| (i) | (ii) | (iii) | (iv) | (v) | (vi) | |
| Faces | $$ 7$$ | $$ y$$ | $$9$$ | $$ p$$ | $$ 6$$ | $$8 $$ |
| Vertices | $$ 10$$ | $$ 12$$ | $$z$$ | $$6$$ | $$ q$$ | $$11 $$ |
| Edges | $$ x$$ | $$ 18$$ | $$ 16$$ | $$ 12$$ | $$12 $$ | $$ r$$ |
| Polyhedron | Faces(F) | Vertices(V) | Edges(E) | F-E+V |
| Square Pyramid |
| Polyhedron | Faces(F) | Vertices(V) | Edges(E) | F-E+V |
| Hexagonal Prism |
Verily Euler’s formula for the following three dimensional figures:
| Polyhedron | Faces(F) | Vertices(V) | Edges(E) | F-E+V |
| Hexahedron |
| Polyhedron | Faces(F) | Vertices(V) | Edges(E) | F-E+V |
| Triangular Pyramid |
| Faces | Vertices | Edges | |
| (i) | $$x$$ | 15 | 20 |
| (ii) | 6 | $$y$$ | 8 |
| (iii) | 14 | 26 | $$z$$ |
| Faces | Vertices | Edges | |
| (i) | 8 | a | 12 |
| (ii) | b | 6 | 9 |
| (iii) | 20 | 12 | c |
Faces | Vertices | Edges | |
(i) | $$6$$ | __ | $$ 12$$ |
(ii) | __ | $$5$$ | $$8$$ |
(iii) | $$14$$ | $$24$$ | __ |
(iv) | __ | $$16$$ | $$30$$ |
(v) | $$16$$ | __ | $$42$$ |
(vi) | $$19$$ | $$19$$ | __ |
| Faces | Vertices | Edges | |
| (i) | $$x$$ | 15 | 20 |
| (ii) | 6 | $$y$$ | 8 |
| (iii) | 14 | 26 | $$z$$ |
| Faces | Vertices | Edges | |
| (i) | $$x$$ | 15 | 20 |
| (ii) | 6 | $$y$$ | 8 |
| (iii) | 14 | 26 | $$z$$ |