Evaluate the following limits. $$\displaystyle\lim_{x\rightarrow a}a^3x$$
Answer the following question in one word or one sentence or as per exact requirement of the question. If the value of $$\displaystyle\lim_{x\rightarrow -\infty}(3x+\sqrt{9x^2-x})$$$$=\dfrac{1}{6b}$$. Find the value of $$b$$?
Answer the following question in one word or one sentence or as per exact requirement of the question. Write the value of $$\displaystyle\lim_{n\rightarrow \infty}\dfrac{n!+(n-1)!}{(n+1)!+(n+2)!}$$.
Evaluate the following:
$$\displaystyle\lim_{x\rightarrow 0}x^2-3 $$
Differentiate each of the following w.r.t. $$x$$ : $$\sin 4x$$
Evaluate the following question:
$$\displaystyle\lim_{x\rightarrow 2}2x+5 $$
Answer the following question in one word or one sentence or as per exact requirement of the question. Write the value of $$\displaystyle\lim_{x\rightarrow 0^-}[x]$$.
Find derivative of $$ sec\, x $$ by first principle
Differentiate the following w.r.t.x: $$ \sin ^{2} x^{2}-\cos ^{2} x^{2} $$
Find the derivative of following functions w.r.t. $$x$$: $$\sec x^o$$
If $$\displaystyle \underset{x\rightarrow a}{lim} f\left ( x \right )g\left ( x \right )$$ exists, then does it imply that $$\displaystyle \underset{x\rightarrow a}{lim} f\left ( x \right )$$ and $$\displaystyle \underset{x\rightarrow a}{lim}\ g\left ( x \right )$$ also exist? Yes =5 No=7
Find the value of $$\displaystyle \lim_{x\rightarrow 1}e\left ( 1+\sin \pi x \right )^{\cot \pi x}$$
Match the columns
Extending the functions in col. 1 as $$\lim _{ x\rightarrow \pi }{ f(x)}$$
Let $$\displaystyle f(x)=x+\dfrac {1}{2x+\dfrac {1}{2x+\dfrac {1}{2x+.....\infty}}}$$ Compute the value of $$f(100).f'(100).$$
If the function$$f(x)$$ satisfies $$\displaystyle \lim_{x\rightarrow 1}\frac{f\left ( x \right )-2}{x^{2}-1}=\pi $$ evaluate $$\displaystyle \lim_{x\rightarrow 1}f\left ( x \right )$$
Evaluate the Given limit: $$\displaystyle \lim_{x\rightarrow 0}\frac{\sin \,ax}{bx}$$
Find the derivative of the following functions:$$\displaystyle 2\tan x-7\sec x$$
For some constant $$a$$ and $$b$$, find the derivative of the following functions: $$(ax^{2} + b)^{2}$$.
Find the derivatives of the following: $$\sec x$$.
Find $$ \displaystyle \frac{dy}{dx}$$, if $$\displaystyle y = \sin^{-1} x + \sin^{-1} \sqrt{1 - x^2} , - 1 \leq t \leq 1$$
Find the derivatives of the following: $$3\cot x + 5 cosec x$$.
Find $$\dfrac{dy}{dx}$$ if $$x=a(\cos \theta + \theta \sin \theta)$$. and $$y=a(\sin \theta - \theta \cos \theta)$$.
If $$y + \sin y = \cos x$$, find $$\dfrac{dy}{dx}$$.
Show that when $$n$$ is infinite the limit of $$nx^{n}$$ tends to $$0$$, when $$x> 1$$.
Find the value of $$x$$ for which the derivative of the function $$\displaystyle\, f(x) = 20\, \cos \, 3x + 12\, \cos\, 5x - 15\, \cos\, 4x$$ is equal to zero?
Find the slope of the tangent to the curve $$y = x^{3} - x$$ at $$x = 2$$.
Find the derivative of $$\sin {x}$$ with respect to $$x$$ from first principles.
Find the derivatives of the following functions. (a) $$\cot^3 \, x$$ (b) $$\sin \, \sqrt{x}$$
Find the derivatives of the following functions at the indicated points. $$\displaystyle\, f(x) \, = \, sin \, 4x \, cos \, 4x, \, f' \, (\pi/3) \, = \, ?$$
Find the derivative of
$$f(x)=(x^2-5)(x^3-2x+3)$$
Find $$\dfrac{dy}{dx}$$ when $$x$$ and $$y$$ are connected by the relation given: $$\sin (xy)+\dfrac{x}{y}=x^2-y$$
Examine the graph of $$y=f(x)$$ as shown and evaluate the following limits (i) $$\lim_\limits{x \to1}f(x)$$ (ii) $$\lim_\limits{x \to2}f(x)$$ (iii) $$\lim_\limits{x \to3}f(x)$$ (iv) $$\lim_\limits{x \to199}f(x)$$ (v) $$\lim_\limits{x \to3^+}f(x)$$
If $${f}_{1}(x)=\cfrac{x}{2}+10\forall x\in R$$ and $${f}_{n}(x)={f}_{1}({f}_{n-1}(x))\forall n\ge 2,n \in N$$, then evaluate $$\lim _{ n\rightarrow \infty }{ { f }_{ n }(x) } $$
Evaluate the following limits. $$\displaystyle\lim_{n\rightarrow \infty}\left(1+\dfrac{x}{n}\right)^n$$$$=e^{ax}$$. Find the value of $$a?$$
Differentiate the following function with respect to x.
$$\dfrac{ax+b}{px^2+qx+r}$$.
If $$\displaystyle\lim_{x\rightarrow 3}\dfrac{x^n-3^n}{x-3}=108$$, find the value of n.
Evaluate the following limits. $$\displaystyle\lim_{x\rightarrow 0}\dfrac{e^x-x-1}{2}$$.
Evaluate the following question: $$\displaystyle\lim_{x\rightarrow 0}x^2-3 $$
Evaluate the following limit:- $$\displaystyle\lim_{x\rightarrow 0}\dfrac{ax+x\cos x}{b\sin x}$$.
Evaluate the following limits. $$\displaystyle\lim_{x\rightarrow 0}\dfrac{\cos 2x-1}{\cos x-1}$$.
Find the derivative of $$f(x)=99x$$ at $$x=100$$.
Differentiate the following function with respect to x.
$$\dfrac{1}{\sin x}$$.
Find the derivative of $$f(x)=x$$ at $$x=1$$.
Answer the following question in one word or one sentence or as per exact requirement of the question. Write the value of $$\displaystyle\lim_{x\rightarrow 1^-}x-[x]$$.
Answer the following question in one word or one sentence or as per exact requirement of the question. Write the value of $$\displaystyle\lim_{x\rightarrow 2}\dfrac{|x-2|}{x-2}$$.
Write the value of $$\displaystyle\lim_{x\rightarrow \infty}\dfrac{1+2+3+...…+n}{n^2}$$.
Differentiate the following function with respect to x.
$$\dfrac{x+\cos x}{\tan x}$$.
Differentiate the following function with respect to x.
$$\dfrac{x^n}{\sin x}$$.
Differentiate the following from first principle. $$\cos\left(x-\dfrac{\pi}{8}\right)$$.
Differentiate the following w.r.t. $$x$$ : $$\cos 4x \cos 2x$$
Differentiate the following w.r.t. $$x$$ : $$\sin 5x \cos 3x$$
Find $$\dfrac {dy}{dx}$$, where $$y \sec x + \tan x +x^2 y=0$$.
Differentiate using first principle $$\sqrt {cosec\ (x^3 +1)}$$
Differentiate the following function with respect to x. $$\dfrac{4x+5\sin x}{3x+7\cos x}$$.
Differentiate the following w.r.t. $$x$$ : $$\sin 2x \sin x$$
Find $$\dfrac {dy}{dx}$$, where $$\sin^2 x+2\cos y+xy =0$$.
Find $$\dfrac {dy}{dx}$$, where $$x \sin 2y= y\cos 2x$$.
Answer the following question in one word or one sentence or as per exact requirement of the question. If $$\dfrac{\pi}{2} < x <\pi$$, then find $$\dfrac{d}{dx}\left(\sqrt{\dfrac{1+\cos 2x}{2}}\right)$$.
Find $$\dfrac {dy}{dx}$$, when $$y=(\tan x)^{1/x}$$.
If $$\cos y=x\cos (y+a)$$, prove that $$\dfrac {dy}{dx}=\dfrac {\cos^2 (y+a)}{\sin a}$$.
Find $$\dfrac {dy}{dx}$$, where : $$\tan (x+y)+\tan (x-y)=1$$
If $$xy=\tan (xy)$$, show that $$\dfrac {dy}{dx}=\dfrac {-y}{x}$$
Differentiate the following w.r.t.$$x$$: $$e^{\cot x}$$
Find $$\dfrac {dy}{dx}$$, where $$y\tan x-y^2 \cos x +2x =0$$
Find $$\dfrac {dy}{dx}$$, when $$y=x^{\sin x}$$.
Find $$\dfrac {dy}{dx}$$, where $$\cot (xy)+xy =y$$.
Different the following w.r.t.$$x$$: $$e^{\sqrt{\sin x}}$$
If $$y=\sin\left\{2\tan^{-1}\left(\sqrt{\dfrac{1-x}{1+x}}\right)\right\}$$. show that $$\dfrac{dy}{dx}=\dfrac{-x}{\sqrt{1-x^{2}}}$$
If $$y=(\sin x)^{(\sin x)^{(\sin x) ...... \infty}}$$, prove that $$\dfrac{dy}{dx}=\dfrac{y^{2}\cot x}{(1-y\log \sin x)}$$
Find $$\dfrac {dy}{dx}$$, when $$y=(\tan x)^{\sin x}$$.
Find $$\dfrac {dy}{dx}$$, when $$y=\sin (x^x)$$.
Find $$\dfrac {dy}{dx}$$, when $$y=\cos x \cos 2x \cos 3x$$.
Find $$\dfrac {dy}{dx}$$, when $$y=(\cos x)^{\cos x}$$.
If $$y=(\cos x)^{(\cos x)^{(\cos x).....\infty}}$$, prove that $$\dfrac{dy}{dx}=\dfrac{-y^{2}\tan x}{(1-y\log \cos x)}$$
Find $$\dfrac {dy}{dx}$$, when $$y=x^{\sin 2x}$$.
Find $$\dfrac {dy}{dx}$$, when $$y=\sin 2x \sin 3x \sin 4x$$.
Find $$\dfrac {dy}{dx}$$, when $$y=(\sin x)^{\cos x}$$.
Find $$\dfrac {dy}{dx}$$, when $$y=(\tan x)^{\cot x}$$.
If $$y=\sqrt{\cos x+\sqrt{\cos x+\sqrt{\cos x+.......\infty}}}$$, prove that $$\dfrac{dy}{dx}=\dfrac{\sin x}{(1-2y)}$$
Find $$\dfrac {dy}{dx}$$, when : $$y=x^{\sin x}+(\sin x)^{\cos x}$$
Find $$\dfrac {dy}{dx}$$, when $$y=\dfrac {x^3 \sin x}{e^x}$$.
Find $$\dfrac{dy}{dx}$$ of following functions: $$\sin x +2 \cos^2y+xy=0$$
Find the derivative of following functions w.r.t. $$x$$: $$\sin x^o$$
Find the derivative of following functions w.r.t. $$x$$: $$a \tan 3x$$
Differentiate $$x^{\sin x} + (\sin x)^{\cos x}$$ with respect to x.
Prove that if the function is differentiable at a point C then it is also continuous at that point.
If $$y = x^{3} \cdot e^{x} \sin x$$, then find $$\dfrac {dy}{dx}$$.
The largest value of the non-negative integer $$a$$ for which $$\displaystyle \lim_{x \rightarrow 1} \displaystyle \left \{ \dfrac{-ax + \sin (x-1)+ a}{x+\sin (x-1)-1} \right \}^{\dfrac{1-x}{1-\sqrt{x}}} = \dfrac{1}{4} $$ is ................
Consider the function f defined by f(x) =x-x(x),where x is a positive variable,and (x) denotes the integral part of x and show that it is discontinuous for integral values of x,and continuous for all others. Is the function periodic? If periodic,what is its period? Draw its graph.
The graphs of $$f$$ and $$g$$ are given. Use them to evaluate each limit.
Find the derivative of $$\displaystyle\, y \, =\, \frac{1}{x} \, +\, \frac{1}{\sqrt{x}} \, +\, \frac{1}{\sqrt[3]{x}}$$
Let $$S_{n}, n = 1, 2, 3....,$$ be sum of infinite geometric series whose first term is $$n$$ and the common ratio is $$\dfrac {1}{n +1}$$. Evaluate $$\displaystyle \lim_{n\rightarrow \infty} \dfrac {S_{1}S_{n} + S_{2}S_{n - 1} + S_{3}S_{n - 2} + .... + S_{n}S_{1}}{S_{1}^{2} + S_{2}^{2} + .... + S_{n}^{2}}$$.
If $$\sqrt{1-x^2}+\sqrt{1-y^2}=a(x-y)$$, prove that $$\dfrac{dy}{dx}=\sqrt{\dfrac{1-y^2}{1-x^2}}$$
For each of the differential equations in Exercises from $$11$$ to $$15$$, find the particular solutions satisfying the given condition: $$x^{2}dy+(xy+y^{2})dx=0; y=1$$ when $$x=1$$
$$\underset { x\rightarrow \frac { \pi }{ 4 } }{ lim } \dfrac{1 - tan x}{1 - \sqrt2 sin x}$$