Loading [MathJax]/jax/element/mml/optable/MathOperators.js

Limits And Derivatives - Class 11 Engineering Maths - Extra Questions

The value of the limit limxπ242(sin3x+sinx)(2sin2xsin3x2+cos5x2)(2+2cos2x+cos3x2) is ______.



State whether the following statement is true or false.
Enter 1 for true and 0 for false
f(x) is differentiable at a point P, if there exists a unique tangent at point P.



Find the derivative of the following functions from first principle:
cos(xπ8)



Evaluate the Given limit: limxπsin(πx)π(πx)



Evaluate : \displaystyle \underset{n\, \rightarrow \, \infty }{Lt} \frac{1}{2^n}



Evaluate the given limit: \displaystyle \lim_{x\rightarrow 0}\frac{\cos \,x}{\pi -x}



Find \displaystyle \frac{dy}{dx} of 2x + 3y = \sin x



Find the derivative of the following functions from first principle: 
\sin (x + 1)



If the derivative of the function \displaystyle 4\sqrt{x}-2 is \dfrac{a}{\sqrt{x}}. Find the value of a.



Find the derivative of \displaystyle 2x-\frac{3}{4}



\lim_\limits{x\to\frac{\pi}{4}} \dfrac{\sqrt{1-\sqrt{\sin 2x}}}{\pi-4x}=-\dfrac{1}{m}.Find m



Evaluate \displaystyle \lim_{x \rightarrow 1}\left( \dfrac{1}{x^2 + x - 2} - \dfrac{x}{x^3 - 1}\right)



Differentiate \sec x by first principle.



\displaystyle\lim _{ x\rightarrow 0 }{ \left[ \dfrac { 8\sin { x } +x\sin { x }  }{ 3\tan { x } +{ x }^{ 2 } }  \right]  } is equal to 



If y = log(logx) + 2sinx, find \frac{dy}{dx}



If f(x)=\tan x, find f'(x)  and hence find f'\left(\dfrac{\pi}{4}\right).



If x = a(\theta + \sin \theta) and y = a(1 - \cos \theta), find dy/ dx.



Write the negation of "some continuous functions are differentiable".



Find \ \dfrac{{dy}}{{dx}}\,in\,the\,following:
1)2x + 3y = \sin x
2)ax + b{y^2} = \cos x
3){x^3} + xy + y = 100



Differentiate the function with respect to x.
f(x)= x^{2/3} + 7e^x - \dfrac{5}{x} + 7\tan x     



Find \dfrac{dy}{dx}; y=4-x^2



Find the integrals of the function :
\sin^{2}(2x+5)



\underset {x\rightarrow 0}{\lim}\dfrac{x-\sin\,x}{x+\cos^2\,x}=



If y=\sqrt{x^2+1}, find \dfrac{dy}{dx} at x=-1



If f\left( x \right) = \sin 2x - \cos 2x, find f'\left( {\dfrac{\pi}{6}} \right)



Evaluate the following: \underset{n \rightarrow \infty}{\lim}\dfrac{\cos n + \sin n}{n^2},



Find \dfrac{dy}{dx}, if y = \sin^3 x \, \cos^5 x.



Evaluate :
lim_{x\rightarrow \infty} \dfrac{3x^2+4x+5}{4x^2+7}



\lim\limits_{x \to 0}\dfrac{\sin x^o}{x}=



Find \displaystyle \lim_{x \rightarrow \frac {\pi}{2}}[\sin x] where [x] indicates greatest integer function



Find the derivative of f(x) from the first principles, where f(x) is
\sin x+\cos x



\mathop {\lim }\limits_{x \to 1} \left( {1 - x} \right)\tan \left( {\frac{{\pi x}}{2}} \right)



Derivative of :
(x+1)^2



Evaluate \underset{x \rightarrow a}{\lim} \dfrac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}}



If y = \dfrac {1}{4} (x\pm A)^{2}
Hence prove: y_{1}^{2} = y.



Differentiate with respect to x, where y = x - x^2.



Solve \mathop {\lim }\limits_{x \to 0} \dfrac{{\cos x}}{{\pi  - x}}



 Evaluate \underset { x\rightarrow 0 }{ lim\quad  } log\frac { sinx }{ x } \\ 



Find \dfrac{dy}{dx}
y = - x ^ { 3 } + x ...



Find the derivatives of the following:
\sin x\cos x.



Evaluate :\mathop {\lim }\limits_{x \to 0} \cfrac{{{2^x} - 1}}{{{{(1 + x)}^{1/2}} - 1}}



\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^5}}}{{x - 5}}



Evaluate \lim_{x\rightarrow \pi/2} \dfrac {\cos x}{\pi-2x}



Find the derivative of x^{2} - 2 at x = 10



Evaluate \mathop {\lim }\limits_{x \to  \infty } \dfrac{{5{x^2} + 4}}{{\sqrt {2{x^4} + 1} }}



Find the derivative of the following functions: 
(i) tanxcosx
(ii) secx 



Evaluate: \displaystyle{\lim}_{x\rightarrow2}\dfrac{\sin(x^{2}-5x+6)}{x^{2}-7x+10}



\mathop {\lim }\limits_{x \to 0} \cfrac{{\sin \left( {\pi {{\cos }^2}x} \right)}}{{{x^2}}}



Evaluate : \displaystyle \lim _ { x \rightarrow 3 } \dfrac { \sqrt [ 4 ] { x } - \sqrt [ 4 ] { 3 } } { \sqrt [ 3 ] { x } - \sqrt [ 3 ] { 3 } }



\lim _{ x\rightarrow 0 }{ \dfrac { \tan { x }-\cos x   }{ x}  }  is p then{p} =



Solve:
\lim_{x\to\ 3}\dfrac{x^2-9}{x-3}



Find the value of \displaystyle x\xrightarrow { lim } 1\frac{\sqrt{x-1}+\sqrt{x}-1}{\sqrt{{x}^{2}-1}}



If x^2+y^2=t-\dfrac{1}{t} and x^4+y^4=t^2+\dfrac{1}{t^2}, then prove that \dfrac{dy}{dx}=\dfrac{1}{x^3y}.



Find the derivative of f(x) from the first principle.
\sin x\div \cos x



Find the derivative by first principle 
\cos 5 x



Evaluate \underset { x\rightarrow 0 }{ lim } f(x), where f(x)=\{ \overset { { |x| } ,\quad \quad x\neq 0 }{ \underset { 0,\quad \quad x=0 }{ x }  } 



\lim _{ x\rightarrow \pi /2 }{ \frac { \sin ^{  }{ x }  }{ x }  }  



Find the derivative by first principle in examples to ( 8 )
\cos x



If y=x^2+5x find \dfrac {dy}{dx}



\dfrac{dy}{dx}=\cos x +\sin x



Find \dfrac {dy}{dx} if y=\dfrac {x^2+x}2



\displaystyle \lim_{x\rightarrow 0} \tan \left(\dfrac {\pi}{4}+x\right)



y=\sin x \cos x find \dfrac{dy}{dx} 



If y=e^x+\sec x, then find \dfrac{dy}{dx}.



\displaystyle \lim _{ x\rightarrow 0 } \left(\dfrac{a}{b}+\dfrac{\cos{x}}{b}\right)



Differentiate with respect to x:
3x^2-e^{-3x}+\sec x



Find \frac { d y } { d x } , if y = \log \left( \sqrt { x } - \frac { 1 } { \sqrt { x } } \right)



Differentiate with respect to x:
\cos x+\sin 2x



Find \dfrac{dy}{dx} if y=3x^2+2



A curve has equation y=(2x-1)^{-1}+2x. x\neq\dfrac{1}{2}
Find \dfrac{dy}{dx} and \dfrac{d^2y}{dx^2}.



\lim_{x\rightarrow 3} x^2-3x+1



Evaluate  lim_{ x_\rightarrow 2} \,\dfrac { x ^ { 5 } - 32 } { x ^ { 3 } - 8 }



Evaluate \lim_{x\rightarrow 2}{(x)^{3}}.



Differentiate e^x+e^{-x} with respect to x.



y=\dfrac{6}{x^2}+2x, then find \dfrac{dy}{dx}.



Differentiate w.r.t. x:
y=2x^2-\log x +(x+1)^2



If y=a^x +\log x +3x^2, find \dfrac{dy}{dx}.



Differentiate with respect to x:
y=e^{-3x}+\sin 2x



If y=e^x+e^{-x}+\log x^2, find \dfrac{dy}{dx}.



If y=2x^3+\dfrac{3}{x^2}, then find \dfrac{dy}{dx}.



Differentiate w.r.t. x:
\log e^x+\sin 3x-8



If y=e^x+x^2+\log x, then find \dfrac{dy}{dx}.



Differentiate with respect to x:
y=\cos x + \sin 2x



Differentiate e^x+e^{x^2}+....+e^{x^5} w.r.t. x.



Evaluate the following limits.
\displaystyle\lim_{x\rightarrow a}a^3x



Answer the following question in one word or one sentence or as per exact requirement of the question.
If  the value of \displaystyle\lim_{x\rightarrow -\infty}(3x+\sqrt{9x^2-x})=\dfrac{1}{6b}. Find the value of b?



Answer the following question in one word or one sentence or as per exact requirement of the question.
Write the value of \displaystyle\lim_{n\rightarrow \infty}\dfrac{n!+(n-1)!}{(n+1)!+(n+2)!}.



Evaluate the following:
\displaystyle\lim_{x\rightarrow 0}x^2-3



Differentiate each of the following w.r.t. x :
\sin 4x



Evaluate the following question:
\displaystyle\lim_{x\rightarrow 2}2x+5



Answer the following question in one word or one sentence or as per exact requirement of the question.
Write the value of \displaystyle\lim_{x\rightarrow 0^-}[x].



Evaluate the following limit:

\displaystyle\lim_{h\rightarrow 0}\dfrac{\sqrt{x+h}-\sqrt{x}}{h}, x\neq 0.



Differentiate 
\left  ( \dfrac{sec\,x - 1}{sec\,x + 1}  \right  )



Find derivative of sec\, x by first principle 



Differentiate the following w.r.t.x: \sin ^{2} x^{2}-\cos ^{2} x^{2}



Find the derivative of following functions w.r.t. x:
\sec x^o



If \displaystyle \underset{x\rightarrow a}{lim} f\left ( x \right )g\left ( x \right ) exists, then does it imply that \displaystyle \underset{x\rightarrow a}{lim} f\left ( x \right ) and \displaystyle \underset{x\rightarrow a}{lim}\  g\left ( x \right ) also exist? Yes =5 No=7



 Find m+n
\displaystyle \underset{x\rightarrow \infty }{lim} \frac{2\sqrt{x}+3\sqrt[3]{x}+5\sqrt[5]{x}}{\sqrt{\left ( 5x-2 \right )}+\sqrt[3]{\left ( 3x-2 \right )}} is \dfrac{m}{\sqrt{n}}



Find the value of \displaystyle \lim_{x\rightarrow 1}e\left ( 1+\sin \pi x \right )^{\cot \pi x}



Match the columns



Extending the functions in col. 1 as  \lim _{ x\rightarrow \pi }{ f(x)} 



Let \displaystyle f(x)=x+\dfrac {1}{2x+\dfrac {1}{2x+\dfrac {1}{2x+.....\infty}}}
Compute the value of f(100).f'(100).



If the functionf(x) satisfies \displaystyle \lim_{x\rightarrow 1}\frac{f\left ( x \right )-2}{x^{2}-1}=\pi evaluate \displaystyle \lim_{x\rightarrow 1}f\left ( x \right )



Evaluate the Given limit: \displaystyle \lim_{x\rightarrow 0}\frac{\sin \,ax}{bx}



Find the derivative of the following functions:\displaystyle 2\tan x-7\sec x



For some constant a and b, find the derivative of the following functions:
(ax^{2} + b)^{2}.



Find the derivatives of the following:
\sec x.



Find \displaystyle \frac{dy}{dx}, if \displaystyle y = \sin^{-1} x + \sin^{-1}  \sqrt{1 - x^2} , - 1 \leq t \leq 1



Find the derivatives of the following:
3\cot x + 5 cosec x.



Find \dfrac{dy}{dx} if x=a(\cos \theta + \theta \sin \theta). and y=a(\sin \theta - \theta \cos \theta).



If y + \sin y = \cos x, find \dfrac{dy}{dx}.



Show that when n is infinite the limit of nx^{n} tends to 0, when x> 1.



If y=\sin ^{ -1 }{ (3x) } +\sec ^{ -1 }{ \left( \cfrac { 1 }{ 3x }  \right)  } , find \cfrac { dy }{ dx }



If x = a sin \theta + b cos \theta, y= a cos \theta - b sin \theta
then show that (ax + ay)^2 + (bx - ay)^2 = (a^2 +  b^2)^2.



\displaystyle \lim _{ x\rightarrow 1 }{ { \left( 2-x+a\left[ x-1 \right] +b\left[ 1+x \right]  \right) } }   =exists
So find a,b



Find the following limit:
\displaystyle \lim_{x \, \rightarrow \, -2 } \, \frac{x^4 \, + \, 5x^3 \, + \, 6x^2}{x^2 \, - \, 3x \, - \, 10}



Calculate the following limits.
\displaystyle \lim_{n \, \rightarrow \, \infty} \, \frac{n^2}{1 \, - \, 9n^2}, \, n \, \epsilon \, N.



Find the derivative of \displaystyle\, y \, =\,  (2 \, -\,  x^2)\, \cos\, x \, +\,  2x \, \sin\, x



Find the following limit:
\displaystyle \lim_{x \, \rightarrow \, 1 } \, \left [ \, \left (\frac{x^3 \, - \, 4x}{x^3 \, - \, 8} \right )^{-1} \, - \, \left (\frac{x \, + \, \sqrt{2x}}{x \, - \, 2}  \, - \, \frac{\sqrt{2}}{\sqrt{x} \, - \, \sqrt{2}} \right )^{-1} \, \right]



Evaluate \displaystyle \lim_{x\rightarrow 0} \dfrac {a^{\sin x} - 1}{\sin x}.



Find the following limit:
\displaystyle \lim_{x \, \rightarrow \, \infty } \, \frac{x^2 \, + \, 3x \, - \, 4}{1 \, - \, 3x^2}.



Find the derivative of \displaystyle\, y \, =\,  \frac{1}{x} \, +\,  \frac{1}{x^2} \, +\,  \frac{3}{x^3}



Find the following limit.
\displaystyle \lim_{x \, \rightarrow \, 1 } \, \frac{x^4 \, - \, 2x^2 \, + \, 1}{x^3 \, - \, 1}.



Find the following limit.
\displaystyle \lim_{x \, \rightarrow \, 0 } \, \frac{(1 \, + \, x) \, (x \, + \, 2x) \, (1 \, + \, 3x) \, - \, 1}{x}.



Find the value of x for which the derivative of the function \displaystyle\, f(x) = 20\, \cos \, 3x + 12\, \cos\, 5x - 15\, \cos\, 4x is equal to zero?



Find the slope of the tangent to the curve y = x^{3} - x at x = 2.



Find the derivative of \sin {x} with respect to x from first principles.



Find the derivatives of the following functions.
(a)  \cot^3 \, x          (b)  \sin \, \sqrt{x}



Find the derivatives of the following functions at the indicated points.
\displaystyle\, f(x) \, = \, sin \, 4x \, cos \, 4x, \, f' \, (\pi/3) \, = \, ?



Find the derivative of
f(x)=(x^2-5)(x^3-2x+3)



Find \dfrac{dy}{dx} when x and y are connected by the relation given:
\sin (xy)+\dfrac{x}{y}=x^2-y



(3x^4-x^3+4)^{5/2} differentiate w.r.t x.



Differentiate
 3x^{1/3} + \frac{6}{7} x^{7/6} +3x^{2/3} +C



solve: x - \ sin x + C



Differentiate
\frac{2}{3} x^{3} + \frac{3}{2} x^{2} +C



Differentiate
\sqrt{2x^{3/2} - 5x^{4/5}}



Differentiate
\dfrac{ x^4 }{4} - \dfrac{x^{-3}}{3} - \dfrac{2}{x} +C



(a) Differentiate y = {\cos ^{ - 1}}\left( {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right) with respect to x,0<x<1,
(b) Differentiate {x^x} - {2^{\sin x}} with respect to x 



Solve \lim _{ x\rightarrow a }{ \{ \dfrac { { (x+2) }^{ 5/3 }-{ (a+2) }^{ 5/3 } }{ x-a }  } \}



The value of \lim\limits_{x\to 0}\left[\dfrac{\tan x}{x}+\dfrac{\sin x}{x}\right] is 



y={e}^{x}+{e}^{-x} prove that \dfrac { dy }{ dx } =\sqrt { { y }^{ 2 }-4 }



\lim _{ n\rightarrow \infty  }{ \dfrac { \cos { x } +\cos { 3x } +\cos { 5x } +\cos { \left( 2n-1 \right)  } x }{ n }  }  where x\neq k\pi ,k\epsilon 



Differentiate with respect to x
y=\sin{2x}-4{e}^{3}x



If y = \dfrac{{\sin \left( {x + 9} \right)}}{{\cos x}}, then \dfrac{dy}{{dx}} at x = 0, is



Solve \lim_{x \rightarrow \infty}(\sqrt{x^{2} +ax + a^{2}} - \sqrt{x^{2} + a^{2}})



Solve: \underset{x \rightarrow 0}{lim}\left(\dfrac{1}{x^2} - \cot^2 x\right).



Solve x=a(\theta -\sin \theta),y=a(1+\cos \theta ) find \dfrac{dy}{dx}  ?



Examine the graph of y=f(x) as shown and evaluate the following limits 
(i) \lim_\limits{x \to1}f(x)
(ii) \lim_\limits{x \to2}f(x)
(iii) \lim_\limits{x \to3}f(x)
(iv) \lim_\limits{x \to199}f(x)
(v) \lim_\limits{x \to3^+}f(x)
1065149_f571fb7b777a485881a4df866b21c63f.png



If {f}_{1}(x)=\cfrac{x}{2}+10\forall x\in R and {f}_{n}(x)={f}_{1}({f}_{n-1}(x))\forall n\ge 2,n \in N, then evaluate \lim _{ n\rightarrow \infty  }{ { f }_{ n }(x) }



x=e^{\theta}(\sin\theta+\cos\theta), y=e^{\theta}(\sin\theta-\cos\theta)
Fine \dfrac{dy}{dx}.



Find the derivative of f(x) from the first principles, where f(x) is:
x \sin x



Differentiate \sqrt {\dfrac{{1 - \tan x}}{{1 + \tan x}}}  



Find the derivative of \sin \left( {x + 1} \right), with respect to x, from first principle.



Solve: \displaystyle\lim_{x\rightarrow \dfrac {3\pi}{4}} \dfrac {2 + \tan x}{5 + 4\tan x}.



\displaystyle \lim_{x \to 0} \sin \dfrac{\pi}{x}



Find 
\displaystyle \lim_{x \rightarrow \dfrac {5}{2}}[x]



\lim_{x\rightarrow o}\frac{4sin^{2(x/_{2})cos^{2}(x/_{2})}}{sin^{2}(x/_{2})}=K



\displaystyle\lim_{x\rightarrow\infty}\dfrac{\cos x+\sin^2x}{x+1}.



f(x)=\sec x-\cos x,x \epsilon (0,\pi/2)
find f'(x)



Which of the following limits vanish ?



Solve: \underset{x \rightarrow 2}{\lim} \dfrac{(1 - 3^x - 4^x + 12^x)}{\sqrt{(2 \cos x + 7)} - }



Solve the equation:-
\overset{lim}{n\rightarrow 20}\displaystyle\int_{r=0}^{n-1}\dfrac{n}{n^{1}+r^{2}}



Find the limit :-
\mathop {\lim }\limits_{x \to 1} \,\,\dfrac{{1 - \dfrac{1}{x}}}{{\sin \,\pi (x - 1)}}



\lim_{x\rightarrow o}cos\left ( \sqrt{1+x} \right )-cos\sqrt{x}.



\dfrac{sin2x}{a cos^{2}x+b sin ^{2}x}



Solve: \displaystyle \int^{1}_{-1} \frac{dx}{x^2 + 2x + 5}



Evaluate the following limits
\mathop {\lim }\limits_{x \to 0} \left( {\frac{{{e^x} - \sin x}}{x}} \right)



y = \sin \left( {\pi /6{e^{xy}}} \right){\text{putting}}\;x = 0\;{\text{than}}\dfrac{{dy}}{{dx}}



Solve \mathop {\lim }\limits_{x \to \infty } {\left( {\frac{{x + 4}}{{x + 2}}} \right)^{x + 3}}



Evaluate :
\mathop {\lim }\limits_{x \to 0} \frac{{x - \sin x\cos x}}{{{x^3}}}.



y=6{{x}^{3}}+3{{x}^{2}}+4x+5

Find the value of \dfrac{dy}{dx}?



\lim_{x\rightarrow 2}\frac{\sum 32x}{x^{3}-p}



Solve
\mathop {\lim }\limits_{x \to 0} \,\,\dfrac{{\tan 8x}}{{\sin 2x}}



Solve the equation:-
\lim_{{x\rightarrow \pi/2}}\ \ \dfrac{\tan\ 2x}{x-\pi/2}



\lim _ { x \rightarrow 0 } \dfrac { 1 - \cos ^ { 3 } x } { x \sin 2 x }



\displaystyle\lim_{x\rightarrow \frac{\pi}{2}}\dfrac{\tan 2x}{x-\dfrac{\pi}{2}}.



Solve \lim _ { x \rightarrow 0 } \dfrac { \sqrt { 2 + x } - \sqrt { 2 } } { x }



Find differentiation of \sec ^ { - 1 } \tan x.



Find the diffrentiation of xsinx.



Solve \underset { x\rightarrow 1 }{ \lim } \dfrac { { x }^{ 3 }+{ 3x }^{ 2 }-6x+2 }{ { x }^{ 3 }+{ 3x }^{ 2 }-3x-1 } 



Find the derivative of cosec^2\:x, by using first principle of derivatives ?



Let y=\sqrt { x } + 2 x ^ { \dfrac { 3 } { 4 } } + 3 x ^ { \dfrac { 5 } { 6 } } ( x > 0 ). Find the derivative of y with respect to x.



Differentiate:
y = c ^ { 2 } + \dfrac { c } { x }



Solve:
\underset { x\rightarrow 0 }{ lim } \dfrac { sin3x }{ x }



Evaluate \lim_{x\rightarrow 0}\dfrac { { x }^{ 2 }-\tan 2x }{ \tan x }



If y=\tan x +\cot x find \dfrac{dy}{dx}



Evaluate:
\mathop {\lim }\limits_{x \to \tfrac{\pi }{3}} \dfrac{{\sin \left( {\frac{\pi }{3} - x} \right)}}{{2\cos x - 1}}



\lim\limits_{x \rightarrow 0}\dfrac{\sin (\pi\, \cos^2\,x)}{x^2}=



If y=\cos^{-1}\left\{\dfrac{2x-3\sqrt{1-x^{2}}}{\sqrt{13}}\right\}, find \dfrac{dy}{dx}.



Evaluate: \lim _{x\to 0}\:\dfrac{e^{\alpha x}-e^{\beta x}}{sin\:\alpha x-sin\:\beta x}



Differentiate w.r.t x
e ^ { x }\cos ^ { 3 } x\sin ^ { 2 } x



lim_{x \rightarrow 1}\dfrac{sin\, \pi\,x}{x-1} is 



Solve \mathop {\lim }\limits_{x \to 2} \,f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \,\dfrac{{\left( {{x^2} - 4} \right)}}{{\left( {x - 2} \right)}}



If \dfrac{3}{2}+y^{3}=3axy, then find \dfrac {dy}{dx}



If y = \log \left( {{e^{3x}}{{\left( {\frac{{x - 4}}{{x + 3}}} \right)}^{\frac{2}{3}}}} \right), then find \dfrac{{dy}}{{dx}}



Find \dfrac{dy}{dx}, if x=a(\theta-\sin \theta) and y=a(1-\cos \theta).



Solve:
\displaystyle \lim_{n\rightarrow \infty}{\dfrac{1.n+2(n-1)+3(n-2)+.....+n.1}{n^{3}}}



lim_{x \rightarrow 3}\dfrac{x^5-243}{x^2-9}



verify that the function y= \sqrt{a^2 - x^2}, x\epsilon (-a,a_) is a solution of the diffrential equation x + y \dfrac{dy}{dx}=0, (y \neq 0)



\begin{matrix} lim \\x \xrightarrow\quad 1 \end{matrix} \left(\dfrac{1}{x-1} - \dfrac{2}{x^2 - 1}\right)



Solve:
\displaystyle \lim _{ \theta \rightarrow \pi  }{ \dfrac {\pi -\theta}{\sqrt {\cos \theta +1}} }



Solve :
\displaystyle\lim _{ x\rightarrow 1 }{ \left[ \dfrac { 3 }{ { x }^{ 2 }+x-2 } -\dfrac { 4 }{ { x }^{ 2 }+2x-3 }  \right]  }



Solve:
\displaystyle\lim _{ x\rightarrow 2 }{ \dfrac { { x }^{ 6 }+32 }{ x+2 }  }



\lim_{x\rightarrow\ 0}\dfrac{\cos\ x}{\pi-x}



Evaluate: \displaystyle\lim_{n\rightarrow \infty}(n-\sqrt{n^2+n}).



\underset { x\rightarrow 3 }{ lim } \left( [x-3] \right) +[3-x]-x



Evaluate : \underset { x\rightarrow 0 }{ lim } \frac { { 3 }^{ x }-1 }{ \sqrt { 1+x } -1 } .



solve \underset { x\rightarrow 0 }{ lim } \cfrac { { 5 }^{ x }-{ 4 }^{ x } }{ x }



If y=\dfrac{(ax+b)(cx+d)}{(ax-b)(cx-d)}, x \neq \dfrac{b}{a}, \dfrac{d}{c} then find \dfrac{dy}{dx}.



\underset { x\rightarrow 1 }{ lim } \cfrac { (\log { (1+x) } -\log { 2 } )(3.{ 4 }^{ x-1 }-3x) }{ \{ { (7+x) }_{ 3 }^{ 1 })-{ (1+3x) }^{ \cfrac { 1 }{ 2 }  })\} \sin { \pi x }  }



lim_{x\to \infty} (10e^{3x} +8)^{5/x}



\underset { x\rightarrow 0 }{ lim } \dfrac { { sin(\pi cos }^{ 2 }x) }{ { x }^{ 2 } } is equal to



Find \dfrac{dy}{dx}, if x^{y}+y^{x}=1



If  y = \cos ^ { - 1 } \left( \dfrac { 5 \cos x - 12 \sin x } { 13 } \right) , x \in \left( 0 , \dfrac { \pi } { 2 } \right) ,  then find the value of  dy/dx .



Solve: \underset{x \rightarrow 0}{lim} \dfrac{(x + 1)^5 -1}{x}



\displaystyle x\xrightarrow { lim } 0\frac{log(2+x)-log(2-x)}{x}



Evaluate \displaystyle x\xrightarrow { lim }a\, \frac{{x}^{7}-{a}{7}}{x-a}





Evaluate
\lim_{x\rightarrow 0}\dfrac{cos(2x^3)-cos(5x^3)}{xsin^2(2x)tan^3(3x)}



Find \dfrac{dy}{dx} for y=x^{10}+10^x+10x+10.



Solve:
\displaystyle\lim _{ x\rightarrow 5 }{ \dfrac { x-5 }{ \sqrt { 6x-5 } -\sqrt { 4x+5 }  }  }



Solve:
\displaystyle \lim_{x\rightarrow 8}\dfrac {\sqrt {1+\sqrt {1+x}}-2}{x-8}



Evaluate : \lim_{x-1}\frac{x^{7}-2x^{5}+1}{x^{3}-3x^{2}+2}        



if \displaystyle \lim_{x\rightarrow 2}\dfrac{   x^5-32}{x^2-4}



Evaluate \displaystyle \lim _{ x\rightarrow 0 } \dfrac{3\sin{x}-\sin{3x}}{x^{2}}



\text{Show that} f\left(x\right)=\dfrac{x\tan{2x}}{\sin{3x}\sin{5x}} for x\neq \,0, f(0)=\dfrac{2}{17} \,  \text{is discontinuous at x=0}.



\displaystyle \lim_{x\rightarrow 1}\left(\dfrac{1}{1-x}-\dfrac{3}{1-x^{3}}\right) is equal to 



Find the slope of tangent to the curve y=3x^{2}-6 at the point on it whose x-coordinate is 2.



Differentiate y=\sin{b{x}^{2}} w.r.t x



Differentiate y=\left(x+a\right)\left({x}^{2}+{a}^{2}\right) w.r.t x



Given:
y = {\tan ^{ - 1}}\left( {\dfrac{{3x - {x^3}}}{{1 - 3{x^2}}}} \right), - \dfrac{1}{{\sqrt 3 }} < x < \dfrac{1}{{\sqrt 3 }}. Then find \dfrac{dy}{dx}.



Find \dfrac{dy}{dx} ( x + y ) \frac { d y } { d x } = 1



If y=\dfrac { { 2x }^{ 9 } }{ 3 } -\dfrac { 5 }{ 7 } { x }^{ 7 }+6{ x }^{ 3 } find \dfrac { dy }{ dx } at x =1



Differentiate  : y = 5 sin x + 3 cos x 



Find the derivative of {\csc}^{2}{x}, by using first principle of derivatives.



Using the \in -\delta definition prove that \underset { x\rightarrow 1 }{ lim } \left( 2x-1 \right) =1



Differentiate \dfrac { 1 }{ 3 } { \tan }^{ 3 }{x}-\tan{x}+x w.r.t x



Find the derivative of \sin \sqrt{x}  from the first principle.



Prove that the limit of f\left(x\right)=2x-3 as x approaches 5 is 7 using the \epsilon-\delta proof.



\int { \dfrac { dx }{ { x }^{ 2 }+1 }  } 



If x=a\sin { 2t(1+\cos { 2t } ) }  and y=b\cos { 2t } (1-\cos { 2t } ), find \dfrac { dy }{ dx }  at t=\dfrac { \pi  }{ 4 } .



Differentiate the following functions with respect to x
(x \cos x)^x +(x\sin x)^{1/x}



Differentiate the following functions with respect to x:
\log (3x-2)-x^2 \log (2x-1)



Differentiate with respect to x:
e^{3x}-6x^3+\tan x



If y=e^{-x}+\log x -\sec^2x, then find \dfrac{dy}{dx}.



Find the intervals in which the following functions are increasing or decreasing
f(x)=10-6x-2{ x }^{ 2 }



Differentiate with respect to x:
e^{-x}+\log x+\sin 2x



Differentiate the following functions with respect to x:
x\sin 2x+5^x +k^k +(\tan^2 x)^2



Differentiate the following functions with respect to x:
\cos^{-1}\left\{\dfrac {x}{\sqrt {x^2 + a^2}}\right\}



Find \dfrac{dy}{dx}, if y=e^{3x}+\sin (2x^5).



Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 1}\dfrac{\sqrt{x+8}}{\sqrt{x}}.



Solve the following differential equation.
\dfrac{dy}{dx}=x^2.



Show that f(x)=x-\sin x is increasing for all x\in R 



Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 0}9.



Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 2}(3-x).



Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 3}\dfrac{\sqrt{2x+3}}{x+3}.



If \displaystyle\lim_{x\rightarrow 2}\dfrac{\sqrt{3-x}-1}{2-x} =\dfrac 1 a, then a is equal to ____.



Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 1}\dfrac{1-x^{-1/3}}{1-x^{-2/3}}.



Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 3}\dfrac{x^4-81}{x^2-9}.



Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 1}\dfrac{\sqrt{5x-4}-\sqrt{x}}{x-1}.



If \displaystyle\lim_{x\rightarrow 0}\dfrac{\sqrt{1+x}-\sqrt{1-x}}{2x}=\dfrac 1 a, then a is equal to ____.



Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 3}\dfrac{x-3}{\sqrt{x-2}-\sqrt{4-x}}.



Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 0}\dfrac{x}{\sqrt{1+x}-\sqrt{1-x}}.



If \displaystyle\lim_{x\rightarrow 7}\dfrac{4-\sqrt{9+x}}{1-\sqrt{8-x}}=\dfrac 1 a, then a is equal to ____.



Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 0}\dfrac{\sqrt{1+3x}-\sqrt{1-3x}}{x}.



Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 5}\dfrac{x-5}{\sqrt{6x-5}-\sqrt{4x+5}}.



If \displaystyle\lim_{x\rightarrow 0}\dfrac{\sqrt{1+x}-1}{x}=\dfrac 1 a, then a is equal to ____.



Evaluate: \displaystyle\lim_{h\rightarrow 0}\dfrac{\sqrt{x+h}-\sqrt{x}}{h}, x\neq 0.



Evaluate the following limits.
\displaystyle\lim_{n\rightarrow \infty}\left(1+\dfrac{x}{n}\right)^n=e^{ax}. Find the value of a?



Differentiate the following function with respect to x.
\dfrac{ax+b}{px^2+qx+r}.



If \displaystyle\lim_{x\rightarrow 3}\dfrac{x^n-3^n}{x-3}=108, find the value of n.



Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 0}\dfrac{e^x-x-1}{2}.



Evaluate the following question:
\displaystyle\lim_{x\rightarrow 0}x^2-3



Evaluate the following limit:-
\displaystyle\lim_{x\rightarrow 0}\dfrac{ax+x\cos x}{b\sin x}.



Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 0}\dfrac{\cos 2x-1}{\cos x-1}.



Find the derivative of f(x)=99x at x=100.



Differentiate the following function with respect to x.
\dfrac{1}{\sin x}.



Find the derivative of f(x)=x at x=1.



Answer the following question in one word or one sentence or as per exact requirement of the question.
Write the value of \displaystyle\lim_{x\rightarrow 1^-}x-[x].



Answer the following question in one word or one sentence or as per exact requirement of the question.
Write the value of \displaystyle\lim_{x\rightarrow 2}\dfrac{|x-2|}{x-2}.



Write the value of \displaystyle\lim_{x\rightarrow \infty}\dfrac{1+2+3+...…+n}{n^2}.



Differentiate the following function with respect to x.
\dfrac{x+\cos x}{\tan x}.



Differentiate the following function with respect to x.
\dfrac{x^n}{\sin x}.



Differentiate the following from first principle.
\cos\left(x-\dfrac{\pi}{8}\right).



Differentiate the following w.r.t. x :
\cos 4x \cos 2x



Differentiate the following w.r.t. x :
\sin 5x \cos 3x



Find \dfrac {dy}{dx}, where y \sec x + \tan x +x^2 y=0.



Differentiate using first principle
\sqrt {cosec\ (x^3 +1)}



Differentiate the following function with respect to x.
\dfrac{4x+5\sin x}{3x+7\cos x}.



Differentiate the following w.r.t. x :
\sin 2x \sin x 



Find \dfrac {dy}{dx}, where \sin^2 x+2\cos y+xy =0.



Find \dfrac {dy}{dx}, where x \sin 2y= y\cos 2x.



Answer the following question in one word or one sentence or as per exact requirement of the question.
If \dfrac{\pi}{2} < x <\pi, then find \dfrac{d}{dx}\left(\sqrt{\dfrac{1+\cos 2x}{2}}\right).



Find \dfrac {dy}{dx}, when y=(\tan x)^{1/x}.



If \cos y=x\cos (y+a), prove that \dfrac {dy}{dx}=\dfrac {\cos^2 (y+a)}{\sin a}.



Find \dfrac {dy}{dx}, where :
\tan (x+y)+\tan (x-y)=1



If xy=\tan (xy), show that \dfrac {dy}{dx}=\dfrac {-y}{x}



Differentiate the following w.r.t.x:
e^{\cot x}



Find \dfrac {dy}{dx}, where y\tan x-y^2 \cos x +2x =0



Find \dfrac {dy}{dx}, when y=x^{\sin x}.



Find \dfrac {dy}{dx}, where \cot (xy)+xy =y.



Different the following w.r.t.x:
e^{\sqrt{\sin x}}



If y=\sin\left\{2\tan^{-1}\left(\sqrt{\dfrac{1-x}{1+x}}\right)\right\}. show that \dfrac{dy}{dx}=\dfrac{-x}{\sqrt{1-x^{2}}}



If y=(\sin x)^{(\sin x)^{(\sin x) ...... \infty}}, prove that \dfrac{dy}{dx}=\dfrac{y^{2}\cot x}{(1-y\log \sin x)}



Find \dfrac {dy}{dx}, when y=(\tan x)^{\sin x}.



Find \dfrac {dy}{dx}, when y=\sin (x^x).



Find \dfrac {dy}{dx}, when y=\cos x \cos 2x \cos 3x.



Find \dfrac {dy}{dx}, when y=(\cos x)^{\cos x}.



If y=(\cos x)^{(\cos x)^{(\cos x).....\infty}}, prove that \dfrac{dy}{dx}=\dfrac{-y^{2}\tan x}{(1-y\log \cos x)}



Find \dfrac {dy}{dx}, when y=x^{\sin 2x}.



Find \dfrac {dy}{dx}, when y=\sin 2x \sin 3x \sin 4x.



Find \dfrac {dy}{dx}, when y=(\sin x)^{\cos x}.



Find \dfrac {dy}{dx}, when y=(\tan x)^{\cot x}.



If y=\sqrt{\cos x+\sqrt{\cos x+\sqrt{\cos x+.......\infty}}}, prove that \dfrac{dy}{dx}=\dfrac{\sin x}{(1-2y)}



Find \dfrac {dy}{dx}, when :
y=x^{\sin x}+(\sin x)^{\cos x}



Find \dfrac {dy}{dx}, when y=\dfrac {x^3 \sin x}{e^x}.



Find \dfrac {dy}{dx}, when :
y=(x \cos x)^x +(x \sin x)^{1/x}



Differentiate e^{\sin x} with respect to \cos x.  



Find \dfrac {dy}{dx}, when y=2^x . e^{3x} \sin 4x.



Find \dfrac {dy}{dx}, when y=x^{x\cos x} +\left (\dfrac {x^2 +1}{x^2 -1}\right).



Find \dfrac {dy}{dx}, when :
y=(\sin x)^x +\sin^{-1}\sqrt x



Find \dfrac {dy}{dx}, when y=e^x \sin^3 x\cos^4 x.



Differentiate \sin^3 x with respect to \cos^3x.  



Find \dfrac {dy}{dx}, when (\tan x)^y =(\tan y)^x



Find \dfrac {dy}{dx}, when (\cos x)^y =(\cos y)^x



Find \dfrac{dy}{dx}, when x=a\cos^2\theta, y=b\sin^2\theta.



Find \dfrac{dy}{dx}, when x=\cos \theta+\cos 2\theta, y=\sin \theta+\sin 2\theta.



Find \dfrac{dy}{dx}, when x=a\cos^3\theta, y=a\sin^3\theta.



Find \dfrac{dy}{dx}, when x=a(1-\cos \theta), y=a(\theta+\sin \theta).



Find \dfrac{dy}{dx}, when x=a\cos \theta, y=b\sin \theta.



Find \dfrac{dy}{dx}, when x=\sqrt{\sin 2\theta}, y=\sqrt{\cos 2\theta}.



If y=\sqrt{\tan x+\sqrt{\tan x+\sqrt{\tan x+.......\infty}}}, prove that \dfrac{dy}{dx}=\dfrac{\sec^{2}x }{(2y-1)}



If y=e^{\sin x}+(\tan x)^x, prove that. \dfrac {dy}{dx}=e^{\sin x}\cos x+(\tan x)^x [2x\ \text cosec 2x+\log \tan x].



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{\tan 3x}{\tan 5x}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{\sin 5x}{\sin 8x}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{\tan \alpha x}{\tan \beta x}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{\sin 4x}{\tan 7x}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{(x\cos x+\sin x)}{(x^2+\tan x)}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{(\tan 2x-x)}{(3x-\tan x)}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{\sin mx}{\tan nx}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{(\tan x-\sin x)}{\sin^3x}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{(x\csc x)}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{(x^2-\tan 2x)}{\tan x}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{\tan 3x}{\sin 4x}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow  \dfrac{\pi}{6}}{\dfrac{(2\sin^2x+\sin x-1)}{(2\sin^2x-3\sin x+1)}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{(\sin 2x+3x)}{(2x+\sin 3x)}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{(x\cot 2x)}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{(\tan x-\sin x)}{x^3}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{(1-\cos 4x)}{(1-\cos 6x)}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{(1-\cos x)}{\sin^2x}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{(2\sin x-\sin 2x)}{x^3}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{(1-\cos mx)}{(1-\cos nx)}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{(\tan 2x-\sin 2x)}{x^3}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{(1-\cos 2x)}{\sin^2 2x}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{(1-\cos 2x)}{3\tan^2x}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{(\csc x-\cot x)}{x}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{\sin x \cos x}{3x}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow \dfrac{\pi}{4}}{\dfrac{(1-\tan x)}{\left(x-\dfrac{\pi}{4}\right)}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow a}{\dfrac{(\cos x-\cos a)}{(x-a)}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{\sin 2x(1-\cos 2x)}{x^3}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow a}{\dfrac{(\sin x-\sin a)}{(x-a)}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow \dfrac{\pi}{2}}{\dfrac{(1+\cos 2x)}{(\pi-2x)^2}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{(\sin 5x-\sin 3x)}{\sin x}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0\dfrac{\pi}{4}}{\dfrac{(\csc^2x-2)}{(\cot x-1)}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow \pi}{\dfrac{(\sin 3x-3\sin x)}{(\pi-x)^3}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow \dfrac{\pi}{4}}{\dfrac{(\sec^2x-2)}{(\tan x-1)}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow a}{\dfrac{(\sin x-\sin a)}{(\sqrt x-\sqrt a)}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow \dfrac{\pi}{2}}{\left(\dfrac{\pi}{2}-x\right)}\tan x



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{(\sqrt{1+2x}-\sqrt{1-2x})}{\sin x}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{(1-\cos 2x)}{(\cos 2x-\cos 8x)}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{[\sin (2+x)-\sin (2-x)]}{x}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{\sin ax+bx}{ax+\sin bx}}, where a, b, a+b \neq 0



Evaluate the following limit:
\displaystyle \lim_{h\rightarrow 0}{\dfrac{(a+h)^2\sin (a+h)-a^2\sin a}{h}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{(\cos 3x-\cos 5x)}{x^2}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{\sin (\pi-x)}{\pi (\pi-x)}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{(\sin 3x+\sin 5x)}{(\sin 6x-\sin 4x)}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{(e^{\tan x}-1)}{\tan x}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{1-\cos mx}{1-\cos nx}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{\sqrt 2-\sqrt{1+\cos x}}{\sin^2x}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow \dfrac{\pi}{2}}{\dfrac{\tan 2x}{x-\dfrac{\pi}{2}}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{1-\cos 2mx}{1-\cos 2nx}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{\sec 4x-\sec 2x}{\sec 3x-\sec x}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{\sin^2 mx}{\sin^2 nx}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{\sin 2x+\sin 3x}{2x+\sin 3x}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow \dfrac{\pi}{6}}{\dfrac{2-\sqrt 3\cos x-\sin x}{(6x-\pi)^2}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{(\csc x-\cot x)}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{x}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow \dfrac{\pi}{4}}{\dfrac{\tan^3x-\tan x}{\cos \left(x+\dfrac{\pi}{4}\right)}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{\cos ax-\cos bx}{\cos cx -1}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow \pi}{\dfrac{\sqrt{2+\cos x}-1}{(\pi -x)^2}}



Differentiate the following function :
\dfrac {x-4}{2\sqrt x}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow \dfrac{\pi}{6}}{\dfrac{2\sin^2x+\sin x-1}{2\sin^2x-3\sin x+1}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow \dfrac{\pi}{6}}{\dfrac{\cot^2x-3}{\csc x-2}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow \dfrac{\pi}{2}}{\dfrac{\sqrt 2-\sqrt{1+\sin x}}{\sqrt 2 \cos^2x}}



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow \dfrac{\pi}{4}}{\dfrac{1-\tan x}{1-\sqrt 2\sin x}}



If y=6x^5 -4x^4 -2x^2+5x-9, find \dfrac {dy}{dx} at x=-1



Evaluate the following limit:
\displaystyle \lim_{x\rightarrow 0}{\dfrac{\cos x-\cos a}{\cot x-\cot a}}



If y=\sqrt {\dfrac {1+\cos 2x}{1-\cos 2x}}, find \dfrac {dy}{dx}.



Differentiate:
\dfrac{x\tan x}{(\sec x+\tan x)}



Differentiate the following with respect to x:
\sqrt{\sin x^3}



Differentiate:
\cot x



Differentiate the following with respect to x:
\tan^3 x



Differentiate the following with respect to x:
\sin^2 (2x+3)



Differentiate the following with respect to x:
\cos^2 x^3



Differentiate the following with respect to x:
e^{\cot x}



Differentiate the following with respect to x:
\sqrt{\sin x}



Differentiate the following with respect to x:
\cot^2 x



Differentiate:
\sec x



Differentiate the following with respect to x:
\cos (\sin \sqrt{ax+b})



Differentiate the following with respect to x:
\cos 3x\sin 5x



Differentiate the following with respect to x:
e^{(x\sin x+\cos x)}



Differentiate the following with respect to x:
e^{2x}\sin 3x



Differentiate the following with respect to x:
\sqrt{\cot \sqrt x}



Differentiate the following with respect to x:
\sqrt{x\sin x}



Differentiate the following with respect to x:
\sin x\sin 2x



Differentiate the following with respect to x:
\cos (x^3.e^x)



If \sin y = x \sin (a + y), then prove that \dfrac{dy}{dx} = \dfrac{\sin ^{2}(a + y)}{\sin a}.



If (\cos  x)^{y} = (\cos y)^{x}, then find \dfrac{dy}{dx}.



Find derivative of 
\dfrac{x \, sin x}{1 + cos}  



If x \sin (a + y) + \sin a \cos (a + y) = 0, then prove that \dfrac{dy}{dx} = \dfrac{\sin ^{2} (a + y)}{\sin a}



Differentiate tan \,x from first principle. 



Find the derivative of the function f(x) = 2x^2 + 3x - 5 at x = -1 . Also show that f' (0) + 3\, f' (-1) = 0  



Differentiate the following with respect to x :
(\sin x)^{x} + (\cos x)^{\sin x}



Evaluate \underset {x \rightarrow 0} {\lim} \dfrac{ax + x \, cos \,x}{b\, sin \,x}  



Find \dfrac{dy}{dx} if y = (\cos x)^{x} + (\sin x)^{1/x}.



Find \dfrac{dy}{dx} : y = \left ( \sin x \right )^{x} + \left ( \cos x \right )^{\tan x}.



Evaluate \underset { x \rightarrow \dfrac{\pi}{4}} {\lim} \dfrac{sin \, x - cos \, x}{ \left  ( x - \dfrac{\pi}{4}  \right  )}  



Differentiate the following function with respect to X:
y = (\sin x)^{x} + \sin ^{-1} \sqrt{x}



If f(x,y)=\dfrac{1}{\sqrt {x^{2}+y^{2}}} then, prove that x \dfrac{\partial f}{\partial x}+y \dfrac{\partial f}{\partial y}=-f



Differentiate the following w.r.t.x: \cos \left(x^{2}+a^{2}\right)



Differentiate the following w.r.t.x: \cos ^{2}\left[\log \left(x^{2}+7\right)\right]



Differentiate the following w.r.t.x: e^{3 \sin ^{2} x-2 \cos ^{2} x}



The derivative of \sin x w.r.t. \cos x is ___________.



Differentiate the following w.r.t.x: \operatorname{cosec}(\sqrt{\cos x})



Differentiate 
\left  ( \dfrac{a}{x^4}  \right  ) - \dfrac{b}{x^2} + cos x  



Differentiate the following w.r.t.x: 5^{\sin ^{3} x+3}



Differentiate the following w.r.t.x: \sqrt{\tan \sqrt{x}}



Differentiate the following w.r.t.x: \left(\sqrt{\dfrac{1+\cos \left(\dfrac{5 x}{2}\right)}{1-\cos \left(\dfrac{5 x}{2}\right)}}\right)



Differentiate the following w.r.t.x: \sqrt{\cos x}+\sqrt{\cos \sqrt{x}}



Differentiate the following w.r.t.x: \dfrac{1+\sin x^{\circ}}{1-\sin x^{\circ}}



Differentiate the following w.r.t.x: \sec \left[\tan \left(x^{4}+4\right)\right]



Differentiate the following w.r.t.x: \left(1+\sin ^{2} x\right)^{2}\left(1+\cos ^{2} x\right)^{3}



Differentiate the following w.r.t.x: \tan [\cos (\sin x)]



Differentiate x^{\mathrm{X}} w.r.t. \mathrm{x}^{\mathrm{Six} }



Find  \dfrac{dy}{dx} in the following 
2 x + 3 y =  \sin y



Find  \dfrac{dy}{dx} for the following 
2 x + 3 y =  \sin x



Differentiate the following w.r.t.x: \sin \sqrt{\sin \sqrt{x}}



Differentiable the functions given in Exercises 1 to 11 w.r.t .x.
\cos x . \cos 2x . \cos 3x



Solve:
\int \displaystyle \tan^3 2x \sec 2x \ dx



Find  \dfrac{dy}{dx} in the following 
\sin^{2} y + \cos xy = \pi



Find  \dfrac{dy}{dx} in the following 
sin^{2} x + \cos^{2} y = 1



Solve:
\displaystyle\int \dfrac{1-\cos x}{1+\cos x}dx



Find  \dfrac{dy}{dx} in the following 
ax +  by^{2} = \cos y



Differentiable the functions given in Exercises 1 to 11 w.r.t .x.
(x \cos x)^{x} + (x \sin x)^{\tfrac{1}{x}}



Differentiate the function w.r.t .x.
x ^{x} -  2^{\sin x}



Solve:
\cfrac{\cos x-\sin x}{1+\sin 2 x}



Find  \dfrac{dy}{dx} in the following 
ax +  by^{2} = \tan x +  y



Find the derivative of following functions w.r.t. x:
\dfrac{\sec x-1}{\sec x+1}



Find the derivative of following functions w.r.t. x:
\sin \left\{\cos (x^2)\right\}



Differentiate w.r.t.x.
\sin^{3} x + \cos^{6}x



Find  \dfrac{dy}{dx} of  (\cos x)^{y} =  (cos y)^{x}



Find the derivative of following functions w.r.t. x:
\sin (x^2)



Differentiate w.r.t.x the function in Exercise 1 to 11 .
(5x)^{3 \cos 2x}



Using  the fact that \sin (A + B ) = \sin A \cos B + \cos A \sin B and the differentiation , obtain the sum formula for cosines.



If  y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x +.........\infty }}}
prove that (2y - 1) \dfrac{dy}{dx} = \cos x



Find the derivative of following functions w.r.t. x:
\tan (2x+3)



If y = 5\cos x  - 3 \sin x ,prove that  \dfrac{d^{2}y}{dx^{2}} + y = 0  



\displaystyle \lim_{x \rightarrow 0} \dfrac {e^{x} + e^{-x} - 2\cos x}{x\sin x}.



Find \dfrac{dy}{dx} of following functions:
\sin (xy)+ \dfrac{x}{y}=x^2-y



\displaystyle \lim_{x\rightarrow 0} \dfrac {x(e^{x} - 1)}{1 - \cos x}.



Find the derivative of following functions w.r.t. x:
\sin ^3x. \sin 3x



Find \dfrac{dy}{dx} of following functions:
\tan (x+y)+ \tan (x-y)=4



Solve the following differential equation
\dfrac {dy}{dx}=\sec (x+y)



\displaystyle \lim_{x\rightarrow \infty} \sqrt {\dfrac {x + \sin x}{x - \cos x}}.



Find \dfrac{dy}{dx} of following functions:
\sin x +2 \cos^2y+xy=0



Find the derivative of following functions w.r.t. x:
\sin x^o



Find the derivative of following functions w.r.t. x:
a \tan 3x



Differentiate x^{\sin x} + (\sin x)^{\cos x} with respect to x.



Prove that if the function is differentiable at a point C then it is also continuous at that point. 



If y = x^{3} \cdot e^{x} \sin x, then find \dfrac {dy}{dx}.



The largest value of the non-negative integer a for which   \displaystyle \lim_{x \rightarrow 1} \displaystyle \left \{ \dfrac{-ax + \sin (x-1)+ a}{x+\sin (x-1)-1} \right \}^{\dfrac{1-x}{1-\sqrt{x}}} = \dfrac{1}{4} is ................



Consider the function f defined by f(x) =x-x(x),where x is a positive variable,and (x) denotes the integral part of x and show that it is discontinuous for integral values of x,and continuous for all others. Is the function periodic? If periodic,what is its period? Draw its graph.



The graphs of f and g are given. Use them to evaluate each limit.
254980.png



Let \displaystyle f_{p}\left ( \beta  \right )=\left ( \cos \frac{\beta }{p^{2}}+i\sin \frac{\beta }{p^{2}} \right )+\displaystyle \left ( \cos \frac{2\beta }{p^{2}}+i\sin \frac{2\beta }{p^{2}} \right )\cdots \\ \cdots\displaystyle\left ( \cos \frac{\beta(p-1) }{p^2}+i\sin \frac{\beta(p-1) }{p^2} \right )+\left ( \cos \frac{\beta }{p}+i\sin \frac{\beta }{p} \right ) 
then  \displaystyle \lim_{n\rightarrow \infty } 1/f_{n}\left ( \pi  \right )=.



If \displaystyle f\left ( x \right )=\cos ^{2}x+\cos ^{2}\left ( \frac{\pi }{3}+x \right )-\cos x\cos \left ( \frac{\pi }{3} +x\right ) then \displaystyle 4f\left ( \dfrac{\pi}8 \right ) is equal to



Integrate  \int{\frac{1}{{\sin}^{4}x+{\cos}^{4}x}}dx



Find the derivative of \displaystyle\, y \, =\,  \frac{1}{x} \, +\,  \frac{1}{\sqrt{x}} \, +\,  \frac{1}{\sqrt[3]{x}}



Let S_{n}, n = 1, 2, 3...., be sum of infinite geometric series whose first term is n and the common ratio is \dfrac {1}{n +1}. Evaluate
\displaystyle \lim_{n\rightarrow \infty} \dfrac {S_{1}S_{n} + S_{2}S_{n - 1} + S_{3}S_{n - 2} + .... + S_{n}S_{1}}{S_{1}^{2} + S_{2}^{2} + .... + S_{n}^{2}}.



If \sqrt{1-x^2}+\sqrt{1-y^2}=a(x-y), prove that \dfrac{dy}{dx}=\sqrt{\dfrac{1-y^2}{1-x^2}}



Solve :
\displaystyle \lim _{ h\rightarrow 0 }{ \frac { \sin { \left( x+h \right)  } -\sin { \left( x-h \right)  }  }{ h }  }



\displaystyle\lim _{ x\rightarrow 2 }{ \cfrac { 2x+5 }{ 8-{ x }^{ 3 } }  }



For each of the differential equations in Exercises from 11 to 15, find the particular solutions satisfying the given condition: 
x^{2}dy+(xy+y^{2})dx=0; y=1 when x=1



\underset { x\rightarrow \frac { \pi  }{ 4 }  }{ lim } \dfrac{1 - tan x}{1 - \sqrt2 sin x}



Evaluate
lim_{x\to -3} (\dfrac{1}{x^2+4x+3} + \dfrac{1}{x^2 +8x+15})



If y={ \left( sinx \right)  }^{ cosx }+{ \left( cosx \right)  }^{ sinx },find\dfrac { dy }{ dx }



Solve lim_{x\to 0} |x|^{sin x}



ifx=log\left( 1+{ sin }^{ 2 }y \right) show\quad that\quad \frac { dy }{ dx } =\frac { { e }^{ x } }{ sin\quad 2y } 



Solve:
\lim_{x \rightarrow 2}{\dfrac{x^3-8}{x-2}}



Find the particular solution of differential equation : \frac{dy}{dx}- \frac{x+y cos x}{1 + sin x} given that y = 1 when x = 0.



\sin x \frac { d y } { d x } + 3 y = \cos x



Find the derivative of following function:y = x / \sin ^ { n } x



lim_{x \rightarrow 0} \frac{ \sqrt[3]{1+x^2}- \sqrt[4]{1-2x}}{x+x^2} is equal to



Differentiate:
\left(\dfrac{\sin x-x\cos x}{x\sin x+\cos x}\right)



If y=\left (\sqrt x +\dfrac {1}{\sqrt x} \right), show that 2x. \dfrac {dy}{dx}+y=2\sqrt x.



Find \dfrac {dy}{dx}, where :
x^n +y^n =a^n



Differentiate the following with respect to x:
\dfrac{e^{2x}+x^3}{\csc 2x}



Find : \displaystyle \lim_{x\rightarrow 0} \dfrac {\cot 2x - cosec 2x}{x}.



Find \dfrac {dy}{dx}, when y=x^x -2^{\sin x}.



Find \frac{dy}{dx}, if tan(x+y)+tan(x-y)=1



Find \dfrac{d y}{d x} if x=a \cot \theta, y=b \operatorname{cosec} \theta



Find the derivative of y with respect to x, where y = \left ( x \right )^{\sin x} + (\sin x)^{x}



DIfferentiate x \sin x w.r.t. \tan x



Find \dfrac{d y}{d x}, if : x=\sin \theta, y=\tan \theta



If x=a \cos ^{3} t, y=a \sin ^{3} t, show that \dfrac{d y}{d x}=-\left(\dfrac{y}{x}\right)^{3}



If x=2 \cos ^{4}(t+3), y=3 \sin ^{4}(t+3), show that \dfrac{d y}{d x}=-\sqrt{\dfrac{3 y}{2 x}}



Find \dfrac{d y}{d x}, if : x=a(1-\cos \theta), y=b(\theta-\sin \theta)



Class 11 Engineering Maths Extra Questions