The sum of the infinite series 1+1+22!+1+2+223!+1+2+22+234!+... is ey−ex Find x+y2
1 | 7 | 13 |
2 | 8 | 14 |
3 | 9 | 15 |
4 | 10 | 16 |
5 | 11 | 17 |
6 | 12 |
49 | ||
46 | ||
52 | 47 |
The sum of the following series to infinity \displaystyle \frac{1}{1.3.5} +\frac{1}{3.5.7} +\frac{1}{5.7.9} +\,...\,\infty is \dfrac{1}{3c} .Find c
The sum of the series \displaystyle \frac2{3!}+\frac4{5!}+\frac6 {7!}+... to \infty = \displaystyle \frac{a}{e}. Find (a+3)^2.
If a,b,c are positive real numbers in A.P and {a^2},{b^2},{c^2} are in H.P, then\dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{a} =
Weight (kg) | 29 | 30 | 31 | 32 | 33 |
No.of children | 20 | 01 | 04 | 03 | 05 |