Differentiate with respect to x: y=e^{-3x}+\sin 2x
If y=e^x+e^{-x}+\log x^2, find \dfrac{dy}{dx}.
If y=2x^3+\dfrac{3}{x^2}, then find \dfrac{dy}{dx}.
Differentiate w.r.t. x:
\log e^x+\sin 3x-8
If y=e^x+x^2+\log x, then find \dfrac{dy}{dx}.
Differentiate with respect to x: y=\cos x + \sin 2x
Differentiate e^x+e^{x^2}+....+e^{x^5} w.r.t. x.
Evaluate the following limits. \displaystyle\lim_{x\rightarrow a}a^3x
Answer the following question in one word or one sentence or as per exact requirement of the question. If the value of \displaystyle\lim_{x\rightarrow -\infty}(3x+\sqrt{9x^2-x})=\dfrac{1}{6b}. Find the value of b?
Answer the following question in one word or one sentence or as per exact requirement of the question. Write the value of \displaystyle\lim_{n\rightarrow \infty}\dfrac{n!+(n-1)!}{(n+1)!+(n+2)!}.
Evaluate the following:
\displaystyle\lim_{x\rightarrow 0}x^2-3
Differentiate each of the following w.r.t. x : \sin 4x
Evaluate the following question:
\displaystyle\lim_{x\rightarrow 2}2x+5
Answer the following question in one word or one sentence or as per exact requirement of the question. Write the value of \displaystyle\lim_{x\rightarrow 0^-}[x].
Differentiate the following w.r.t.x: \sin ^{2} x^{2}-\cos ^{2} x^{2}
Find the derivative of following functions w.r.t. x: \sec x^o
If \displaystyle \underset{x\rightarrow a}{lim} f\left ( x \right )g\left ( x \right ) exists, then does it imply that \displaystyle \underset{x\rightarrow a}{lim} f\left ( x \right ) and \displaystyle \underset{x\rightarrow a}{lim}\ g\left ( x \right ) also exist? Yes =5 No=7
Find the value of \displaystyle \lim_{x\rightarrow 1}e\left ( 1+\sin \pi x \right )^{\cot \pi x}
Match the columns
Extending the functions in col. 1 as \lim _{ x\rightarrow \pi }{ f(x)}
Let \displaystyle f(x)=x+\dfrac {1}{2x+\dfrac {1}{2x+\dfrac {1}{2x+.....\infty}}} Compute the value of f(100).f'(100).
If the functionf(x) satisfies \displaystyle \lim_{x\rightarrow 1}\frac{f\left ( x \right )-2}{x^{2}-1}=\pi evaluate \displaystyle \lim_{x\rightarrow 1}f\left ( x \right )
Evaluate the Given limit: \displaystyle \lim_{x\rightarrow 0}\frac{\sin \,ax}{bx}
Find the derivative of the following functions:\displaystyle 2\tan x-7\sec x
For some constant a and b, find the derivative of the following functions: (ax^{2} + b)^{2}.
Find the derivatives of the following: \sec x.
Find \displaystyle \frac{dy}{dx}, if \displaystyle y = \sin^{-1} x + \sin^{-1} \sqrt{1 - x^2} , - 1 \leq t \leq 1
Find the derivatives of the following: 3\cot x + 5 cosec x.
Find \dfrac{dy}{dx} if x=a(\cos \theta + \theta \sin \theta). and y=a(\sin \theta - \theta \cos \theta).
If y + \sin y = \cos x, find \dfrac{dy}{dx}.
Show that when n is infinite the limit of nx^{n} tends to 0, when x> 1.
Find the value of x for which the derivative of the function \displaystyle\, f(x) = 20\, \cos \, 3x + 12\, \cos\, 5x - 15\, \cos\, 4x is equal to zero?
Find the slope of the tangent to the curve y = x^{3} - x at x = 2.
Find the derivative of \sin {x} with respect to x from first principles.
Find the derivatives of the following functions. (a) \cot^3 \, x (b) \sin \, \sqrt{x}
Find the derivatives of the following functions at the indicated points. \displaystyle\, f(x) \, = \, sin \, 4x \, cos \, 4x, \, f' \, (\pi/3) \, = \, ?
Find the derivative of
f(x)=(x^2-5)(x^3-2x+3)
Find \dfrac{dy}{dx} when x and y are connected by the relation given: \sin (xy)+\dfrac{x}{y}=x^2-y
(a) Differentiate y = {\cos ^{ - 1}}\left( {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right) with respect to x,0<x<1, (b) Differentiate {x^x} - {2^{\sin x}} with respect to x
Examine the graph of y=f(x) as shown and evaluate the following limits (i) \lim_\limits{x \to1}f(x) (ii) \lim_\limits{x \to2}f(x) (iii) \lim_\limits{x \to3}f(x) (iv) \lim_\limits{x \to199}f(x) (v) \lim_\limits{x \to3^+}f(x)
If {f}_{1}(x)=\cfrac{x}{2}+10\forall x\in R and {f}_{n}(x)={f}_{1}({f}_{n-1}(x))\forall n\ge 2,n \in N, then evaluate \lim _{ n\rightarrow \infty }{ { f }_{ n }(x) }
Evaluate the following limits. \displaystyle\lim_{n\rightarrow \infty}\left(1+\dfrac{x}{n}\right)^n=e^{ax}. Find the value of a?
Differentiate the following function with respect to x.
\dfrac{ax+b}{px^2+qx+r}.
If \displaystyle\lim_{x\rightarrow 3}\dfrac{x^n-3^n}{x-3}=108, find the value of n.
Evaluate the following limits. \displaystyle\lim_{x\rightarrow 0}\dfrac{e^x-x-1}{2}.
Evaluate the following question: \displaystyle\lim_{x\rightarrow 0}x^2-3
Evaluate the following limit:- \displaystyle\lim_{x\rightarrow 0}\dfrac{ax+x\cos x}{b\sin x}.
Evaluate the following limits. \displaystyle\lim_{x\rightarrow 0}\dfrac{\cos 2x-1}{\cos x-1}.
Find the derivative of f(x)=99x at x=100.
Differentiate the following function with respect to x.
\dfrac{1}{\sin x}.
Find the derivative of f(x)=x at x=1.
Answer the following question in one word or one sentence or as per exact requirement of the question. Write the value of \displaystyle\lim_{x\rightarrow 1^-}x-[x].
Answer the following question in one word or one sentence or as per exact requirement of the question. Write the value of \displaystyle\lim_{x\rightarrow 2}\dfrac{|x-2|}{x-2}.
Write the value of \displaystyle\lim_{x\rightarrow \infty}\dfrac{1+2+3+...…+n}{n^2}.
Differentiate the following function with respect to x.
\dfrac{x+\cos x}{\tan x}.
Differentiate the following function with respect to x.
\dfrac{x^n}{\sin x}.
Differentiate the following from first principle. \cos\left(x-\dfrac{\pi}{8}\right).
Differentiate the following w.r.t. x : \cos 4x \cos 2x
Differentiate the following w.r.t. x : \sin 5x \cos 3x
Find \dfrac {dy}{dx}, where y \sec x + \tan x +x^2 y=0.
Differentiate using first principle \sqrt {cosec\ (x^3 +1)}
Differentiate the following function with respect to x. \dfrac{4x+5\sin x}{3x+7\cos x}.
Differentiate the following w.r.t. x : \sin 2x \sin x
Find \dfrac {dy}{dx}, where \sin^2 x+2\cos y+xy =0.
Find \dfrac {dy}{dx}, where x \sin 2y= y\cos 2x.
Answer the following question in one word or one sentence or as per exact requirement of the question. If \dfrac{\pi}{2} < x <\pi, then find \dfrac{d}{dx}\left(\sqrt{\dfrac{1+\cos 2x}{2}}\right).
Find \dfrac {dy}{dx}, when y=(\tan x)^{1/x}.
If \cos y=x\cos (y+a), prove that \dfrac {dy}{dx}=\dfrac {\cos^2 (y+a)}{\sin a}.
Find \dfrac {dy}{dx}, where : \tan (x+y)+\tan (x-y)=1
If xy=\tan (xy), show that \dfrac {dy}{dx}=\dfrac {-y}{x}
Differentiate the following w.r.t.x: e^{\cot x}
Find \dfrac {dy}{dx}, where y\tan x-y^2 \cos x +2x =0
Find \dfrac {dy}{dx}, when y=x^{\sin x}.
Find \dfrac {dy}{dx}, where \cot (xy)+xy =y.
Different the following w.r.t.x: e^{\sqrt{\sin x}}
If y=\sin\left\{2\tan^{-1}\left(\sqrt{\dfrac{1-x}{1+x}}\right)\right\}. show that \dfrac{dy}{dx}=\dfrac{-x}{\sqrt{1-x^{2}}}
If y=(\sin x)^{(\sin x)^{(\sin x) ...... \infty}}, prove that \dfrac{dy}{dx}=\dfrac{y^{2}\cot x}{(1-y\log \sin x)}
Find \dfrac {dy}{dx}, when y=(\tan x)^{\sin x}.
Find \dfrac {dy}{dx}, when y=\sin (x^x).
Find \dfrac {dy}{dx}, when y=\cos x \cos 2x \cos 3x.
Find \dfrac {dy}{dx}, when y=(\cos x)^{\cos x}.
If y=(\cos x)^{(\cos x)^{(\cos x).....\infty}}, prove that \dfrac{dy}{dx}=\dfrac{-y^{2}\tan x}{(1-y\log \cos x)}
Find \dfrac {dy}{dx}, when y=x^{\sin 2x}.
Find \dfrac {dy}{dx}, when y=\sin 2x \sin 3x \sin 4x.
Find \dfrac {dy}{dx}, when y=(\sin x)^{\cos x}.
Find \dfrac {dy}{dx}, when y=(\tan x)^{\cot x}.
If y=\sqrt{\cos x+\sqrt{\cos x+\sqrt{\cos x+.......\infty}}}, prove that \dfrac{dy}{dx}=\dfrac{\sin x}{(1-2y)}
Find \dfrac {dy}{dx}, when : y=x^{\sin x}+(\sin x)^{\cos x}
Find \dfrac {dy}{dx}, when y=\dfrac {x^3 \sin x}{e^x}.
Find \dfrac{dy}{dx} of following functions: \sin x +2 \cos^2y+xy=0
Find the derivative of following functions w.r.t. x: \sin x^o
Find the derivative of following functions w.r.t. x: a \tan 3x
Differentiate x^{\sin x} + (\sin x)^{\cos x} with respect to x.
Prove that if the function is differentiable at a point C then it is also continuous at that point.
If y = x^{3} \cdot e^{x} \sin x, then find \dfrac {dy}{dx}.
The largest value of the non-negative integer a for which \displaystyle \lim_{x \rightarrow 1} \displaystyle \left \{ \dfrac{-ax + \sin (x-1)+ a}{x+\sin (x-1)-1} \right \}^{\dfrac{1-x}{1-\sqrt{x}}} = \dfrac{1}{4} is ................
Consider the function f defined by f(x) =x-x(x),where x is a positive variable,and (x) denotes the integral part of x and show that it is discontinuous for integral values of x,and continuous for all others. Is the function periodic? If periodic,what is its period? Draw its graph.
The graphs of f and g are given. Use them to evaluate each limit.
Find the derivative of \displaystyle\, y \, =\, \frac{1}{x} \, +\, \frac{1}{\sqrt{x}} \, +\, \frac{1}{\sqrt[3]{x}}
Let S_{n}, n = 1, 2, 3...., be sum of infinite geometric series whose first term is n and the common ratio is \dfrac {1}{n +1}. Evaluate \displaystyle \lim_{n\rightarrow \infty} \dfrac {S_{1}S_{n} + S_{2}S_{n - 1} + S_{3}S_{n - 2} + .... + S_{n}S_{1}}{S_{1}^{2} + S_{2}^{2} + .... + S_{n}^{2}}.
If \sqrt{1-x^2}+\sqrt{1-y^2}=a(x-y), prove that \dfrac{dy}{dx}=\sqrt{\dfrac{1-y^2}{1-x^2}}
For each of the differential equations in Exercises from 11 to 15, find the particular solutions satisfying the given condition: x^{2}dy+(xy+y^{2})dx=0; y=1 when x=1
\underset { x\rightarrow \frac { \pi }{ 4 } }{ lim } \dfrac{1 - tan x}{1 - \sqrt2 sin x}