If f\left( x \right)=\left| x-2 \right| and g\left( x \right)=f\left( f\left( x \right) \right) , then g'\left( x \right) for x>2 is
Let f: {1,3,4} \rightarrow {1,2,5} and g: {1,2,5}\rightarrow {1,3} be given by f={(1,2), (3,5), (4,1)} and g= {(1,3), (2,3), (5,1)}. Write down gof.
Show that the Signum function f:R \rightarrow R, given by
\displaystyle f(x)=\begin{cases}1,\ if\ x > 0 \\0,\ if\ x = 0 \\ -1,\ if\ x < 0 \end{cases}Let A={1,2,3}, B={4,5,6,7} and let f={(1,4), (2,5),(3,6)} be a function from A to B. Show that f is one-one.
Find gof and fog, if (i) f(x)=|x| and g(x)=|5x-2|
ii)f(x)=8x^3 and \displaystyle g(x)=x^{\frac {1}{3}}
(ii) Let * be the binary operation on N given by a * b= ab
(a) Find 20 * 16
(b) Find the identity of * in N
Show that subtraction are not binary operation on natural number N
* | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 1 | 2 | 1 |
3 | 1 | 1 | 3 | 1 | 1 |
4 | 1 | 2 | 1 | 4 | 1 |
5 | 1 | 1 | 1 | 1 | 5 |
* | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 1 | 2 | 1 |
3 | 1 | 1 | 3 | 1 | 1 |
4 | 1 | 2 | 1 | 4 | 1 |
5 | 1 | 1 | 1 | 1 | 5 |
* | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 1 | 2 | 1 |
3 | 1 | 1 | 3 | 1 | 1 |
4 | 1 | 2 | 1 | 4 | 1 |
5 | 1 | 1 | 1 | 1 | 5 |