Processing math: 2%

Complex Numbers And Quadratic Equations - Class 11 Engineering Maths - Extra Questions

Number of  roots of the quadratic equation 8sec2x6secx+1=0 is/are:



|z|5 & Arg(z1i)>π/6



Arg(z1i)π/3



Multiply 23+32 by 4352



If the value of the discriminant of the quadratic equation ax2+bx+c=0 is less than 0, then the nature of the roots is ____



If Z1=1 and Z2=i, then find Arg(Z1Z2)



Write an example for a quadratic polynomial that has no real zeroes.



Without solving the following quadratic equation, find the value of m for which the given equation has real and equal roots.
x2+2(m1)x+(m+5)=0



Calculate i



What is cis 0?



Find the value of k so that the following equation has equal roots.
2x2(k2)x+1=0



Calculate 3i



Represent (13i) in the polar form.



For the real numbers x and y, if (xiy)(3+5i) is the conjugate of 624i then find the value of x and y.



Indicate the point of the complex plane z which satisfy the following equation.
\displaystyle z^2 \, + \, | \, \overline{z} \, | \, = \, 0



Find the values of p for which the quadratic equation 4x^2+px+3=0 has equal roots.



Find the modulus of the complex number 2-5!.



Determine the nature of the roots of the following quadratic equation
2x^2+ 6x + 3 = 0



Find the length of the segments connecting the points represented by the following pairs of numbers :
3, -4i



locate the point representing the complex numbers z on the Argand diagram for which
\left| z \right| \ge 3,



Simplify the following :
\dfrac{3 \, - \, i}{2 \, + \, i} \, + \, \dfrac{3 \, + \, i}{2 \, - \, i}



Find the length of the segments connecting the points represented by the following pairs of numbers :
-1 - i, 2 + 3i



x \, +\, i \sqrt x^\, 4 \, +, x^2 \, +\,  1



Find the discriminant of the following quadratic equations and hence determine the nature of the roots of the equation :
{x^2} = 9



What is value of (-i)^{12}



In the given, determine whether the given quadratic equation has real roots and if so, find the roots.
{ x }^{ 2 }+5x+5=0



Determine the nature of the roots of the given quadratic equation
2{ x }^{ 2 }+x-1=0



Determine the nature of the roots of the given quadratic equation
4{ x }^{ 2 }-4x+1=0\quad



Solve
z = \left( {2 + i} \right)+\left( {1 - 3i} \right)



Find the modulus of: (i) {{21} \over 5} - {{12} \over 5}i  (ii)  3+4i



Find the value of (1+i)(1+{i}^{2})(1+{i}^{3})(1+{i}^{4}).



Find the amplitude and modulus of following
(i) \displaystyle {{21} \over 5} - {{12} \over 5}i  (ii) 3 + 4{\rm{ i}}



Express the given complex number 3(7+i7)+i(7+i7) in the form a+ib



Find the amplitude of -4.



Find modulus and argument of i



Write the nature of roots of the quadratic equation 5x^2-2x+3=0.



Write the argument of (1+\sqrt {3})(1+i)(\cos \theta+i\sin \theta).



The values of x and y satisfying the equation \dfrac{(1+i)x - 2i}{3+ i} + \dfrac{(2 -3i)y + i}{3 - i} = i, are



Solve for x4\sqrt 3 x^{2} + 5x-2\sqrt 3 = 0 Write about the nature of roots.



Express (1-i)-(1+i6) as a+ib



If \dfrac {a-ib}{a+ib}=\dfrac {1+i}{1-i}, then prove that a+b=0



Solve the equation \left| z \right| + z = 2 + i



Convert the given complex number into the polar form:z = -3



If {z_1} = 1 + i = \sqrt 3  + i, then the principle arg \left( {\frac{{{z_1}}}{{{z_2}}}} \right)



If a+ib=\cfrac { { (x+i) }^{ 2 } }{ 2{ x }^{ 2 }+1 } , prove that { a }^{ 2 }+{ b }^{ 2 }=\cfrac { { (x+i) }^{ 2 } }{ { (2{ x }^{ 2 }+1) }^{ 2 } } .



Solve the problem:-
\left( {\frac{1}{5} + i\frac{2}{5}} \right) - \left( {4 + i\frac{5}{2}} \right)



For what value of k, the equation kx^2 - 6x - 2 = 0 has equal roots.



Evaluate: \left[i^{18}+\left(\dfrac{1}{i}\right)^{25}\right]^3.



If z=x+iy and z_1=1+2i, determine the region in the complex plane represented by 1 < |z-z_1 |< 3. Represent it on the Argand plane.



Determine the nature of roots of the following quadratic equation :2x^2+5x+5=0



If z_1=2-i, z_2=1+i, find \left|\dfrac{z_1+z_2+1}{z_1-z_2+i}\right|.



Find the values of the following:
{ \left( 1+i\sqrt { 3 }  \right)  }^{ 3 }



Solve (3-7i)+(-2+4i).



If \alpha and \beta are the zeroes of the equation 6{x^2} + x - 2 = 0, find \dfrac{\alpha }{\beta } + \dfrac{\beta }{\alpha }



\dfrac{2+5i}{3-2i}+\dfrac{2-5i}{3+2i}.



Write principal argument of \dfrac {-\sqrt {11}i}{17}.



Find the modulus:
-4-4i



If a=\frac { -1+\sqrt { 3i }  }{ 2 } ,b=\frac { -1-\sqrt { 3i }  }{ 2 } then show that {a}^{2}=b and {b}^{2}=a



Represent following complex numbers z_1=1+2i and z_2=5-7i by points in Argand's diagram and determine their amplitudes approximately.



If g\left( x \right) ={ x }^{ 4 }{ -x }^{ 3 }+{ x }^{ 2 }+3x-5, find g(2+3i)



What will be the nature of roots of the quadratic equation 2{x^2} + 4x + 7 = 0.



Find the modulus of \dfrac {3 -4i}{5 + 7i}.



Write the nature of roots of quadratic equation 4{ x }^{ 2 }+6x+3=0



Find the amplitude of 1 + i \sqrt{3}.



Find the modulus of the complex number z=2+3i.



Find discriminant of the equation 5x - 6 = \dfrac{1}{x}.



If a+ib=\dfrac{c+i}{c-i}, where c is a real number, then prove that : a^{2}+b^{2}=1 and \dfrac{b}{a}=\dfrac{2c}{c^{2}-1}.



Write the nature of roots from the given values of the discriminants and complete the activity.
 
1262623_8cb543a437e04cc1b59c11c8ce61937d.png



Find the modulus and amplitude of 4+3i.



Write (i) -1 -i (ii) 1 - i in polar form.



Simplify and hence find the modulus and argument \dfrac {(3 + i)(3 - i)}{2 + i} .



In -3+3i, find amplitude and modulus



If the discriminant is 13, how many solutions and of what type?



Express \dfrac{-1+i}{\sqrt{2}} in the polar form



If z=(\cos \theta, \sin \theta)), find \left(z-\dfrac{1}{z}\right)



Find the nature of roots of the quadratic equation { y }^{ 2 }-7y+2=0.



Simplify: \left(\dfrac{1}{3}+3i\right)^{3}



If \omega =\frac { Z }{ \bar { Z }  } , then |\omega |=



If z_1=5+3i\\z_2=2-3i Find z_1+z_2



3 \sqrt { 2 } x ^ { 2 } - 2 \sqrt { 6 } x + 2 find the nature of roots.



Check whether the following equation will have two distinct  real or imaginary or two real equal roots.
x^2-3x+5=0.



Prove that the roots of the following quadratic equation has two real distinct roots.
2x^2-6x+3=0.



Find the condition for which the roots of  the equation ax^{2}+bx+c=0 be real and distinct.



Find the value of \displaystyle \sum^{100}_{n=0}i^{n!} (where, i=\sqrt {-1})



Check whether the roots of the following quadratic equations are real or not?
3x^2-4\sqrt{3}x+4=0.



Evaluate : i^{373}



Simplify:\left(14+ 2i\right)\left(7 + 12i\right) where i=\sqrt{-1}



Find the modulus of \dfrac{1+i}{1-i}-\dfrac{1-i}{1+i}



Express the complex number 1 + i \sqrt{3} in modulus amplitude form.



Simplify the following 
(2-5i)+(-3+4i)+(8-3i)



Find z if , \left| z \right| = 4 and arg (z ) = {{5\pi } \over 6}



x^{2}-2x-1=0
Find the nature of roots



Evaluate \dfrac{1}{i^{78}}



Determine the nature of root of the quadratic equation.
m^{2} + 2m + 1 = 0



Find the modulus of the following ;
-2-3i



If -5 is a root of the quadratic equation 2{x}^{2}+px-15=0 and the quadratic equation p({x}^{2}+x)+k=0 has equal roots, then find the value of k.



For what value of k, is 3 a root of the equation 2{x}^{2}+x+k=0?



Evaluate : i^{-50}



Find the nature of the roots of the following quadratic equation. If the real roots exist, find them:
3{x}^{2}-4\sqrt { 3x } +4=0



Find the values of k for which the quadratic equation 9{x}^{2}-3kx+k=0 has equal roots.



Find the nature of the roots of the following quadratic equation. If the real roots exist, find them:
2{x}^{2}-6x+3=0



Find the modulus of the following ;
(4+i)



If a and b are real, then show that  the principal value of arg a is 0 or \pi according to a is positive or negative and that of arg b  is \pi/2 or -\pi/2 according to b is positive or negative.



If z = 4 + i\sqrt{7}, then find the value of |z^3 - 4z^2 - 9z + 91|.



The number of  complex numbers z satisfies Re(z^2) = 0, \left|z\right| = \sqrt{3}.



If Arg (z + i)\, - Arg (z - i) = \dfrac{\pi}{2}, then z lies on a circle.
If statement is True, enter 1, else enter 0



Prove that he expression \displaystyle \frac{\sqrt{(1 + m)} +i \sqrt{(1 - m)}}{\sqrt{(1 + m)} - i\sqrt{(1 - m)}} - \frac{\sqrt{(1 - m)} + i \sqrt{(1 + m)}}{\sqrt{(1 - m)} -i \sqrt{(1 + m)}} (m  \in  R) simplifies to 2m. 



Write the correct letter from column II against the entry number in column I in your answer book, z \neq 0 is a complex number



If x = a + bi is a complex number such that x^2 = 3 + 4i and x^3 = 2 + 11i, where i = \sqrt{-1}, then (a+ b) equal to 



Let z and w be two nonzero complex numbers such that \left|z\right| = \left|w\right| and arg(z) + arg(w) = \pi
Then prove that z = -\overline{w}



Solve \displaystyle \sin 2x+ \cos 4x=2



Solve the equation { 5 }^{ 2x }-24.{ 5 }^{ x }-25=0
find the number of roots .



State true or false:
\displaystyle \sqrt{-2}.\sqrt{-3}= \sqrt{\left ( -2 \right )\left ( -3 \right )}= \sqrt{6}
For false type 0 and for true type 1



Let k be the value of \lambda  for which the given equation will have equal roots : \displaystyle x^{2}+2\left ( 3\lambda +5 \right )x+2\left ( 9\lambda ^{2}+25 \right )=0.Find 6k ?



What is the square of the modulus of the complex number 2+3i 



The equation \displaystyle ax^{2}+bx+c=0 where a, b, c are real numbers connected by the relation 4a+2b+c= 0 and ab > 0 has real roots.If you think this is true write 1 otherwise write 0 ?



Find the value of the sum \displaystyle \sum_{n=1}^5(i^n+i^{n+2}), where i=\sqrt {-1}



Find the modulus and the argument of the complex number \displaystyle z=-1-i\sqrt { 3 } 



Convert the given complex number in polar form : \displaystyle -1+i



Convert the given complex number in polar form: i



Convert the given complex number in polar form : \displaystyle 1-i



If \displaystyle \alpha  and \displaystyle \beta  are different complex numbers with \displaystyle \left| \beta  \right| = 1, then find \displaystyle \left| \frac { \beta -\alpha  }{ 1-\bar { \alpha  } \beta  }  \right| .



Find the modulus and argument of the complex number \displaystyle \frac { 1+2i }{ 1-3i } 



Find the modulus and the argument of the complex number \displaystyle z=-\sqrt { 3 } +i



Find the modulus of : \displaystyle \frac { 1+i }{ 1-i } -\frac { 1-i }{ 1+i }



Find the nature of the roots of the following quadratic equations. If the real roots exist, find them:
(i) \displaystyle 2{ x }^{ 2 }-3x+5=0
(ii) \displaystyle 3{ x }^{ 2 }-4\sqrt { 3 } x+4=0
(iii) \displaystyle 2{ x }^{ 2 }-6x+3=0



Find the values of k for each of the following quadratic equations, so that they have two equal roots.
(i) \displaystyle 2{ x }^{ 2 }+kx+3=0
(ii) \displaystyle kx\left( x-2 \right) +6=0



Represent the complex number 2 + 3i in argand plane



If { b }^{ 2 }-4ac> 0 in a{ x }^{ 2 }+bx+c=0, then what can you say about roots of the equation? (a\ne 0)



Show that the roots of the equation {x}^{2}-2px+{p}^{2}-{q}^{2}+2qr-{r}^{2}=0 are rational.



Show that the equation 2{x}^{2}-6x+7=0 cannot be satisfied by any real values of x.



Simplify equation: \quad \cfrac { 1 }{ x } -\cfrac { 1 }{ (x+1) } =\cfrac { 1 }{ (x+2) } -\cfrac { 1 }{ (x+4) } to get a quadratic equation. Find the nature of roots. Solve the equation using the formula.



Simplify \dfrac { 2 }{ i } +\dfrac { 3 }{ { i }^{ 3 } } +\dfrac { 4 }{ { i }^{ 4 } } +\dfrac { 5 }{ { i }^{ 5 } } in the form of a+ib & represent graphically & find modulus & amplitude.



Find the value of the principal argument of the complex number z = \dfrac {(1 + i\sqrt {3})^{2}}{(1 - i)^{3}}.



Indicate the point of the complex plane z which satisfy the following equation.
\displaystyle z^2 \, + \, | \, z \, | \, = \, 0



Indicate the point of the complex plane z which satisfy the following equation.
Im z^2 = 0



Indicate the point of the complex plane z which satisfy the following equation.
\displaystyle | \, z \, |^3 \, + \, z \, = \, 0



Indicate the point of the complex plane z which satisfy the following equation.
\displaystyle Re \, z^2 \, = \, 0



Indicate the point of the complex plane
a) 1+2i
b)2-3i
c)-2-4i



Calculate \displaystyle \sqrt[3]{- \, 1}



Calculate, \displaystyle \sqrt[4]{- \, 1 \, \frac{1}{2} \, - \, i \, \frac{\sqrt{3}}{2}}.



Indicate the point of the complex plane z which satisfy the following equation.
\displaystyle | \,  z \, | \, + \, z \, = \, 0



Find the values of k for which the given quadratic equation has real and distinct roots
kx^2 + 2x + 1 = 0



Prove the following inequalities:
\left| z-1 \right| \le \left| \left| z \right| -1 \right| +\left| z \right| \left| \arg\ z \right|



(a) For any two non-zero complex numbers {z}_{1} and {z}_{2} if \left| { z }_{ 1 }+{ z }_{ 2 } \right| =\left| { z }_{ 1 } \right| +\left| { z }_{ 2 } \right|, then prove that arg\ {z}_{1}-arg\ {z}_{2} is zero.
(b) Prove the above result if we have\left| { z }_{ 1 }-{ z }_{ 2 } \right| =\left| { z }_{ 1 } \right| -\left| { z }_{ 2 } \right|



Put the following in the form A + iB :
\dfrac{(1 \, + \, i)^2}{3 \, - \, i}



Simplify the following :
\dfrac{3}{1 \, + \, i} \, - \, \dfrac{2}{2 \, - \, i} \, + \, \dfrac{2}{1 \, - \, i}



If a, b, c are real numbers such that ac \neq 0, then show that at least one of the equations ax^2 + bx + c = 0 and - ax^2 + bx + c = 0 has real roots.



Find the length of the segments connecting the points represented by the following pairs of numbers :
3 - 2i, 3 + 5i



locate the point representing the complex numbers z on the Argand diagram for which 
\left| z+i \right| =\left| z-2 \right| 



If {z}_{1},{z}_{2},{z}_{3} are three complex numbers, prove that 
{ z }_{ 1 }Im\left(\bar { { z }_{ 2 } } { z }_{ 3 } \right) +{ z }_{ 2 }Im\left(\bar { { z }_{ 3 } } { z }_{ 1 } \right) +{ z }_{ 3 }Im\left(\bar { { z }_{ 1 } } { z }_{ 2 } \right) =0 where Im(w)= imaginary part of w,w being a complex number.



Solve the following equations:
x-1= \sqrt{a-x^{2}}



Among the complex numbers z which satisfy the condition \left| z-25i \right| \le 15, find the number having the least positive and greatest positive argument.



Locate the complex numbers z=x+iy such that
\left| z-i \right| =1,\arg\dfrac { z }{ z+i } =\dfrac { \pi  }{ 2 }.



locate the point representing the complex numbers z on the Argand diagram for which 
\left| z-1 \right| =\left| z-3 \right| =\left| z-i \right| ,



If z_1 \, , \, z_2 \, , \,z_3 \, , \,z_4 be the vertices of rhombus in argand palne and \angle CBA \, = \, \pi/3 , then prove that 
2\, z_2 \, = \, z_1(1 \, + \, i\sqrt3) \, + \, z_3(1 \, - \, i\sqrt3)
and  2\, z_4 \, = \, z_1(1 \, - \, i\sqrt3) \, + \, z_3(1 \, + \, i\sqrt3)



locate the point representing the complex numbers z on the Argand diagram for which 
\left| z \right| -4=\left| z-i \right| -\left| z+5i \right| =0



Find the range of k for which the equation { x }^{ 2 }-4x+k=0 has distinct real roots.



Find the value(s) of k for which the equation { x }^{ 2 }+5kx+16=0 has no real roots.



Determine whether the given quadratic equation has real roots and if so, find the roots.
2{ x }^{ 2 }+5\sqrt { 3 } x+6=0\quad



If p,q,r and s are real numbers such that pr=2(q+s), then show that at least one of the equations { x }^{ 2 }+px+q=0 and { x }^{ 2 }+rx+s=0 has real roots.



For each of the quadratic equations below, convert them into the standard form ax^2+bx+c=0 and determine the value of  'b^2-4ac. Comment on the nature of roots from the value of 'b^2-4ac

(i) 5x^2=6x-7

(ii) 4x^2+16=-16x

(iii) 2x^2+6x+3=0



Solve
(\cfrac { 1 }{ 5 } +i\cfrac { 2 }{ 5 } )-(4+i\cfrac { 5 }{ 2 } )



Express the following complex numbers in the form r\left( {\cos \theta  + i\sin \theta } \right) :
1 + i tan\alpha



What is the value of  {i^i}

Where   i = \sqrt { - 1}



Find the discriminant of the following quadratic equations and hence determine the nature of the roots of the equation :
5{x^2} - 6x + 2 = 0



Given that iz^{2} = 1 + \frac{2}{z} + \frac{3}{z^{2}} +\frac{4}{z^{3}} +\frac{5}{z^{4}}+ .... and z= n\pm\sqrt{-i}, find \left \lfloor 100n \right \rfloor



Find the discriminant of the following quadratic equations and hence determine the nature of the roots of the equation :
x(x - 5) = 36



Find modulus of following
(i) \pm \left( {4 + 3i} \right) 
(ii)  \pm \sqrt 2  + 0i 
(iii) 0 \pm \sqrt 2 i



Find the discriminant of the following quadratic equations and hence determine the nature of the roots of the equation :
5{x^2} - 4\sqrt 5 x + 4 = 0



Find the discriminant of the following quadratic equations and hence determine the nature of the roots of the equation :
3{x^2} - 18x + 27 = 0



Find the discriminant of the following quadratic equations and hence determine the nature of the roots of the equation :
{x^2} + x - 3 = 0



Find the discriminant of the following quadratic equations and hence determine the nature of the roots of the equation :
{x^2} + x + {1 \over 4} = 0



Find the discriminant of the following quadratic equations and hence determine the nature of the roots of the equation :
4{x^2} - 6x + 2 = 0



Find the value of  i^{i}



Find the modulus of -15-8i.



Find the discriminant of the following quadratic equations and hence determine the nature of the roots of the equation :
{x^2} - 2x - 15 = 0



Simplify { \left[ i^{17}+{ \left( \dfrac { 1 }{ i}  \right)  }^{ 25 } \right]  }^{ 3 }



Represent the following complex numbers by point in Aegand's dialogram.
(i) 0-2+3i
(ii) 2i



The number of integral values that k can take if x^{2}+kx-k^{2}+5k > 0 for all x \in R, is



Find the real values of x and y, if 
(x+iy)(2-3i)=4+i



If Arg\left( {\frac{{z + 1}}{{z - 1}}} \right) = \frac{\pi }{6} , then find the locus of z.



Let z=x+iy and |(2z-3)|=|(z-6)| then prove that x^2+y^2=3.



Let z=x+iy. If \dfrac{z-1}{z+1} is purely imaginary then prove that |z|=1.



Evaluate : \sqrt { - 16}  + 3\sqrt { - 25}  + \sqrt { - 36}  - \sqrt { - 625}



Find the arguments of each of the complex numbers.
z = -1 - i\sqrt{3}
z = -\sqrt{3} + i
z=1+i\sqrt{3}



Find the principal argument of the complex number \sin \dfrac{6\pi}{5} + i(1 + \cos\dfrac{6\pi}{5})



Find the modulus and amplitude for each of the following complex numbers.
i) 7 - 5i                                      vi) \sqrt{3} - i
ii) \sqrt{3} + \sqrt{2 i}                         vii) 3
iii) -8 + 15 i                             viii) 1 + i
iv) -3 (l - i)                                        ix) 1 + i \sqrt{3}
v) -4 - 4i                                                  x) (1 + 2i)^2 (1 - i)



Solve the equation {z}^{2}+|z|=0, where z is a complex number.



Find the modulus, argument and the principal argument of the complex numbers.
-2(\cos 30^o+i\sin 30^o)



Let a=\dfrac{1+i}{2} then prove that a^6+a^4+a^2+1=0.



Find the modulus, argument and the principal argument of the complex numbers.
6(\cos 310^o-i\sin 310^o)



If i{z^3} + {z^2} - z + i = 0, then find \left| z \right|.



Find the number of a for which given equation have equal rootsx^2+3x-(a^2+a-2)=0



If \dfrac {a+3l}{2+ib}=1-1, show that (5a-7b)=0



Find the modulus of \dfrac{{\left( {1 + 3i} \right)\left( {2 - 5i} \right)}}{{\left( {2 - \sqrt 6 i} \right)\left( { - 3 + 2\sqrt 5 i} \right)}}



Convert the complex number z=\dfrac { i-1 }{ \cos { \dfrac { \pi  }{ 3 } +i } \sin { \dfrac { \pi  }{ 3 }  }  } in the polar from and hence find the modulus and the argument of x.




Find the modulus of \dfrac{1+2i}{1-3i}



Solve: \left(\dfrac{1}{1 - 2i} + \dfrac{3}{1 + i}\right)\left(\dfrac{3 + 4i}{2 - 4i}\right).



If Z=\cos \theta+i\sin \theta find the complex representation of  \dfrac {Z}{1-2Z{}}.



Solve:
\sqrt[4]{-81}.



For z=x+iy find the real and imaginary part of e^z.



Let {x_1} and {x_2} be two complex numbers such that \left| {{x_1} + {x_2}} \right| = \left| {{x_1}} \right| + \left| {{x_2}} \right|. show that arg\left( {{x_1}} \right) - \arg \left( {{x_2}} \right) = 0



find the modulus and argument of the complex numbers.
\frac{{2 + 14i}}{{{{\left( {2 - i} \right)}^2}}}



For what values of a, that the roots of the equation x^2 + 2 (3a + 5) x + 2 (9a^2 + 25) = 0 are complex 



Find the modulus and argument of the complex numbers.
\dfrac{{5 - i}}{{2 - 3i}}



If \left| {\dfrac{{z - 5i}}{{z + 5i}} } \right|=1, prove that z is real.



Find the modulus of the complex number \dfrac{i}{1-i}.



Number of real roots of 2\sqrt{2x+1}=2x-1



Comment on the nature of the roots of the Quadratic equation 3\sqrt{3}x^2+10x+\sqrt{3}=0.



Find the conjugate and modulus of the following complex numbers.
\overline{(2+3i)}+\overline{(5i-4i^3)}+\overline{(6i-7i^4)}.



Show that the roots of the equation {x}^{2}+2(3a+5)x+2(9{a}^{2}+25)=0 are complex unless a=\cfrac{5}{3}



If \left| Z \right| =2 and arg(Z)=\cfrac{\pi}{4} then write Z.



What is the nature of roots of quadratic equation 5{x^2} - 7x + 2 = 0?



Find the modulus are arguments z = -\sqrt{3} + i



If z_1=6+i  z_2=3-4i then find z_1z_2



Find the Modulas and argument of \dfrac{1+i}{1-i}



If z+m=88 & z-m=z, then m=______



Which terms of the 8\vec {i},\ 7-4\vec {i},\ 6-2\vec {i},.... is purely imaginary



If z = x + yi and \dfrac{\left| z - 1 -i\right| + 4}{3 \left| z - 1 -i\right| -2} = 1, show that x^2 + y^2 - 2x - 2y - 7 = 0.



Find the values of m for which the quadrilateral equation {x}^{2}-m\left(2x-8\right)-15=0 has
(i) equal roots
(ii) both roots positive. 



if z=r \cos \theta then find the value |e^{iz}|.



If a > 0,|z| =a, then find the real part of \left ( \dfrac{z-a}{z+a} \right ).



In  the Argand plane ,the vector OP,where O is the origin and P represents the complex number z=4-3i ,is turned in the clockwise sense through {180^ \circ } and  streched 3 times. the complex number represented by the new vector is -----.



Solve the equation z^{2}=\overline {z}



If g(x)=x^{4}-x^{3}\div x^{2}+3x-5, find g(2+3i) ?



If 1 + \dfrac{1}{i} = A + iB, then find the value of B.



Represent follow complex no. in polar form.
z=-1+\sqrt3i



Find the real and imaginary part of \dfrac{{3 - 2i}}{{7 + 4i}}



If the quadratic equation (b^2+c^2)x^2-2(a+b)c x+(c^2+a^2)=0 has equal roots. Then find a relation between a,b,c.



Find the modulus of the complex number, \sqrt{2}i+\sqrt{-2}i.



Find the value of \left(\dfrac{2i}{1+i}\right)^2



The equation (\cos\:p - 1) x^2 +(\cos \: p)x+\sin \:p=0 has real roots, then 'P' can take any value in the interval 



If z = 2 - i \sqrt 7, then show that 3z^3 - 4z^2 + z + 88 = 0.



Represent the complex number 2+5i,2-5i,-2+5i and -2-5i in Argand's diagram.



If z=\sqrt{20i-21}+\sqrt{21+20i} then principal value of arg z can not be



If \alpha , \beta are the roots of x ^ { 2 } - 8 x + A = 0 and \gamma , \delta are the roots of x ^ { 2 } - 72 x + B = 0 , if \alpha < \beta < \gamma < \delta are in GP, then find the value of A + B .



Let x-iy=\sqrt{\dfrac{a-ib}{c-id}} then prove that (x^2+y^2)^2=\dfrac{a^2+b^2}{c^2+d^2}.



If a,b,c\ \in\ R^{+} and 2b=a+c, then check the nature of roots of equation ax^{2}+2bx+c=0.



If \pi/2\  and\  \pi/4 are respectively the arguments nof Z_1 and\  \overline{Z_2}, what is the value of arg(z_1/z_2)



x^{2}+6x+9=0
x=?



If the discriminant of 3x^2+2x+a=0 is double the discriminant of x^2-4x+2, then find the value of a.



Discriminant of -x^{2}+\frac{1}{2}x+\frac{1}{2}=0 is



If  z _ { 1 } = 9 + 5 i  and  z _ { 2 } = 3 + 5 i  and if  arg \left( \dfrac { z - z _ { 1 } } { z - z _ { 2 } } \right) = \dfrac { \pi } { 4 }  then  | z - 6 - 8 i | = 3 \sqrt { 2 }.



Express: Z=\dfrac {i-1}{\cos \dfrac {\pi}{3}+i\sin \dfrac {\pi}{3}} in polar form.



Simplify:
\left(\dfrac{2i}{1+i}\right)^2



If a+ib=\dfrac{p+i}{2q-i}, prove that a^2+b^2=\dfrac{(p^2+1)}{4q^2+1}



Simplify and hence find the modulus and argument of \frac{{3 + 2i}}{{2 - 5i}} + \frac{{3 - 2i}}{{2 + 5i}} and \frac{{(3 + i)(3 - i)}}{{2 + i}}.



Simplify : \dfrac {(\cos \theta+i\sin \theta)^{4}}{(\cos \theta+i\sin \theta)^{5}}



Represent the complex number Z = 1 + i, Z = -1 + i in the Argand's diagram and find their arguments.



For what value of k,\left( 4-k \right) { x }^{ 2 }+\left( 2k+4 \right) x+\left( 8k+1 \right) =0  is a perfect square:



Locate the complex number z such that \log_{\cos\dfrac{\pi}{6}}\dfrac{|z-2|+5}{4|z-2|-4}<2



Express each of the complex number given in the Exercises 1 to 10 in the form a+ib.
(5i)\left(-\dfrac{3}{5}i\right)



Convert the given complex number in polar form: - 1 - i.



Express :
\dfrac{(a+ib)^{2}}{a-ib}-\dfrac{(a-ib)^{2}}{a+ib}
in the forum x+iy



Find the value of P so that the quadratic equation px(x-3)+9=0 has two equal roots.



If y=\log { \left( \dfrac { \sqrt { \left( x+1 \right)  } -1 }{ \sqrt { \left( x+1 \right)  } +1 }  \right)  } +\dfrac { \sqrt { x }  }{ \sqrt { \left( x+1 \right)  }  } the by using substitution x=\tan^{2}\theta,y reduces to 



Find the arguments of {z}_{1}=5+5i,\,{z}_{2}=-4+4i,\,{z}_{3}=-3-3i and {z}_{4}=2-2i, where i=\sqrt{-1}



Find the condition on the complex constants \alpha ,\beta  if { z }^{ 2 }+\alpha z+\beta =0 has two distinct roots on the line Re(z)= 1.



Find the nature of the roots of the quadratic equation 4x^{2}-5x+3=0.



Let z and \omega be the complex numbers.If Rs\left(z\right)=\left|z-2\right|,Re\left(\omega\right)=\left|\omega-2\right| and arg\left(z-\omega\right)=\dfrac{\pi}{3}, find the value of Im\left(z+\omega\right) 



Explain the nature of roots of a quadratic equation x^2-x-2=0.



Does there exist a quadratic equation whose coefficients are rational but both of its roots are irrational ? Justify your answer.



Find the value of k for which the given quadratic equation   x^{2}-4 x+k=0  distinct real roots.



Find the nature of the roots of the quadratic equation (b-c)x^2+2(c-a)x+(a-b)=0.



Simplify: \dfrac{1}{i+1} + \dfrac{1}{i-1}



Simplify:\dfrac{\sqrt{2+3i}}{\sqrt{2-3i}}



Compare the quadratic equation \sqrt 3 {x^2} + 2\sqrt 3  = 0\,\,to\,\,a{x^2} + bx + c = 0 and find the value of discriminant and hence write the nature of the roots.



For what value of k are the roots of the quadratic equation kx^{2}+1=-4x equal and real?



If a=\dfrac{1+i}{\sqrt{2}} then show that a^6+a^4+a^2+1=0.



If the roots of the quadratic equation kx\left(x+2\right)+6=0 are real and equal.then find the value of k



Find the value of k for  the quadratic equation 3{y}^{2}+ky+12=0 has two equal roots.



\dfrac { 3\sqrt { -2 } +2\left( -5 \right)  }{ 3\sqrt { -2 } -2\sqrt { -2 }  }



 Express the following in the form of a = ib, a,b\epsilonR i = \sqrt{-1}. State the values of a and b.
(1+i)^{3}



If a=\dfrac { -1+i\sqrt { 3}  }{ 2 } ,b=\dfrac { -1-i\sqrt { 3 }  }{ 2 } then show that { a }^{ 2 }=b and { b }^{ 2 }=a.



Write the real and imaginary part of { (i-\sqrt { 3 } ) }^{ 3 }.



1) Express the following in the form of a = ib, a,b\epsilonR i = \sqrt{-1}. State the values of a and b.
 (2+3i)(2-3i)



Show that \dfrac{\sqrt 5 + i\sqrt 2}{\sqrt 5 - i\sqrt 2} + \dfrac{\sqrt 5 - i\sqrt 2}{\sqrt 5 + i\sqrt 2} is real.



Show that \dfrac{\sqrt 7 + i\sqrt 3}{\sqrt 7 - i\sqrt 3} + \dfrac{\sqrt 7 - i\sqrt 3}{\sqrt 7 + i\sqrt 3} is real.



Simplify: \left( -\sqrt { 3 } +\sqrt { -2 }  \right) \left( 2\sqrt { 3 } -i \right)



Find the value of p if the following quadratic equation has equal roots :
{ 4x }^{ 2 }-(p-2)x+1=0



Find the modulus of \dfrac{{i + 1}}{{1 - i}}.



\left( 3k+1 \right) { x }^{ 2 }-2\left( k+1 \right) x+1=0 has equal and real roots.



If arg\left(z\right)<0 then find arg\left(-z\right)-arg\left(z\right)



The modulus and amplitude of (1+i\sqrt { 3 } )^{ 8 } are respectively.



Express the following complex numbers in the standard from a+ib :
\dfrac{2+3i}{4+5i}



Evaluate the following:
\dfrac{1}{i^{58}}



Find the modulus of (1-i)^{10}



Find the least positive integral value of n for which
\left ( \dfrac{1+i}{1-i} \right )^{n} is real.



Give three examples from your environment of Points.



Find the modulus and argument of the following complex numbers and hence express each of them in the polar form:
\dfrac{-16}{1+i\sqrt{3}}



Find the real values of \theta for which the complex number \dfrac{1+i\, cos \,\theta}{1-2\, i\, cos \, \theta } is purely real.



Find the modulus of the following complex number 
\sin\, 120^{\circ}-i\, \cos\, 120^{\circ}



Find the modulus and argument of the following complex numbers and hence express each of them in the polar form:
\sqrt{3}+i



Evaluate : (\sqrt{-1})^{30}



Evaluate : i^{62}



Evaluate : (\sqrt{-1})^{192}



Evaluate i^{19}



Evaluate : i^{-131}



Evaluate : \left(i^{41}+\dfrac{1}{i^{71}}\right)



Evaluate : i^{-9}



Evaluate : (\sqrt{-1})^{93}



Evaluate : \left(i^{53}+\dfrac{1}{i^{53}}\right)



Find the modulus and argument of the following complex numbers and hence express each of them in polar form:
2i



Prove that:
1+i^{2}+i^{4}+i^{6}=0



Find the modulus and argument of the following complex numbers and hence express each of them in polar form:
\sqrt 3+i



Prove that:
(1+i^{10}+i^{20}+i^{30}) is a real number.



Find the modulus and argument of the following complex numbers and hence express each of them in polar form:
4



Find the modulus and argument of the following complex numbers and hence express each of them in polar form:
1-i



Prove that:
\dfrac{1}{i}-\dfrac{1}{i^{2}}+\dfrac{1}{i^{3}}-\dfrac{1}{i^{4}}=0



Prove that:
6i^{50}+5i^{33}-2i^{15}+6i^{48}=7i



Find the modulus and argument of the following complex numbers and hence express each of them in polar form:
-1+\sqrt 3 i



Find the modulus and argument of the following complex numbers and hence express each of them in polar form:
-2



Find the modulus of the following :
(3+\sqrt {-5})



Find the modulus of the following :
(7+24i)



Find the modulus and argument of the following complex numbers and hence express each of them in polar form:
\dfrac{1+i}{1-i}



Find the modulus and argument of the following complex numbers and hence express each of them in polar form:
\dfrac{1-3i}{1+2i}



Find the modulus and argument of the following complex numbers and hence express each of them in polar form:
-4+4\sqrt 3 i



Find the modulus of the following :
(-3-4i)



Find the modulus and argument of the following complex numbers and hence express each of them in polar form:
\dfrac{1+3i}{1-2i}



Find the modulus and argument of the following complex numbers and hence express each of them in polar form:
\dfrac{5-i}{2-3i}



Find the modulus and argument of the following complex numbers and hence express each of them in polar form:
2-2i



Find the modulus and argument of the following complex numbers and hence express each of them in polar form:
-3\sqrt 2+3\sqrt 2 i



Find the modulus of the following :
5



Evaluate (i^{57}+i^{70}+i^{91}+i^{101}+i^{108})



Find the modulus and argument of the following complex numbers and hence express each of them in polar form:
-\sqrt 3-i



Find the modulus of the following :
\dfrac {(3+2i)^2}{(4-3i)}



Find the modulus of the following :
3i



Find the modulus of each of the following :
(1+2i) (i-1)



Find the modulus of the following :
\dfrac {(2-i)(1+i)}{(1+i)}



Find the modulus and argument of the following complex numbers and hence express each of them in polar form:
(\sin 120^o-i\cos 120^o)



Find the modulus and argument of the following complex numbers and hence express each of them in polar form:
\dfrac{2+6\sqrt 3 i}{5+\sqrt 3 i}



Find the modulus and argument of the following complex numbers and hence express each of them in polar form:
(i^{25})^3



Write the principal argument of (1+i\sqrt{3})^{2}



Evaluate \left(\dfrac{i^{180}+i^{178}+i^{176}+i^{174}+i^{172}}{i^{170}+i^{168}+i^{166}+i^{164}+i^{162}}\right)



Find the sum (i^{n}+i^{n+1}+i^{n+2}+i^{n+3}), where n\in N



Evaluate (i^{40+1}-i^{4n-1})



Find the principal argument of (-2i)



Find the value of p for which the quadratic equation
\left( 2p+1 \right) { x }^{ 2 }.\left( 7p+2 \right) x+\left( 7p-3 \right) =0 has equal roots. Also find these roots.



Find the value(s) of p for which the equation 2 x^{2}+3 x+p=0 has real roots.



If  'a'  is a complex number such that \mid a \mid = 1, find arg(a), so that equation az^2 + z + 1 = 0 has one purely imaginary root. 



State whether the following quadratic equation has two distinct real roots. Justify your answer.
2x^2 - 6x + \dfrac{9}{2}= 0



Convert the following in the polar form:
\dfrac{1+7i}{(2-i)^{2}}



Convert the following in the polar form:
\dfrac{1+3i}{1-2i}



Convert the given complex number in polar form : \sqrt 3+i



Find the modulus and argument of the complex number \dfrac {1 + 2i}{1 - 3i}.



State whether the following quadratic equation has two distinct real roots. Justify your answer. 
2x^2 + x - 1 = 0



Find the modulus of \dfrac{1+i}{1-i}-\dfrac{1-i}{1+i}



Find whether the following quadratic equations have a repeated root: 16y^2-40y+25=0



Find whether the following quadratic equations have a repeated root: x^2+6x+9=0



Find whether the following quadratic equations have a repeated root: y^2-6y+6=0



Find whether the following quadratic equations have a repeated root: 9x^2+4x+6=0



Examine whether the following quadratic equations have real roots or not: x^2-10x+2=0



Find whether the following quadratic equations have a repeated root: 9x^2-12x+4=0



Examine whether the following quadratic equations have real roots or not: x^2+x-1=0



Examine whether the following quadratic equations have real roots or not: 7x^2+8x-1=0



Examine whether the following quadratic equations have real roots or not: 2x^2+3x+4=0



Examine whether the following quadratic equations have real roots or not: x^2-12x-16=0



Without solving, determine whether the following equations have real roots or not.If yes,find them: 2x^2-4x+3=0



Without solving, determine whether the following equations have real roots or not.If yes,find them: y^2-\dfrac{2}{3}y+\dfrac{1}{9}=0



Comment upon the nature of roots of the following equations: x^2+10x+39=0



Without finding the roots,comment upon the nature of roots of each of the following quadratic equations : 2x^2-5x-3=0



Comment upon the nature of roots of the following equations: 4x^2+7x+2=0



Without finding the roots,comment upon the nature of roots of each of the following quadratic equations : 2x^2-6x+3=0



Find the value of k for which the following quadratic equation has equal roots.
9x^2+8kx+16=0



Find the value of k for which the quadratic equation 4x^2-2(k+1)x+(k+4)=0 has equal roots.



If -5 is root of the quadratic equation  2x^2+2px=15=0 and the quadratic equation p(x^2+x)+k=0 has equal roots,find the value of k.



Define the addition of two complex numbers.



Determine the nature of roots of the following quadratic equation.
2y^{2} - 7y + 2 = 0



Determine the nature of roots of the following quadratic equation.
m^{2} + 2m + 9 = 0



Determine the nature of roots of the following quadratic equation.
x^{2} - 4x + 4 = 0



Choose the correct answer for the following question.
\sqrt{5}m^{2} - \sqrt{5}m + \sqrt{5} which of the following statement is true for this  given equation?
Real and unequal roots
Real and equal roots
Roots are not real
Three roots



Define a complex number.



Determine the nature of root of the quadratic equation.
3x^{2} - 5x + 7 = 0



Determine the nature of root of the quadratic equation.
\sqrt{3}x^{2} + \sqrt{2}x - 2\sqrt{3}= 0



Find the values of k,for which the given equation has real roots: kx^2+4x+1=0



Define purely real and purely imaginary numbers.



Define multiplication numbers.



Define the division of two complex numbers.



Define the modulus of a complex number.



Write down the modulus of (-1-i)^3



Find the modulus and the arguments of the following:
1



Write down the modulus of 3+\sqrt{-3}



Define the difference of two complex numbers.



Find the modulus and the arguments of the following:
-3



Write down the modulus of i



Find the modulus of z=\dfrac{1+i}{1-i}-\dfrac{1-i}{1+i}



Find the modulus and the arguments of the following:
\dfrac{1+2i}{1-3i}



Find the modulus and the arguments of the following:
i



Find the modulus and the arguments of the following:
\dfrac{1+i}{1-i}



Find the modulus and the arguments of the following:
-8 i



Write the formula to find the nature of roots?



Find the modulus and the arguments of the following:
-\sqrt{3}+i



Find the modulus and the arguments of the following:
1+\mathrm{i}



Find the modulus and the arguments of the following:
\dfrac{1}{1+i}



Find the modulus and the arguments of the following:
\sqrt{3}-i



Find the modulus and the arguments of the following:
-1-i \sqrt{3}



Find the modulus of the following ;
\dfrac1{(3-2i)}



Find the arguments of the following numbers :
\frac { 1 + i}{ 1 - i}



Write the principle argument of -2



Find the arguments of the following numbers :
\frac { 5 + i \sqrt {3} }{4 - i 2 \sqrt {3} }



Find the arguments of the following numbers :
-1+ \sqrt {3} i



Let z = 9 + bi, where b is nonzero real and i^2 = -1. If the imaginary part of z^2 and z^3 are equal, then find the value of \dfrac{b}{3}.



Solve the following equation for x { \left( 15+4\sqrt { 14 }  \right)  }^{ t }+{ \left( 15-4\sqrt { 14 }  \right)  }^{ t }=30 where t={ x }^{ 2 }-2\left| x \right|
find the number of roots of the equation.



show that: The modulus and argument of the complex number \displaystyle z_{1}=z^{2}-z,\space if z=\cos \phi +i\sin \phi . is 2|\sin \phi/2|, \left (\displaystyle  \dfrac{3\pi+3\phi }{2} \right )



Express the complex number \dfrac {(1 + \sqrt {3}i)^{2}}{\sqrt {3} - i} in the form of a + ib. Hence, find the modulus and argument of the complex number



Find the modulus, argument and the principal argument of the complex numbers.
\dfrac{2+i}{4i+(1+i)^2}



Convert the complex number \dfrac {-16}{1+i\sqrt {3}} into polar form.



Find the modulus and argument of the complex number:
\dfrac{1+i}{1-i}



Express the complex number given in the form a+ib.
i^{-39}.



Express the complex number given in the form a+ib.
i^9+i^{19}.



Find the modulus and argument of z=\dfrac{3+2i}{-2+i}.



Prove that the equation {x}^{2}+px-1=0 has real and distinct roots for all real values of p.



If (2+i)(2+2i)(2+3i).....(2+ni)=x+iy then the value of 5.8.13.....(4+n^2).



Real numbers x and y satisfy the equation 
\dfrac{x}{1+i}+\dfrac{y}{1-i}=\dfrac{148}{12+2i}. 
What is the value of xy ?



Evaluate : [i^{19}+(\frac {1}{i}^{32}]^2



Find the real value of \theta such that \dfrac{3+2i\sin{\theta}}{1-2i\sin{\theta}}, where i=\sqrt{-1} is 
(i)purely real
(ii) Purely imaginary.



Find the value of k for which the equation x ^ { 2 } + k ( 2 x + k - 1 ) + 2 = 0 has real and equal roots.



What is the nature of the roots of the quadratic equation 4 x^{2}-12 x-9=0?



Class 11 Engineering Maths Extra Questions