqrt{cos x}), prove that \sin y =\tan^2 \dfrac{x}{2}.



\tan ^{ -1 }{ \left[ \frac { \frac { 2y+1+2x+1 }{ \sqrt { 3 }  }  }{ 1-\left( \frac { 4xy+2x2y+1 }{ 3 }  \right)  }  \right]  } =k



Prove that \sec^{2} (\tan^{-1}2)+ \csc^{2} (\cot^{-1} 3)=15.



Evaluate
\sin^{-1}x+\sin^{-1}y=\cos^{-1}{\sqrt{(1-x^{2})(1-y^{2})}-xy}



Evaluate \sin^{-1} (\sin\dfrac{6\pi}{7}).



Solve \sin^{-1}\dfrac{14}{|x|}+\sin^{-1}\dfrac{2\sqrt{15}}{|x|}=\dfrac{\pi}{2}.



\tan ^{ -1 }{ \left( \frac { 1 }{ 2 } \tan { 2A }  \right)  } +\tan ^{ -1 }{ \left( \cot { A }  \right)  } +\tan ^{ -1 }{ \left( \cot ^{ 3 }{ A }  \right)  } =\begin{cases} 0,if\frac { \pi  }{ 4 } <A<\frac { \pi  }{ 2 }  \\ \pi ,if0<A<\frac { \pi  }{ 2 }  \end{cases}



If {\tan ^{ - 1}}\left( {\dfrac{{x - 1}}{{x - 2}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{x + 1}}{{x + 2}}} \right) = \dfrac{\pi }{4}. Find the value of x.



Is \dfrac{{{{\sin }^{ - 1}}}}{{{{\tan }^{ - 1}}}} = {\cot ^{ - 1}} a valid relation?



sin^{-1}(sin(4)) =?



Write {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}}  - 1}}{{ - x}}} \right), x \ne 0 in the simplest form



Is \frac{{{{\sin }^{ - 1}}}}{{{{\cos }^{ - 1}}}} = {\tan ^{ - 1}} a valid relation?



Solve:-
{\tan ^{ - 1}}\left( {\dfrac{{6x}}{{1 - 8{x^2}}}} \right)



Evaluate :
        {\tan ^{ - 1}}\left( {\frac{{4x}}{{1 + 5{x^2}}}} \right) + {\tan ^{ - 1}}\left( {\frac{{2 + 3x}}{{3 - 2x}}} \right)



\cos \left( {{{\cos }^{ - 1}}\left( {\frac{{\sqrt 3 }}{2}} \right) + \frac{\pi }{6}} \right)



Evaluate: {\sec ^{ - 1}}\left( {\dfrac{{x + 1}}{{x - 1}}} \right) + {\sin ^{ - 1}}\left( {\dfrac{{x - 2}}{{x + 1}}} \right)



Solve : \text{cosec}^{-1} \left(\dfrac{1 + x^2}{2x} \right) + \tan^{-1} \left(\dfrac{1 - x^2}{2x} \right) = \dfrac{x}{2}



Solve : {\cos ^{ - 1}}\left( {\cos \frac{{7\pi }}{6}} \right)



Solve: {\tan ^{ - 1}}\left( {\tan \frac{{2\pi }}{3}} \right)



The numerical value of tan \left( {2{{\tan }^{ - 1}}\dfrac{1}{5} - \dfrac{\pi }{4}} \right) is



Prove that
{\tan ^{ - 1}}\dfrac{1}{5} + {\tan ^{ - 1}}\dfrac{1}{7} = {\tan ^{ - 1}}\dfrac{6}{{17}}



Solve \sin^{-1}\left\{\dfrac{\sin\:x+\cos\:x}{\sqrt{2}}\right\},\:-\dfrac{3\pi }{4}<x<\dfrac{\pi }{4} 



Solve:
{\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)



2\;{\tan ^{ - 1}}\left( {\sqrt {\dfrac{{a - b}}{{a + b}}}\tan \dfrac{x}{2}}  \right)



Solve:
{\tan ^{ - 1}}\left( {\frac{{2x}}{{1 - {x^2}}}} \right)



Prove that :
{\cos ^{ - 1}}x = 2{\sin ^{ - 1}}\left(\sqrt{\dfrac{1-x}{2}} \right).



Solve Cos^{-1}\left[Cos\:\frac{5\pi }{4}\right]



If \cos c=\dfrac {\sin \left(2\pi+\dfrac {\pi}{2}\right)-\sin \pi/2}{\pi}, find the value of c.



Integrate the function \tan^{-1} \big({\sqrt{\dfrac{1 - \sin x}{ 1 + \sin x}}}\big) w.r.t dx.



Evaluate: \tan^{-1}\left(1\right)+ \cos^{-1}\left(\dfrac{1}{2}\right)+ \sin^{-1}\left(\dfrac{1}{2}\right) which lies in the interval \left[0,\pi\right]



The value of \cos\left(\sin^{-1}\dfrac{1}{2}+\sec^{-1}2\right).



Write in simplest form \sin^{-1}{\left[\dfrac{\sqrt{1+x}+\sqrt{1-x}}{2}\right]}



The value of \sin \left( {{{\cos }^{ - 1}}\dfrac{3}{5}} \right) 



Evaluate the given expression:
\cos \left(\sin^{-1}\dfrac {3}{5}+\sin^{-1}\dfrac {5}{13}\right)



Evaluate \cos^{-1}{[\cos{11\pi/6}]}



Evaluate \cos \left[\cos^{-1}\left(-\dfrac {\sqrt {3}}{2}\right)+\dfrac {\pi}{6}\right].



Solve:
{\tan ^{ - 1}}\left( {\tan \frac{{7\pi }}{6}} \right)



Prove that : \tan ^ { - 1 } \frac { 1 } { 3 } + \tan ^ { - 1 } \frac { 1 } { 7 } + \tan ^ { - 1 } \frac { 1 } { 5 } + \tan ^ { - 1 } \frac { 1 } { 8 } = \frac { \pi } { 4 }



Prove that {\tan ^{ - 1}}\frac{1}{5} + {\tan ^{ - 1}}\frac{1}{7} + {\tan ^{ - 1}}\frac{1}{3} + {\tan ^{ - 1}}\frac{1}{8} = \dfrac{\pi }{4}



\tan^{-1}\left(\dfrac{1}{4}\right)+2\tan^{-1}\left(\dfrac{1}{5}\right)+\tan^{-1}\left(\dfrac{1}{6}\right)+\tan^{-1}\left(\dfrac{1}{x}\right)=\dfrac{\pi}{4}.



3\tan^{-1}\dfrac{1}{2+\sqrt{3}}-\tan^{-1}\dfrac{1}{x}=\tan^{-1}\dfrac{1}{3}.



Solve : \cos ^ { - 1 } \left( - \frac { 1 } { 2 } \right)



Write the value of 2 sin^{-1} \dfrac{1}{2} + cos^{-1} (-\dfrac{1}{2})



Prove that \tan^{-1}\left(\frac { \sqrt { 1+\cos { x }  } +\sqrt { 1-\cos { x }  }  }{ \sqrt { 1+\cos { x }  } -\sqrt { 1-\cos { x }  }  }\right)=\dfrac{\pi}{4}-\dfrac{x}{2} if \pi < x < \dfrac{3\pi}{2}



solve
\sin ^{ -1 }{ x } +\sin ^{ -1 }{ 2x } =\dfrac { \pi  }{ 3 } then x=?



Evaluate:
\csc^{ - 1}\left( { - \sqrt 2 } \right)



Show that tan^{-1}\frac{63}{16}=sin^{-1}\frac{5}{13}+cos^{-1}\frac{3}{5}



solve
\displaystyle {\tan ^{ - 1}}\left( {{{\sin x} \over {1 + \cos x}}} \right)



Find the value of the expression { \sec }^{ -1 }\left( \dfrac { x+1 }{ x-1 }  \right) +{ \sin }^{ -1 }\left( \dfrac { x-1 }{ x+1 }  \right) .



Find the value of \tan ^ { - 1 } \left( \tan \frac { 5 \pi } { 6 } \right) + \cos ^ { - 1 } \left( \cos \frac { 13 \pi } { 6 } \right)



What is the value of \cos \left[ \cos ^ { - 1 } \left( \frac { - \sqrt { 3 } } { 2 } \right) + \frac { \pi } { 6 } \right] ?



Express the following in the simplest form
{\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right),\dfrac{{ - \pi }}{2} < x < \dfrac{\pi }{2}



Solve for x:2\tan^{-1}(\cos x)=\tan^{-1}(2\text{cosec} x).



Solve:
\cot^{-1}x+\cot^{-1} 2=\dfrac{\pi}{2}.



Solve for x:
2\tan^{-1}\dfrac{2x}{1-x^2}=\pi.



Prove:
\sin ^ { - 1 } \left( \dfrac { 1 } { x } \right) = \ cosec ^ { - 1 } x , \forall x \geq 1 \text { or } x \leq - 1

\cos ^ { - 1 } \left( \dfrac { 1 } { x } \right) = \sec ^ { - 1 } x , \forall x \geq 1 \text { or } x \leq - 1

\tan ^ { - 1 } \left( \dfrac { 1 } { x } \right) = \cot ^ { - 1 } x , \quad \forall x > 0



Solve: \dfrac { { a }^{ 2 }-{ b }^{ 2 } }{ 4 } { \sin }^{ -1 }\dfrac { a-b }{ \sqrt { { a  }^{ 2 }-{ b }^{ 2 } }  } 



Find the value of \cos^{-1}\left(\cos {\dfrac {5\pi}{3}}\right)



Solve
\sin^{-1} \left[\dfrac{\sqrt{1+x}+\sqrt{1-x}}{2}\right]



Prove that: \tan^{-1} \left[\sqrt{\dfrac{1 - \cos x}{1 + \cos x}} \right] = \dfrac{x}{2}



Solve the equation \tan^{-1}\left[\dfrac {1-x}{1+x}\right]=\dfrac {1}{2}\tan^{-1}x,(x > 0) 



How do you simplify
\sin x + \cot x.\cos x



y={ cot }^{ -1 }\dfrac { 2x }{ 1-{ x }^{ 2 } }, x\neq \pm 1



Solve :
\cos^{-1}(\log_{2}x)=0



Simplify:{ tan }^{ -1 }(1/2)+{ tan }^{ -1 }(1/3).



{ \tan }^{ -1 }\left( \dfrac { a\cos x-b\sin x }{ b\cos x+a\sin x } \right) =



If { \cos }^{ -1 }x+{\cos}^{-1}y+{ \cos }^{ -1 }z=\pi then, prove that { x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 }+2xyz=1



Solve \left( { \tan }^{ -1 }x \right) ^{ 2 }+\left( { \tan }^{ -1 }x \right) ^{ 2 }=\dfrac { 5{ \pi  }^{ 2 } }{ 8 }



If { \sin }^{ -1 }x=\dfrac { \pi  }{ 5 } for somex\in \left[ -1,1 \right] then, find the value of { \cos }^{ -1 }x.



If { \cos }^{ -1 }x+{ \cos }^{ -1 }y+{ \cos }^{ -1 }z=\pi then, prove that { x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 }+2xy=1



If { \sin }^{ -1 }x=\dfrac { \pi  }{ 5 } x\in \left[ -1,1 \right] then, the value of { \cos }^{ -1 }x



Prove that: 2\tan^{-1}x=\tan^{-1}\dfrac {2x}{1-x^{2}}



Theorem: For any x\in R \quad { sinh }^{ -1 }x={ log }_{ e }(x+\sqrt { x^{ 2 }+1 } )



Evaluate the following :
\sin^{-1} (\sin 5)



Find the value of x if,

sin\left\{ { sin }^{ -1 }\cfrac { 1 }{ 5 } +{ cos }^{ -1 }x \right\} =1



Evaluate the following :
\cos^{-1} (\cos 10)



If x={ sin }^{ -1 }(sin10) and y={ cos }^{ -1 }(cos10), then y - x is equal to : 



Find the value of \cos(\sec^{-1}x+\csc^{-1}x), |x|\ge 1



Solve the following equation
\cos^{-1}\dfrac{x^2-1}{x^2+1}+\tan^{-1}\dfrac{2x}{x^2-1}=\dfrac{2\pi}{3}.



If \tan^{-1}x=\dfrac{\pi}{10} for some x\in R, then find the value of \cot^{-1}x.



Evaluate:
\sec^2(\tan^{-1}2)+cosec^2(\cot^{-1}3)



Evaluate :
\int { { x }^{ 2 }{ \tan }^{ -1 } } \dfrac{x}{2}dx 



If y={ cos }^{ -1 }\left( \dfrac { sinx+cosx }{ \sqrt { 2 }  }  \right) where \dfrac { \pi  }{ 4 } <x<\dfrac { \pi  }{ 4 } then find \dfrac { dy }{ dx }



Solve : \displaystyle\int { \dfrac { \tan { ^{ -1 } } x }{ 1+{ x }^{ 2 } }  } dx



Prove that :-
{\tan ^{ - 1}}\sqrt x = \dfrac{1}{2}{\cos ^{ - 1}}\left( {\dfrac{{1 - x}}{{1 + x}}} \right),x \in [0,1]



Find the value of \sec^{-1}\left ( \dfrac{2}{\sqrt{3}} \right )



Find the value of x,
if \tan^{-1}x+2\cot^{-1}x=\dfrac {2\pi}{3}.



Find the value of x which satisfy the equation { sin }^{ -1 }x+{ sin }^{ -1 }(1-x)={ cos }^{ -1 }x



Prove that { \cos }^{ -1 }\left( \dfrac { 4 }{ 5 }  \right) +{ \tan }^{ -1 }\left( \dfrac { 3 }{ 5 }  \right) ={ \tan }^{ -1 }\left( \dfrac { 27 }{ 11 }  \right)



Evaluate: \sin ^{-1}\dfrac 35+\sin ^{-1}\dfrac 8{17}  



Prove that:
2 cos^{-1}\dfrac{3}{\sqrt {13}} + cot^{-1}\dfrac{16}{63} + \dfrac{1}{2}cos^{-1}\dfrac{7}{25} = \pi



If {\sin ^{ - 1}}x - {\cos ^{ - 1}}x = \dfrac{\pi }{6}, then solve for x.



Evaluat the following:
\sin^{-1} (\sin 4)



Find the value of x, if  sin\left [ cot^{-1}(x+1) \right ]=cos(tan^{-1}x)



sec^{2}(tan^{-1}2)+cosec^{2}(cot^{-1}3)



If tan^{-1} x - cot^{-1} x = tan^{-1} \left(\dfrac{1}{\sqrt{3}} \right), x > 0, find the value of x and hence find the value of sec^{-1} \left(\dfrac{2}{x}\right)



Evaluate the following:
\sin^{-1} (\sin 3)



Evaluate the following :
\sin\left( \dfrac { 1 }{ 2 } { \cos }^{ -1 }\left( \dfrac { 4 }{ 5 }  \right)  \right)



2\tan^{-1}(\cos x)=\tan^{-1}(2 cosec x).



Evaluate the following:
\sin^{-1} (\sin 2)



Evaluate:

\tan^{-1} (\tan 1)



Evaluate the following:
\cos^{-1} (\cos 5)



Evaluate \cos^{-1} (\cos 3)



Evaluate the following:
\tan^{-1} (\tan 4)



Evaluate the following:
\tan^{-1} (\tan 2)



Evaluate the following:
\cos^{-1} (\cos 4)



Evaluate the following:
\sin^{-1} (\sin 12)



Evaluate the following:
\cos^{-1} (\cos 12)



Evaluate the following:
\tan^{-1} (\tan 12)



Show that 2\tan^{-1} x + \sin^{-1} \dfrac {2x}{1 + x^{2}} is constant for x \geq 1. Also find that constant.



Write the value of \cos \left (2\sin^{-1}\dfrac {1}{3}\right ).



Find the values of the following:
\tan^{-1} \left \{2\cos \left (2\sin^{-1} \dfrac {1}{2}\right )\right \}.



Write the value of \cos \left (2\sin^{-1} \dfrac {1}{2}\right ).



Find the value of x, if:

\tan^{-1} \left (\dfrac {x - 2}{x - 1}\right ) + \tan^{-1} \left (\dfrac {x + 2}{x + 1}\right ) = \dfrac {\pi}{4}.



If x < 0, then write the value of \cos^{-1} \left (\dfrac {1 - x^{2}}{1 + x^{2}}\right ) in terms of \tan^{-1} x.



Find the value of x, if:

\cos^{-1} x + \sin^{1}\dfrac {x}{2} - \dfrac {\pi}{6} = 0



Solve the following equation for x:
\tan^{-1} \dfrac {1}{4} + 2\tan^{-1} \dfrac {1}{5} + \tan^{-1} \dfrac {1}{6} + \tan^{-1} \dfrac {1}{x} = \dfrac {\pi}{4}.



Write the difference between maximum and minimum values of \sin^{-1} x of x \epsilon [-1, 1].



Write the value of \cos^{2} \left (\dfrac {1}{2}\cos^{-1} \dfrac {3}{5}\right ).



Write the value of \sin^{-1} \left (\cos \dfrac {\pi}{9}\right ).



If \sin^{-1} \left (\dfrac {1}{3}\right ) + \cos^{-1}x = \dfrac {\pi}{2}, then find x.



Write the value of \sin^{-1} \left (\dfrac {1}{3}\right ) - \cos^{-1} \left (-\dfrac {1}{3}\right ).



Write the value of \cos^{-1} \left (\cos \dfrac {5\pi}{4}\right ).



Evaluate : \sin^{-1} \left (\sin \dfrac {3\pi}{5}\right ).



Write the value of \sin \left \{\dfrac {\pi}{3} - \sin^{-1} \left (-\dfrac {1}{2}\right )\right \}.



Write the value of \tan^{-1} \dfrac {a}{b} - \tan^{-1} \left (\dfrac {a - b}{a + b}\right ).



If x < 0, y < 0 such that xy = 1, then write the value of \tan^{-1} x + \tan^{-1} y.



Write the value of 2\sin^{-1} \dfrac {1}{2} + \cos^{1} \left (-\dfrac {1}{2}\right ).



Write the value of \tan^{-1} \left \{\tan \left (\dfrac {15\pi}{4}\right )\right \}.



Prove that:
\tan^{-1}\left(\dfrac{1+x}{1-x}\right)=\dfrac{\pi}{4}+\tan^{-1}x,x<1



Prove that 
\sin^{-1}(2x\sqrt{1-x^{2}})=2\sin^{-1}x, |x|\le \dfrac{1}{\sqrt{2}}



Prove that:
\tan^{-1}x+\cot^{-1}(x+1)=\tan^{-1}(x^{2}+x+1)



Evaluate \sin \left\{\dfrac {\pi}{2}-\sin^{-1} \left(\dfrac {-\sqrt 3}{2}\right)\right\}



Write the value of \cot^{-1} (-x) for all x\epsilon R in terms of \cot^{-1} x.



Prove that:
\sin^{-1}(3x-4x^{3})=3\sin^{-1}x, |x|\le \dfrac{1}{2}



Evaluate \cos \left\{\cos^{-1}\left(\dfrac {-\sqrt 3}{2}\right) +\dfrac {\pi}{6}\right\}



Prove that:
\tan^{-1}\left(\dfrac{3x-x^{3}}{1-3x^{2}}\right)=3\tan^{-1}x,|x|<\dfrac{1}{\sqrt{3}}



Solve for x:
\cos (2\sin^{-1}x)=\dfrac{1}{9}



Solve for x:
\cos(\sin^{-1}x)=\dfrac{1}{2}



Solve for x:
\cos(\sin^{-1}x)=\dfrac{1}{9}



Prove that:
\cos^{-1} x = 2 \sin^{-1} \sqrt{\dfrac{1 -x}{2}} = 2 \cos^{-1} \sqrt{\dfrac{1 + x}{3}}



Prove that:
\tan^{-1} \dfrac{1}{2} + \tan^{-1} \dfrac{1}{3} = \sin^{-1} \dfrac{1}{\sqrt{5}} + \cot^{-1} 3 = 45^{\circ}



Prove that:
2 \tan^{-1} \dfrac{1}{5} + \tan^{-1} \dfrac{1}{7} + 2 \tan^{-1} \dfrac{1}{8} = \dfrac{\pi}{4}



Prove that:
\sin^{-1} \dfrac{5}{13} + \sin^{-1} \dfrac{7}{25} = \cos^{-1} \left(\dfrac{253}{325} \right).



Prove that:
4 \tan^{-1} \dfrac{1}{5} - \tan^{-1} \dfrac{1}{70} + \tan^{-1} \dfrac{1}{99} = \dfrac{\pi}{4}



Solve the equation.
\sin^{-1} \dfrac{5}{x} + \sin^{-1} \dfrac{12}{x} = \dfrac{\pi}{2}



Prove that:
\tan^{-1} \dfrac{m}{n} - \tan^{-1} \dfrac{m - n}{m + n} = \dfrac{\pi}{4}



Solve the equation.
\cos^{-1} \dfrac{x^2 - 1}{x^2 + 1} + \tan^{-1} \dfrac{2x}{x^2 - 1} = \dfrac{2\pi}{3}



Solve the equation.
2 \tan^{-1} x = \cos^{-1} \dfrac{1 - a^2}{1 + a^2} - \cos^{-1} \dfrac{1 - b^2}{1 + b^2}



Prove that:
\tan^{-1} t + \tan^{-1} \dfrac{2t}{1 - t^2} = \tan^{-1} \dfrac{3t - t^3}{1 - 3t^2} , t being positive, if t < \dfrac{1}{\sqrt{3}} or > \sqrt{3},
and
\tan^{-1} t + \tan^{-1} \dfrac{2t}{1 - t^2}= \pi + \tan^{-1} \dfrac{3t - t^3}{1 - 3t^2} if t > \dfrac{1}{\sqrt{3}} and < \sqrt{3}



Prove that:
\tan^{-1} \dfrac{1}{3} + \tan^{-1} \dfrac{1}{5} + \tan^{-1} \dfrac{1}{7} + \tan^{-1} \dfrac{1}{8} = \dfrac{\pi}{4}



If \phi = \tan^{-1} \dfrac{x\sqrt{3}}{2k - x}, and \theta = \tan^{-1}\dfrac{2x-k}{k\sqrt{3}}, prove that one value  of \phi -\theta is 30^o.



Solve the equation.
\tan^{-1} \dfrac{a}{x} + \tan^{-1} \dfrac{b}{x} + \tan^{-1} \dfrac{c}{x} + \tan^{-1} \dfrac{d}{x} = \dfrac{\pi}{2}



Find the range of  f(x) =\cot^{-1}(2x-x^{2})



Find the set of values of parameter a so that the equation (sin^{-1}x)^3+(cos^{-1}x)^3=a\pi^2 has a solution



If the roots of the  equation x^3 - 10x+ 11 = 0 are  u,v and w. Then the value of  3cosec^2(\tan^{-1}u+\tan^{-1}v+\tan^{-1}w) is



Find the sum cosec^{-1}\sqrt{10}+cosec^{-1}\sqrt{50}+cosec^{-1}\sqrt{170}+...+cosec^{-1}\sqrt{(n^2+1)(n^2+2n+2)}.



If tan^{-1}(x+\dfrac{3}{x})-tan^{-1}(x-\dfrac{3}{x})=tan^{-1}\dfrac{6}{x}, then the value of  x^4  is  



If tan^{-1}y=4tan^{-1}x\,(|x|<tan\dfrac{\pi}{8}), find y as an algebraic function of x, and hence, prove that \tan \pi/8 is a root of the equation x^4 - 6x + 1 = 0$$



Solve for real values of x:\dfrac{(sin^{-1}x)^3+(cos^{-1}x)^3}{(tan^{-1}x+cot^{-1}x)^3}=7



Prove that: 2\tan^{-1}{\left(\dfrac{1}{2}\right)}+\tan^{-1}{\left(\dfrac{1}{7}\right)}=\sin^{-1}{\left(\dfrac{31}{25\sqrt{2}}\right)}



If \tan^{-1}a+\tan^{-1}b+\tan^{-1}c=\pi, then prove that a+b+c=abc.



Simplify: tan^{-1}\left(\dfrac{3sin 2\alpha}{5+3\cos2\alpha}\right)+\tan^{-1}\left(\dfrac{1}{4}\tan\alpha\right), where -\dfrac{x}{2}<\alpha<\dfrac{x}{2}



Write the simplest form of \tan^{-1} \left[\dfrac{\sqrt{1 + x^2} - 1}{x}\right].



Prove that: \tan^{-1}\left(\dfrac{63}{16}\right)=\sin^{-1}\left(\dfrac{5}{13}\right)+\cos^{-1}\left(\dfrac{3}{5}\right)



If \sin^{-1}x+\sin^{-1}y+\sin^{-1}z=\pi, then prove that:
x\sqrt{1-x^{2}}+y\sqrt{1-y^{2}}+z\sqrt{1-z^{2}}=2xyz



Simplify: \tan^{-1} \{  \sqrt{1+x^2} - x \}, x\in R



Solve the equation \tan^{-1}\dfrac{x+1}{x-1}+\tan^{-1}\dfrac{x+1}{x}=tan^{-1}(-7)



Does the following trigonometric equatio have any solutions? If yes, obtain the soultions(s):
\tan^{-1}\left(\dfrac{x+1}{x-1}\right)+\tan^{-1}\left(\dfrac{x-1}{x}\right)=-tan^{-1}7



Express in the simplest form:
\tan - 1 \left(\dfrac{\cos x - \sin x}{\cos x + \sin x}\right), -\dfrac{\pi}{4} < x < \dfrac{\pi}{4}



Prove that: \tan^{-1} \left(\dfrac{1}{2}\right) + \tan^{-1} \left(\dfrac{1}{5}\right) + \tan^{-1} \left(\dfrac{1}{8}\right) = \dfrac{\pi}{4}



Prove the following:
\cot^{-1} \left(\dfrac{xy + 1}{x - y}\right) + \cot^{-1} \left(\dfrac{yz + 1}{y - z}\right) + \cot^{-1} \left(\dfrac{zx + 1}{z - x}\right) = 0          (0 < xy, yx, zx < 1)



Write the value of \cot(\tan^{-1}a+\cot^{-1}a).



Prove that: \tan^{-1} \left(\dfrac{1}{4}\right) + \tan^{-1} \left(\dfrac{2}{9}\right) = \dfrac{1}{2} \cos ^{-1}\left(\dfrac{3}{5}\right)



Write the range of one branch of \sin^{-1}x, other than the principal branch



Evaluate: \tan(\tan^{-1}(-4))



Find the value of \sin^{-1}\left(\sin\dfrac{4\pi}{5}\right)



If \sin(\sin^{-1}\dfrac{1}{2}+\cos^{-1}x)=1, then find the value of x.



Find the value of \sin^{-1}\left(\cos\left(\dfrac{43\pi}{5}\right)\right).



If 0 < x <1, then solve the following for x.
tan^{-1}(x+1)+tan^{-1}(x-1)=tan^{-1}\left(\dfrac{8}{31}\right)



Show that
2\tan^{-1}(-3)=\dfrac {-\pi}{2}+\tan^{-1}\left(\dfrac {-4}{3}\right).



If 2\tan^{-1}(\cos \theta)=\tan^{-1}(2\csc \theta), then show that \theta =\dfrac {\pi}{4}, where n is any integer.



Show that \cos \left(2\tan^{-1}\dfrac 17 \right) =\sin \left(4\tan^{-1}\dfrac 13 \right).



Solve the following for x:\cos^{-1}\left(\dfrac{x^{2}-1}{x^{2}+1}\right)+\tan^{-1}\left(\dfrac{2x}{x^{2}-1}\right)=\dfrac{2\pi}{3}



Find the value of \tan^{-1}\left(-\dfrac {1}{\sqrt 3}\right)+\cot^{-1}\left(-\dfrac {1}{\sqrt 3}\right)+\tan^{-1}\left[\sin \left(-\dfrac {-\pi}{2}\right)\right].



Find the value of \sin \left(2\tan^{-1}\dfrac 13 \right)+\cos (\tan^{-1} 2\sqrt 2)



Find the value of \tan\dfrac{1}{2}\left[\sin^{-1}\dfrac{2x}{1+x^{2}}+\cos^{-1}\dfrac{1-y^2}{1+y^2}\right], |x|<1, y>0 and xy<1.



Find the value of \tan^{-1}\left(\tan \dfrac {2\pi}{3}\right).



Solve the following equation \cos (\tan^{-1}x)=\sin \left(\cot^{-1} \dfrac 34 \right)



Evaluate:
\sin^{-1}\left[\cos \left(\sin^{-1}\dfrac{\sqrt{3}}{2}\right)\right]



Evaluate:
\tan^{-1}\sqrt{3}-\sec^{-1}(-2)



Find the value of
\sin \left[2\cot^{-1}\left(\dfrac{-5}{12}\right)\right]



Find the value of
\sec\left(\tan^{-1}\dfrac{y}{2}\right)



Find the value of 
\cos^{-1}\left(\cos\dfrac{13\pi}{6}\right)



Find the value of 
\tan^{-1}\left(\tan\dfrac{9\pi}{8}\right)



Evaluate 
\tan^{-1}\left(\sin\left(\dfrac{-\pi}{2}\right)\right)



Find value of \tan (\cos^{-1}x) and hence evaluate
\tan\left(\cos^{-1}\dfrac{8}{17}\right)



Prove that \tan (\cot^{-1}x)=\cot (\tan^{-1}x). State with reason whether the equality is valid for all values of x.



Evaluate 
\cos\left[\sin^{-1}\dfrac{1}{4}+\sec^{-1}\dfrac{4}{3}\right]



Find the simplified form of
\cos^{-1}\left(\dfrac{3}{5}\cos x+\dfrac{4}{5}\sin x\right), where x\in \left[\dfrac{-3\pi}{4}, \dfrac{\pi}{4}\right]



Show that  \tan \left(\dfrac{1}{2}\sin^{-1}\dfrac{3}{4}\right)=\dfrac{4-\sqrt{7}}{3} and justify why the other value \dfrac{4+\sqrt{7}}{3} is isgnored?



Prove that \sin^{-1}\dfrac{18}{7}+\sin^{-1}\dfrac{3}{5}=\sin^{-1}\dfrac{77}{85}



The set of values of \sec^{-1}\dfrac 12 is _________.



Fill in the blanks in the following:
If \cos ( \tan^{-1}x+\cot^{-1}\sqrt 3)=0, then the value of x is ............



Fill in the blanks in the following:
The value of \sin^{-1}\left( \sin \dfrac{3\pi}{5}\right) is .........



Find the value of 4\tan^{-1}\dfrac{1}{5}-\tan^{-1}\dfrac{1}{239}



Prove that \tan^{-1}\dfrac{1}{4}+\tan^{-1}\dfrac{2}{9}=\sin^{-1}\dfrac{1}{\sqrt{5}}



Fill in the blanks in the following:
If y=2\tan^{-1}x+\sin^{-1}\left( \dfrac{2x}{1+x^2}\right), then .... < y < ....



Fill in the blanks in the following:
The value of \cos^{-1}\left( \cos \dfrac{14\pi}{3}\right) is ________.



Fill in the blanks in the following:
The value of \cot^{-1}(-x)x\in R in terms of \cot^{-1}x is .........



 Show that  \sin^{-1} \left ( 2x \sqrt{1 - x^{2}} \right ) = 2 \sin^{-1} x



Fill in the blanks in the following:
The result \tan^{-1}x-\tan^{-1}y=\tan^{-1}\left( \dfrac{x-y}{1+xy}\right) is true when value of xy is .......



Find the value of  \tan \left (  \tan^{-1} x + \cot^{-1}x\right )



Prove the following: \tan^{-1}\left[\dfrac{\cos\theta+\sin\theta}{\cos\theta-\sin\theta}\right]=\dfrac{\pi}{4}+\theta, if \theta \epsilon \left(-\dfrac{\pi}{4},\dfrac{\pi}{4}\right)



Fill in the blanks in the following:
The value of \cos ( \sin^{-1}x+\cos^{-1}x), where |x| \le 1, is .............



Fill in the blanks in the following:
The value of \tan \left( \dfrac{\sin^{-1}x+\cos^{-1}x}{2}\right), where x=\dfrac{\sqrt 3}{2}, is ............



Prove the following: \tan^{-1}\left[\sqrt{\dfrac{1-\cos\theta}{1+\cos\theta}} \,\right]=\dfrac{\theta}{2},if \theta \,\epsilon (-\pi, \pi)



Prove that  \tan ^{-1} x + \tan^{-1} \dfrac{2x}{1 - x^{2}} = tan^{-1} \left ( \dfrac{3x - x^{3}}{1 - 3x^{2}} \right )



2 \tan ^{-1} \dfrac{1}{2} + \tan ^{-1} \dfrac{1}{7} = \tan^{-1} \dfrac{31}{17}



\tan^{-1} \dfrac{2}{11} + \tan ^{-1} \dfrac{7}{14} = \tan ^{-1} \dfrac{1}{2}



3 \sin^{-1} x = \sin^{-1} ( 3x - 4x^{3}) , x \epsilon \left [ -\dfrac{1}{2},\dfrac{1}{2} \right ]



Find the values of the following :
\tan^{-1} (1) + \cos ^{-1} (-\dfrac{1}{2}) + \sin ^{-1} ( -\dfrac{1}{2})



3 \cos^{-1} x = \cos^{-1} ( 4x^{3} - 3x) , x \epsilon \left [ \dfrac{1}{2}, 1 \right ]



Find the values of the following :
\cos^{-1}(\dfrac{1}{2}) + 2 \ sin ^{-1} (\dfrac{1}{2})



Solve  \tan ^{-1} \left \{ \dfrac{\sqrt{1 +x^{2} - \sqrt{1 - x^{2}}}}{\sqrt{1 + x^{2} + \sqrt{1 - x^{2}}}} \right \}



Find the values of each of the following .
\tan \dfrac{1}{2} \left [ \sin^{-1} \dfrac{2x}{1 + x^{2}}+ \cos^{-1}\dfrac{1 - y^{2}}{1 + y^{2}} \right ]



Find the values of each of the following .
\tan^{-1} \left [ 2 \cos\left ( 2 \sin^{-1}\dfrac{1}{2} \right ) \right ]



Find the values of each of the following .
\cot \left ( \tan^{-1} a + \cot^{-1} a \right )  



Write the following function in the simplest form :
\tan^{-1} \dfrac{\sqrt{1 + x^{2} -1}}{x} ,  x\neq 0



\tan^{-1}\sqrt{ \dfrac{1- \cos x}{1 + \cos x}} , 0 < x  < \pi



Write the following function in the simplest form :
\tan^{-1} \dfrac{1}{\sqrt{x^{2}-1}} ,  |x| > 1



\tan^{-1} \dfrac{\cos x - \sin x}{\cos x +  \sin x} , \dfrac{- \pi}{4} < x < \dfrac{3\pi}{4}



In  \sin \left ( \sin^{-1}\dfrac{1}{5} + \cos^{-1} x \right ) = x



Find the value of the following :
\tan ^{-1} \left ( \dfrac{\sqrt{1 + x}- \sqrt{1 - x}}{\sqrt{1 + x } + \sqrt{1 - x}} \right )= \dfrac{x}{4} - \dfrac{1}{2} \cos^{-1} x
-\dfrac{1}{\sqrt{2}}\leq  x \geq  [Hint : put x = \cos 2\theta ]



If \tan^{-1} \dfrac{x - 1}{x - 2} + \tan^{-1} \dfrac{x +1}{x +2} = \dfrac{\pi}{4} Then find the value of x 



Find the values of each of the expressions.
\sin^{-1} \left ( \sin\dfrac{2\pi}{3} \right )



\dfrac{9\pi }{8} - \dfrac{9}{4} \sin^{-1} \dfrac{1}{3} = \dfrac{9}{4} \sin^{-1} \dfrac{2\sqrt{2}}{3}



Find the values of each of the expressions.
\tan \left ( \sin^{-1}\dfrac{3}{5} + \cot^{-1}\left ( \dfrac{3}{2} \right ) \right )



Find the values of each of the expressions .
\tan^{-1} \left ( \tan \dfrac{3\pi}{4} \right )



Prove the following
\tan^{-1} \sqrt{\dfrac{ax}{bc}}+\tan^{-1} \sqrt{\dfrac{bx}{ca}}+\tan^{-1} \sqrt{\dfrac{cx}{ab}}=\pi, where\ a+b+c=x



Prove the following
2 \tan^{-1}x= \sin^{-1}\dfrac{2x}{1+x^2}=\cos^{-1} \dfrac{1-x^2}{1+x^2}



Prove the following
2 \tan^{-1}\dfrac{1}{2} - \tan^{-1}\dfrac{1}{7}=\dfrac{\pi}{4}



\tan ^{-1} \dfrac{1 -x}{1 + x} = \dfrac{1}{2} \tan^{-1} x, (x>0)



Prove the following
2 \tan^{-1}\dfrac{17}{19} - \tan^{-1}\dfrac{2}{3}=\tan^{-1} \dfrac{1}{7}



2 \tan ^{-1} (\cos^{ x}) = \tan^{-1}  (2 cosec x)



If \sin^{-1}\left(\dfrac{3}{4}\right)+\sec^{-1}\left(\dfrac{4}{3}\right)=x, then find x.



Solve the following equation
\sec^{-1} \left(\dfrac{x}{a} \right)-\sec^{-1} \left(\dfrac{x}{b} \right)= \sec^{-1}b-\sec^{-1}a



Find :\sin^{-1}\left(\dfrac{4}{5}\right)+2\tan^{-1}\left(\dfrac{1}{3}\right)



If 4\sin^{-1}x+\cos^{-1}x=\pi, then find x.



Prove the following
\dfrac{1}{2} \tan^{-1} x=\cos^{-1} \left\{ \dfrac{1+ \sqrt{1+x^2}}{2 \sqrt{1+x^2}} \right\}^{\dfrac{1}{2}}



If \sin^{-1}\left(\dfrac{5}{13}\right)+\sin -1\left(\dfrac{12}{x}\right)=90^o, then find x.



Prove that \tan^{-1}(\dfrac{1}{2}\tan 2A)+\tan^{-1}(\cot A)+\tan^{-1}(\cot^2A)=0



Solve : \tan^{-1} 4x + \tan^{-1} 6x = \dfrac{\pi}{4}



Prove that:
2\tan^{-1}\left[\tan (45^o -\alpha)\tan \dfrac{\beta}{2}\right]=\cos^{-1}\left(\dfrac{\sin 2\alpha +\cos \beta}{1+\sin 2\alpha \cos \beta}\right)



\phi =\tan^{-1}\dfrac{x\sqrt{3}}{2K-x} and \theta =\tan^{-1}\dfrac{2x-K}{K\sqrt{3}}
then prove that value of \phi -\theta is 30^o.



Prove that \tan^{-1}x=2\tan^{-1}(\csc (\tan^{-1}x)-\tan (\cot^{-1}x).



The number  of solutions of the equation \displaystyle \sin^{-1}\left (\dfrac{1+x^{2}}{2x}\right)=\dfrac{\pi}{2}\sec(x-1) is



Prove that \tan^{-1}\left (\dfrac {\cos x}{1 + \sin x}\right ) = \dfrac {\pi}{4} - \dfrac {x}{2}, x\epsilon \left (-\dfrac {\pi}{2}, \dfrac {\pi}{2}\right )



Prove that \sin^{-1}\left (\dfrac {8}{17}\right ) + \sin^{-1}\left (\dfrac {3}{5}\right ) = \cos^{-1} \left (\dfrac {36}{85}\right )



Prove the following:
\cos^{-1}\left (\dfrac {4}{5}\right ) + \cos^{-1}\left (\dfrac {12}{13}\right ) = \cos^{-1}\left (\dfrac {33}{65}\right )



If \sin \left (\sin^{-1} \dfrac {1}{5} + \cos^{-1}x \right ) = 1, then find the value of x.



Write the value of \displaystyle  \tan\left(2\tan^{-1}\frac{1}{5}\right) 



If \tan^{-1} \dfrac{x-1}{x-2}+\tan^{-1}\dfrac{x+1}{x+2}=\dfrac{\pi}{4}, then find the value of x.



If \displaystyle cos^{-1} x + cos^{-1} y = \frac{\pi}{2} then prove that cos^{-1} x = sin^{-1} y



Solve: \displaystyle \sin^{-1} \frac{5}{x} + \sin^{-1} \frac{12}{x} = \frac{\pi}{2}



Prove that:
2\tan^{-1} \left (\dfrac {1}{5}\right ) + \sec^{-1} \left (\dfrac {5\sqrt {2}}{7}\right ) + 2\tan^{-1} \left (\dfrac {1}{8}\right ) = \dfrac {\pi}{4}.



Evaluate: \sum _{ r=1 }^{ \infty  }{ \tan ^{ -1 }{ \left( \cfrac { 2 }{ 1+(2r+1)(2r-1) }  \right)  }  }



If \tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi then prove that:
x+y+z = xyz



Calculate (192 - 214)
\sin ^{-1} + 2 \tan^{-1} (-\sqrt{3}).



Simplify
\cos^{-1} (cos \dfrac{8\pi}{7}).



Show that 
\tan^{-1} (\frac{1}{2}) + \tan^{-1} (\frac{1}{3}) = \cfrac{\pi}{4}



Simplify 
\tan^{-1} (tan \dfrac{8\pi}{7}).



Simplify
\tan^{-1} \sqrt{2} - \cot^{-1} (1/\sqrt{2})



Prove that: \sin^{-1}\left (\dfrac {3}{5}\right ) + \cos^{-1} \left (\dfrac {12}{13}\right ) = \sin^{-1}\left (\dfrac {56}{65}\right ).



Prove 2 \sin^{-1} \left(\dfrac{5}{13}\right)=\cos^{-1}\left(\dfrac{119}{169}\right)



Write \tan^{-1} \left( \cfrac{\sqrt{1+\cos x}}{\sqrt{1-\cos x}} \right) in its simplest form.



\sin^{-1} ( \dfrac{\sqrt{1+x} + \sqrt{1-x} }{2}) 



Find the value of {\sin}^{-1}{(\sin{\dfrac{3\pi}{5}})}.



Let (x, y) be such that sin^{-1} ax + cos^{-1} y + cos^{-1} (bxy) = \frac{\pi}{2}



The sum \sum_\limits{n=1}^{\infty}  \tan^{-1}\left(\dfrac{2}{n^2}\right) equals \dfrac{\pi}{m}.Find m



Find the value of \sin ^{ -1 }{ \left( \cos { \cfrac { 33\pi  }{ 5 }  }  \right)  }



Find m if the following equation holds true 
 \tan \left(\dfrac{1}{2} \sin^{-1} \dfrac{3}{4} \right) = \dfrac{4 - \sqrt{m}}{3}



Show \>that     cot^{-1}\left( \frac{\sqrt{1+ sinx}+ \sqrt{1-sinx}}{\sqrt{1+ sinx}- \sqrt{1-sinx}}\right) =\frac{x}{2} for\>x\in\>(0,\frac{\pi}{2})



\sin^{-1}(1-x)-2\sin^{-1}x=\cfrac{\pi}{2}, then x is equal to:



If \sin^{-1}x+\sin^{-1}y+\sin^{-1}z =\pi, prove that x\sqrt{1-x^2}+y\sqrt{1-y^2}+z\sqrt{1-z^2}=2xyz.



Find the value of \cos^{-1} (\cos \dfrac {2\pi}{3}) + \sin^{-1} \left (\sin \dfrac {2\pi}{3}\right ).



Solve the following equation cos(tan^{-1}x)=sin \left(cot^{-1}\dfrac{3}{4}\right)



Solve:
\tan \left( {{{\cos }^{ - 1}}\frac{1}{x}} \right) = \sin \left( {{{\cot }^{ - 1}}\frac{1}{x}} \right)



Solve  :  y=\sin^{-1}(\sec x)



Evaluate: {{\tan }^{-1}}\left( \dfrac{\sqrt{1+\cos x}-\sqrt{1-\cos x}}{\sqrt{1+\cos x}+\sqrt{1-\cos x}} \right)    



Find the values of \sin\left(\cos^{-1}\dfrac{3}{5}+\cos^{-1}\dfrac{12}{13}\right).



Find the value of x for which {\sec ^{ - 1}}x + {\sin ^{ - 1}}x = \dfrac{\pi }{2}. 



Solve the equation
{\tan ^{ - 1}}\frac{{1 - x}}{{1 + x}} - \frac{1}{2}{\tan ^{ - 1}}x = 0,x > 0



Express \tan^{-1}\left(\dfrac{\cos x}{1-\sin x}\right), -\dfrac{\pi}{2}<x<\dfrac{\pi}{2} in the simplest form.



Solve : \tan^{-1}\sqrt{\dfrac{1+\sin x}{1-\sin x}} ,-\dfrac{\pi}{2} < x < \dfrac{\pi}{2}



Tan ^{-1} {\dfrac{\sqrt{1 +  cos x}}{1 - cos x}, 0 < x < \pi



tan ^{-1} {\dfrac{cos x}{1 + sin x}}, 0 < x < \pi



cos^{-1}(2x-1)= ?



cos ^{-1} (\dfrac{1 - x^2}{1 + x^2}), 0 < x < 1



sin^{-1} \dfrac{1 - x^2}{1 + x^2}, 0 < x < 1



Solve:\left( { tan }^{ -1 }x \right) ^{ 2 }+\left( { cot }^{ -1 }x \right) ^{ 2 }=\dfrac { 5{ \pi  }^{ 2 } }{ 8 }



Let y = { sin }^{ -1 }\left( \dfrac { \sqrt { 1+x } +\sqrt { 1-x }  }{ 2 }  \right) put x=cos\theta .\quad then\theta ={ cos }^{ -1 }x



{ cot }^{ -1 }\left[ \frac { \sqrt { 1+sinx } +\sqrt { 1-sinx }  }{ \sqrt { 1+sinx } -\sqrt { 1-sinx }  }  \right] ,0<x<\frac { \pi  }{ 2 } 



Find the value of x if,
{ \cos }^{ -1 }\dfrac { a }{ x } -\cos^{ -1 }\dfrac { b }{ x } =\cos^{ -1 }\dfrac { 1 }{ b } -{ \cos }^{ -1 }\dfrac { 1 }{ a }



write the value of { tan }^{ -1 }\left\{ 2sin\left( 2co{ s }^{ -1 }\frac { \sqrt { 3 }  }{ 2 }  \right)  \right\} 



Evaluate
1344759_a2f7353461534b698b81e1bb6260b264.jpg



If \tan^{-1}{(x+2)}+\tan^{-1}{(x-2)}=\tan^{-1}{(\cfrac{1}{2})}, then sum of value(s) of x is equal to ?



solve\quad for\quad x,\\ 2{ tan }^{ -1 }\left( cos\quad x \right) ={ tan }^{ -1 }\left( 2\quad cosec\quad x \right) 



Prove that : \tan^{-1}{\cfrac{1}{5}}+\tan^{-1}{\cfrac{1}{7}}+\tan^{-1}{\cfrac{1}{3}}+\tan^{-1}{\cfrac{1}{8}}=\cfrac{\pi}{4}



Let y=\sin^{-1}{(\sin{8})}-\tan^{-1}{(\tan{10})}+\cos^{-1}{(\cos{12})}-\sec^{-1}{(sec{9})}+\cot^{-1}{(\cot{6})}-cosec^{-1}{(cosec{7})}. If simplifies to a\pi+b, then find (a-b).



Show that:\sin ^ { - 1 } \left( - \frac { 1 } { 2 } \right) + \cos ^ { - 1 } \left( \frac { \sqrt { 3 } } { 2 x } \right) = \cos ^ { - 1 } \left( - \frac { 1 } { 2 } \right)



  Prove that: \tan ^{ -1 }{ \left(\dfrac { 3 }{ 4 } \right) } +\tan ^{ -1 }{ \left(\dfrac { 3 }{ 5 } \right) } -\tan ^{ -1 }{ \left( \dfrac { 8 }{ 19 }  \right) =\dfrac { \pi  }{ 4 }  }



Find x if { tan }^{ -1 }(x+2)+{ tan }^{ -1 }(x-2)={ tan }^{ -1 }\left( \frac { 8 }{ 79 }  \right) ;x>0



Solve for x , 2 \tan ^ { - 1 } ( \sin x ) = \tan ^ { - 1 } ( 2 \sec x ) , 0 < \frac { \pi } { 2 }



tan^{-1} A + tan^{-1} B= ?



Solve:
cos^{-1}{(\dfrac{2x}{1+x^2})}



Show that \tan ^ { - 1 } ( 1 / 4 ) + \tan ^ { - 1 } ( 2 / 9 ) = \frac { 1 } { 2 } \cos ^ { - 1 } \left( \frac { 3 } { 5 } \right)



Solve -
If y = sec^-1 (\frac{1}{\sqrt{1 - x^2}})



Solve the equation.
\cot^{-1} x + \cot^{-1} (n^2 - x + 1) = \cot^{-1} (n - 1)



Write the value of \cos^{-1} (\cos 1540^{\circ}).



Find the simplest values of
\tan^{-1} \dfrac{\sqrt{1+x^2} - 1}{x}, and \tan \left(\dfrac{1}{2}\sin^{-1} \dfrac{2x}{1 + x^2}+\dfrac{1}{2} \cos^{-1} \dfrac{1-y^2}{1+y^2}\right)



Express tan^-1 (\frac{cosx}{1-sin x}), -\frac{\pi}{2} < x < \frac{3\pi}{2} in the simplest form.



Write the value of \tan^{-1} \left (\dfrac {1}{x}\right ) for x < 0 in terms of \cot^{-1} (x).



If ax+b(sec(\tan^{-1}x))=c and ay+b(sec(\tan^{-1}y))=c, then find the value of \dfrac{x+y}{1-xy}.



Prove that \tan^{-1}\left(\dfrac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}\right)=\dfrac{\pi}{4}+\dfrac{1}{2}\cos^{-1}x^{2}



Find the real Solution of the equation
\tan^{-1}\sqrt {x(x+1)}+\sin^{-1}\sqrt {x^2 +x+x}=\dfrac {\pi}{2}.



Solve the equation
\theta  = \tan^{-1} (2 \tan^2 \theta) - \dfrac{1}{2} \sin^{-1}\dfrac{3\sin 2\theta}{5+4\cos 2\theta}.



Show that
\sin^{-1}\dfrac{5}{13}+\cos^{-1}\dfrac{3}{5}=\tan^{-1}\dfrac{63}{16}



If \dfrac{1}{2}\sin^{-1} \dfrac{2x}{1-x^2}+\dfrac{1}{2} \cos^{-1}\dfrac{1-y^2}{1+y^2}+\dfrac{1}{3}\tan^{-1}\dfrac{3z-z^3}{1-3z^2}=5 \pi
then prove that x+y+x=xyz



Class 12 Commerce Maths Extra Questions