if $$a_0 \, , \, a_1 \, , \, a_2$$....be the coefficients in the expansion of (1 + x + x$$^2)^n$$ in ascending powers of x , then prove that
$$a_{0}^{2} \, - \, a_{1}^{2} \, + \, a_{2}^{2} \, - \, a_{3}^{2} \, + \, ......+ \, (- 1)^{n \, - \, 1} \, a_{n \, - \, 1}^{2} $$
$$ = \, \dfrac{1}{2}a_n(1 \, -(- 1)^n \, a_n)$$