The sum of the infinite series $$\displaystyle{1+\frac{1+2}{2!} + \frac{1+2+2^2}{3!} + \frac{1+2+2^2+2^3}{4!}+ \,...}$$ is $$\displaystyle{e^y-e^x}$$ Find $$x+y^2$$
1 | 7 | 13 |
2 | 8 | 14 |
3 | 9 | 15 |
4 | 10 | 16 |
5 | 11 | 17 |
6 | 12 |
49 | ||
46 | ||
52 | 47 |
The sum of the following series to infinity $$\displaystyle \frac{1}{1.3.5} +\frac{1}{3.5.7} +\frac{1}{5.7.9} +\,...\,\infty is $$ $$\dfrac{1}{3c}$$ .Find $$c$$
The sum of the series $$\displaystyle \frac2{3!}+\frac4{5!}+\frac6 {7!}+...$$ to $$\infty$$ = $$\displaystyle \frac{a}{e}$$. Find $$(a+3)^2$$.
If a,b,c are positive real numbers in A.P and $${a^2},{b^2},{c^2}$$ are in H.P, then$$\dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{a} = $$
Weight $$(kg)$$ | $$29$$ | $$30$$ | $$31$$ | $$32$$ | $$33$$ |
No.of children | $$20$$ | $$01$$ | $$04$$ | $$03$$ | $$05$$ |