Processing math: 0%

Trigonometric Functions - Class 11 Engineering Maths - Extra Questions

If α,β,γϵ(0,π2), then sin(α+β+γ)sinα+sinβ+sinγ<a


Find a



For any θ, state the value of:
sin2θ+cos2θ



Prove that cos100+sin100cos100sin100=tana0

Find a



Prove that:
cot2π6+cosec5π6+3tan2π6=6



What is the value of (tanA+cotA)sinA×cosA ?



What is the value of sin6θ+cos6θ+3sin2θcos2θ ?



What is the value of \displaystyle \sin ^{2}25^{0}+\sin ^{2}65^{0}?



Prove that:
\displaystyle \sin^2\frac{\pi}{6}+\cos^2\frac{\pi}{3}-\tan^2\frac{\pi}{4}=-\frac{1}{2}



If \displaystyle \cos \theta =\frac{2t}{1+t^{2}}, then find the value of \displaystyle \tan \theta .



Write the principal value of \cos^{-1}[\cos (680^o)].



Prove that:

\dfrac{sin\theta - 2sin^{3}\theta}{2cos^{3}\theta-cos\theta} =tan\theta



Find the value of \cos^{2} 12^{\circ} + \cos^{2} 78^{\circ}



Show that \left( 1+\cot ^{ 2 }{ \theta  }  \right) \left( 1-\cos { \theta  }  \right) \left( 1+\cos { \theta  }  \right) =1\quad .



Prove \text{cosec}^{6}A - \cos^{6}A = 3\cot^{2}A \text{cosec}^{2} A + 1.



Simplify the following expression:
\displaystyle 3 \, \cos \, x \, - \, 4 \, \sin \, x \,\cos \, x \, - \, \sin^2 \, x \, - \, 1



Solve \sin\theta +\sin 5\theta =\sin 3\theta; 0\leq \theta \leq \pi.



Solve \sin x+\sqrt{3}\cos x \geq 1.



Prove the following identities :
\dfrac{1 \, - \, \cos \, \theta}{1 \, + \,\cos \, \theta} \, = \, (cosec \, \theta \, - \, \cot \, \theta)^2



Solve 1-2\sin \theta -2\cos \theta +\cot \theta =0, (0 < \theta < 2\pi).



Solve: 2+7\tan^2x=3.25sec^2x.



Convert 230^\circ into radian.



Solve: 4\sin^4x+\cos^4x=1.



Convert \dfrac{3\pi}{7} in degrees.



2^{\cos 2x}=3.2^{\cos^2x}-4



The expression \dfrac{{\tan A + \sec A - 1}}{{\tan A - \sec A + 1}} reduces to:



Prove that:
\cot (\pi -\theta) = -\cot \theta



Prove that:
\sec(\pi - \theta) = - \sec\theta



Prove that:
\text{cosec} (\pi -\theta)= \text{cosec }\theta



Find the principal solution or solution of \sin x=\dfrac {1}{\sqrt {2}}.



Prove that :
\dfrac{1}{\sec \, \theta \, - \, \tan \, \theta} \, = \, \sec \, \theta \, + \, \tan \, \theta



show that \sqrt { 2+\sqrt { 2+\sqrt { 2+2\cos { 8\theta  }  }  }  } =2\cos { \theta  }, 0<\theta<\dfrac{\pi}{8}



If \theta is an acute angle and sin \theta=\cos \theta find 3tan\theta



Find principal solution for \tan x =-1.    x\epsilon(\dfrac{\pi}{2} ,\pi)



Convert {290}^{o} into radian measure



If a\sin \left( {\theta  + \alpha } \right) = b\sin \left( {\theta  + \alpha } \right) show that \cot \theta  = \dfrac{{a\cos \alpha  - b\cos \alpha }}{{b\sin \alpha - a\sin \alpha }}.



Find the particular solution of \tan x + \tan 2x + \tan x.\tan 2x = 1.



{\cos ^4}\theta  + {\cos ^2}\theta  = 1 then show that {\sec ^4}\theta  - {\sec ^2}\theta  = 1



Prove that \sum a(\sin \,B - \sin C) = 0



Solve equation for general solution 2(\sin \, x)^2 + (\sin \, 2x)^2 = 2.



Find radian measure corresponding to the degree measure - {37^ \circ }30'



If \sin { A } =\cfrac { 5 }{ 13 } then evaluate \cos { A } and \tan { A } .



If \sin 9x = \sin x. Find the values of x.



Solve : \dfrac{1}{\text{cosec} \, \theta + \cot \, \theta} - \dfrac{1}{\sin \, \theta } = \dfrac{1}{\sin \, \theta} - \dfrac{1}{\text{cosec} \theta - \cot \theta}



Solve \sqrt { \cfrac { 1+\cos { 30 }  }{ 1-\cos { 30 }  }  }



Prove \sin ^2\theta +\cos ^2\theta =1



Prove if sinA = sinB then \angle A = \angle B.



If \tan { 2\theta =\cot { \left( \theta +{ 6 } \right)  }  } , where 2\theta and \theta +6 are acute angles, find the value of \theta .



Solve \tan x + \cot x



prove that:

1+\cot^{2} \theta = \csc^{2} \theta



Solve \sqrt 2 \left( {\sin x + \cos x} \right) = \sqrt 3



Find 'x' if 3\tan^{-1} x + \cot^{-1}x = \pi.



Solve {\tan ^2}\theta  + {\cot ^2}\theta  = 2



Solve \tan 5\theta  = \cot 2\theta



If \tan \theta=\dfrac{3}{A}, find \cos \theta \csc \theta.



Solve the equations
3(\sec^{2} \theta + \tan^{2} \theta) = 5.



If co\sec{A}=2, find the value of \cfrac{1}{\tan{A}}+\cfrac{\sin{A}}{1+\cos{A}}



If \sin{\theta}=\cfrac{1}{2}, show that (3\cos{\theta}-4{\cos}^{3}{\theta})=0



Write the complementary angle of \dfrac{1}{3} of 180^o



Prove that \cos 4x=1-8\sin^2 x \cos^2x



cos x=\frac{1}{2}
Find the principle solutions.



If \sin A = \frac{1}{3}, then find the value of {\mathop{\rm cosAcosec}\nolimits}  + tanAsecA



Find number of solutions of equation \sin x=-4x+1



Find the principal solution of the following equation:
\cot { x=\sqrt { 3 }  }



Value of \sin ^ { 2 } A + \cos ^ { 2 } A = ?



Find the value of { \left( \cfrac { \cos { A } +\cos { B }  }{ \sin { A } -\sin { B }  }  \right)  }^{ n }+{ \left( \cfrac { \sin { A } +\sin { B }  }{ \cos { A } -\cos { B }  }  \right)  }^{ n } (where n is an even)



If 0 < \theta  < 90^o and \sec \theta  = \text{cosec}60^o , find the value of 2{\cos ^2}\theta  - 1 



tan^{-1}\dfrac{1}{3}+tan^{-1}\dfrac{1}{7}+tan^{-1}\dfrac{1}{5}+tan^{-1}\dfrac{1}{8}=\dfrac{\pi }{4}.



Prove that: \displaystyle \frac { \sec \theta + \tan \theta - 1 } { \tan \theta - \sec \theta + 1 } = \frac { \cos \theta } { 1 - \sin \theta }



Solve: \dfrac{1+tan^2\theta}{1-tan^2\theta}=sec2\theta.



Prove : \dfrac{\cot A +\text{ cosec} A -1}{\cot A - \text{cosec} A +1} = \dfrac{1 +\cos A}{\sin A}



Prove \dfrac{1}{\sec\theta -1}-\dfrac{1}{\sec\theta +1}=2\cot^2\theta



Solve \dfrac{\cos{\theta}}{1-\sin{\theta}}+\dfrac{\cos{\theta}}{1+\sin{\theta}}=4 for \theta <90



If \cos \theta=\dfrac{3}{5}, find the value of \cot \theta +cosec \ \theta.



If \sin \theta =\dfrac{a}{\sqrt{a^2+b^2}}, 0<\theta <90^o, find the values of \cos \theta and \tan \theta.



The value of \cot^{2}C-\dfrac{1}{\sin^{2}C} is



The value of \tan^{2}A-\sec^{2}A is



Write \tan\theta in terms of \sin\theta.



If \sin 3A=\cos (A-10^o), then find the value of A, where 3A is an acute angle.



Prove that \dfrac {\cot A-\cos A}{\cot A+\cos A}=\dfrac {\text{cosec} A-1}{\text{cosec} A+1}



Eliminate \theta, if x=a\cos\theta, y=a\sin \theta.



Prove that :
(\csc A-\sin A)(\sec A-\cos A)=\dfrac {1}{\tan A+\cot A}



If 7\csc\alpha-3\cot\alpha=7 prove that 7\cot\alpha-3\csc\alpha=3



Prove that sec^{4}\theta-tan^{4}\theta=1+2 tan^{2}\theta.



Find the principal solution  or solutions of \sin x = \dfrac { 1 } { \sqrt { 2 } }



Find the value of \sin (270^o).



Prove \dfrac{1-\cos A}{1+\cos A}=(\csc A-\cot A)^2



If \sec\theta+\tan\theta=p, find the value of \csc\theta



Make the following expression a perfect square:
1+2\sin \theta.\cos \theta.



Evaluate: 3\cot^{2}\theta-3\text{cosec}^{2}\theta



Prove that
\frac{cosA}{1-tanA}+\frac{sinA}{1-cot A}=sinA +cosA



Prove
tan \Theta +sec\theta=\frac{1}{sec\Theta -tan\Theta }



The value of x fo which  \sin(\pi x)+\cos (\pi x)=0



Prove that : (1+\sin\theta-\cos\theta)^{2}+(1-\sin\theta-\cos\theta)^{2}=4(1-\cos\theta)



If \tan 9\theta=\cot \theta, where 9\theta < 90^{o} then find the value of \theta.



Find the degree measure of {\dfrac{1}{4}}^{c}



Prove that :  \dfrac { 1 + \sin \theta } { \cos \theta } + \dfrac { \cos \theta } { 1 + \sin \theta } = 2 \sec \theta



If \tan (A+B) =\sqrt{3} and \tan(A-B)=\dfrac{1}{\sqrt{3}} find A and B. A and B are acute angles. Then A+B in degrees



sec\Theta +tan\Theta =p  find  cosec\Theta



\frac { \cos { A } -\sin { A+1 } }{ \cos { A } +\sin { A-1 } } =cosecA+\cot { A }



Find the degree measure of {\dfrac{\pi}{8}}^{c}



Express the following degrees into grades (i.e., sexagesimal system to centesimal system)
63^{\circ}



If \tan { \theta  } +\sec { \theta  } =x, show that \sin { \theta  } =\cfrac { { x }^{ 2 }-1 }{ { x }^{ 2 }+1 }



Convert \dfrac{\pi}{12} radians into degree (sexagesimal system).



Find the principal solution of the following equation:
cos \theta=\frac{1}{2}



If A - B = C and A + B =\frac{\pi }{2} then \tan A = \tan B + 2\tan C.



State true(1) or false(0):
\left ( \tan \theta +2 \right )\left ( 2 \tan \theta +1 \right )=5 \tan\theta +sec^{2} \theta



Fill in the blank
\sec A(1-\sin A)(\sec A + \tan A)= _____



The number of solutions of 3 sec\theta-5=4 tan \theta in [0, 4\pi] be k.Find k ?



The number of values of x between 0 and 2\pi that satisfies the equation \sin x+ \sin 2x+ \sin 3x=\cos x+ \cos 2x+ \cos 3x must be-



 \left ( \cos A-\cos B \right )^{2}+\left ( \sin A-\sin B \right )^{2}=c\sin ^{2}\left ( A-B \right )/2
Find 2c 



 \sqrt{\sin ^{4}x+4\cos ^{2}x}-\sqrt{\cos ^{4}x+4\sin ^{2}x}=\cos sx Find s 



Solution of \displaystyle 3\left ( \sec ^{2}\theta+\tan^{2}\theta \right )=5 is \displaystyle \ \theta =n\pi \pm \frac { \pi  }{ m } . Find m.



Find the maximum value of \sqrt{3}\sin x+\cos x .




In quadrilateral ABCD if \displaystyle \sin \left ( \dfrac{A+B}{2} \right )\cos \left ( \dfrac{A-B}{2} \right )+\sin \left ( \dfrac{C+D}{2} \right )\cos \left ( \dfrac{C-D}{2} \right )=2, then  the value \displaystyle \sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}\sin \dfrac{D}{2} is \dfrac{1}{a} Find a 



If \displaystyle 0 < x < \frac {\pi}{4} and  \displaystyle cos x + sin x = \frac {5}{4}, then the value of \displaystyle 16(cos x - sin x)^2 is



 \displaystyle \frac{1+\sin 2\theta }{1-\sin 2\theta }=\left ( \frac{1+\tan \theta }{1-\tan \theta } \right )^{b}
.Find b 



 Find a if, a\sin 27^{0}=\left ( 5+\sqrt{5} \right )^{1/2}-\left ( 3-\sqrt{5} \right )^{1/2}



If \sin A\, +\, cosec\: A= 2; find the value of \sin ^{2}A\, +\, cosec^{2}A.



If \displaystyle 4\cos^{2}A-3=0 and \displaystyle 0^{\circ}\leq A \leq 90^{\circ} , then find \angle A in degrees. 



If \displaystyle f\left (x \right )= \sin \left ( \log x \right ), then show that \displaystyle f\left (xy\right )+ f\left ( \frac{x}{y} \right )-2f\left ( x \right )\cos \left ( \log y \right )=0 



\displaystyle \cos^2\ 42^{\circ}-\sin^2 48^{\circ}



\displaystyle \sin ^2 62^{\circ}-\cos ^2 28^{\circ}



If \displaystyle \sin \theta = \dfrac{45}{53}, find the value of \displaystyle cosec^2 \theta - \cot^2 \theta



Refer to the triangle given in figure.
Find: \left|\cot ^{2}C\, -\displaystyle \, \frac{1}{\sin ^{2}C}\right|

185861_6aed6715811744b88fb6fde83545ebd3.png



\displaystyle 2\sin^2 54^{\circ}-2\cos ^2\ 36^{\circ}+4\sin^2 30^{\circ}



Refer to the triangle given in figure.

Find:  |\tan ^{2}A\, -\, \sec ^{2}A|

185840_39e6a71ad4824f81ac6d47babd3d2a81.png



In an Isosceles triangle ABC,tan^{2}\, B\, -\,sec^{2}\, B\, +\, 2



If cot\, \Theta\, =\, 1; find the value of :
5\, tan^{2} \Theta\, +\, 2\, sin^{2}\, \Theta\, -\, 3



sin^{2}\, B\, +\, cos^{2}\, C



If sin A = cos A, find the value of 2\, tan^{2}\, A\, -\, 2\, sec^{2}\, A\, +\, 5.



3\, -\, cot^{2}\, A\, +\, cosec^{2}\, A



(sec\, x^{\circ}\, -\, tan\, x^{\circ})\, (sec\, x^{\circ}\, +\, tan\, x^{\circ})
196279_3910166b53804c02bfd457d065a4c564.png



tan^{2}\, C\, -\, sec^{2}\, B\, +\, 2



Find the value of:
\text{cosec}^{2}\,45^{\circ}\,-\,\cot^{2}\,45^{\circ}\,



\cos^{2}\, 42^{\circ}\, -\, \sin^{2}\, 48^{\circ} 



Find the value of cosec^{2}\, 60^{\circ}\, -\, \tan^{2}\, 30^{\circ}



If \displaystyle \sin \theta +\cos \theta =1, then the value of \displaystyle \sin \theta \cos \theta is



If \displaystyle \sec \theta =x+\frac{1}{4x}, then the value of \displaystyle \sec \theta +\tan \theta is equal to



If \displaystyle A=29^{0}, then find the value of \displaystyle \sin ^{4}A+\cos ^{4}+A+2\sin ^{2}A\cos ^{2}A.



 The value of \displaystyle \left ( \sin x\cos y+\cos x\sin y \right )^{2}+\left ( \cos x\cos y-\sin x\sin y  \right )^{2} is equal to



What is the value of \displaystyle \frac{\left ( \sec \theta +1 \right )^{2}+\left ( 1-\sec \theta  \right )^{2}}{1+\sec ^{2}\theta } ?



Prove that:
\displaystyle 2\, cos\frac{\pi}{13}cos\frac{9\pi}{13}+cos\frac{3\pi}{13}+cos\frac{5\pi}{13}=0



Prove that:
\displaystyle 2sin^2\frac{3\pi}{4}+2cos^2\frac{\pi}{4}+2sec^2\frac{\pi}{3}=10



Find the values of  \displaystyle \theta and p, if the equation \displaystyle x\cos \theta +y\sin \theta = p is the normal form of the line \displaystyle \sqrt{3}x+y+2= 0.



Prove that:
\displaystyle 2sin^2\frac{\pi}{6}+cosec^2\frac{7\pi}{6}cos^2\frac{\pi}{3}=\frac{3}{2}



Prove the following:
\displaystyle \cos \left(\dfrac{3\pi}{2}+x\right) \cos(2\pi+x)\left[\cot\left(\dfrac{3\pi}{2}-x\right)+\cot (2\pi +x)\right]=1



(i) If A + B = 45^o, prove that \displaystyle (cot A-1)(cotB-1)=2 and hence deduce that \displaystyle cot 22 \frac{1}{2}^o = \sqrt{2} + 1.
(ii) If \displaystyle tan(A-B) = \frac{7}{24} and \displaystyle tan A=\frac{4}{3} where A and B are acute, show that A + B = \displaystyle \frac{\pi}{2}



Express the trigonometric ratio tan A in terms of sec A.



(i) If \cos 3A = \sin (A - 34^0), where A is an acute angle, find the value of A.
(ii) Prove the following identity, where the angles involved are acute angles for which the expression is define.
\dfrac{1 + \cot^2 A}{1 + \tan^2 A} = \left( \dfrac{1 - \cot  A}{1 - \tan  A} \right )^2



If \tan \theta + \sin \theta = m, \tan \theta - \sin \theta = n and m\neq n, then show that m^{2} - n^{2} = 4\sqrt {mn}



Prove the following identity
\sqrt { \sec ^{ 2 }{ \theta  } +cosec ^{ 2 }{ \theta  }  } =\tan { \theta  } +\cot { \theta  }



If 3 \cot A = 4, then evaluate \dfrac{1 - \tan^2 A}{1 + \tan^2 A}



Find the value of \cfrac { \sec { { 15 }^{ o } }  }{ co\sec { { 75 }^{ o } }  } +\cfrac { \sin { { 72 }^{ o } }  }{ \cos { { 18 }^{ o } }  } -\cfrac { \tan { { 33 }^{ o } }  }{ \cot { { 57 }^{ o } }  } .



Prove: (\sin^{6}\theta + \cos^{6}\theta) = 1 - 3\sin^{2}\theta \cos^{2}\theta



Prove that \sqrt { \cfrac { 1-\sin { \theta  }  }{ 1+\sin { \theta  }  }  } =\sec { \theta  } -\tan { \theta  } , (where \theta is acute).



Prove that { \left( \sin { \theta  } +co\sec { \theta  }  \right)  }^{ 2 }+{ \left( \cos { \theta  } +\sec { \theta  }  \right)  }^{ 2 }=7+\tan ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  }



Show that \tan ^{ 2 }{ \theta  } -\cfrac { 1 }{ \cos ^{ 2 }{ \theta  }  } =-1.



If (2\cos x + \sin x) = 1, then sum of all possible value of (7\cos x+ 6 \sin x) is__________



Evaluate: \dfrac {1}{\sec A - \tan A} - \dfrac {1}{\cos A} = \dfrac {1}{\cos A} - \dfrac {1}{(\sec A + \tan A)}.



Prove by vector method that
\sin { \left( \alpha +\beta  \right)  } =\sin { \alpha  } \cos { \beta  } +\cos { \alpha  } \sin { \beta  }



Prove that in a triangle with angles A,B,C and opposite sides as a,b,c  \frac{\sin{\left(B-C\right)}}{\sin{\left(B+C\right)}} = \frac{{b}^{2}-{c}^{2}}{{a}^{2}} 



If f_n(\alpha)=\displaystyle\frac{\sin\alpha +\sin 3\alpha +\sin 5\alpha +.....+\sin(2n-1)\alpha}{\cos\alpha +\cos 3\alpha +\cos 5\alpha + .....+\cos(2n-1)\alpha} find f_4(\pi /32).



If \csc { \theta -\sin { \theta ={ a }^{ 3 } }  } and \sec { \theta  } -\cos { \theta  } =b^{ 3 }, prove that { a }^{ 2 }{ b }^{ 2 }\left( { a }^{ 2 }+{ b }^{ 2 } \right) =1



Prove that : \dfrac { 1 }{ 1+\sin { \theta  }  } +\dfrac { 1 }{ 1-\sin { \theta  }  } =2\sec ^{ 2 }{ \theta  } 



Prove that \dfrac{\sin x - \sin 3x}{\sin^{2} x - \cos^{2} x} = 2 \sin x



If \sec { \theta  } =x+\dfrac { 1 }{ 4x } , then show that \tan { \theta  } +\sec { \theta  } =2x or \dfrac { 1 }{ 2x } .



Show that sin^6 \theta + cos^6 \theta + 3 sin^2 \theta cos^2 \theta = 1



Prove \displaystyle \frac{\tan \, 2x \, \tan \, x}{\tan \, 2x \, - \, \tan \, x} \, = \, \sin \, 2x.



Prove the following identity:
\displaystyle \sin^2 \, (45^{\circ} \, + \, \alpha) \, - \, \sin^2 \, (30^{\circ} \, - \, \alpha) \, - \, \sin \, 15^{\circ} \, \cos \, (15^{\circ} \, + \, 2\alpha) \, = \, \sin \, 2\alpha



Prove the following identity:
\displaystyle \frac{1 \, - \, 2 \, \sin^2 \, \alpha}{1 \, + \, \sin \, 2\alpha} \, = \, \frac{1 \, - \, \tan \, \alpha}{1 \, + \, \tan \, \alpha}



Prove \displaystyle \cos^2 \, \alpha \, - \, \sin^2 \, 2\alpha \, = \, \cos^2 \, \alpha \, \cos \, 2\alpha \, - \, 2 \, \sin^2 \, \alpha \, \cos^2 \, \alpha.



Simplify the following expression:
\displaystyle \frac{1 \, + \, \sin + \, 2x}{(\sin \, x \, + \, \cos \, x)^2}



Prove \displaystyle 3 \, - \, 4 \, \cos \, 2\alpha \, + \, \cos \, 4\alpha \, = \, 8 \, \sin^4 \, \alpha.



Prove the following identities.
\displaystyle \frac{1 \, + \, \sin \, \alpha}{1 \, + \, \cos \, \alpha} \, .\frac{1 \, + \, \sec \, \alpha}{1 \, + \, \text{cosec} \, \alpha} \, = \, \tan \, \alpha.



Solve the following:
\displaystyle1 + \sec\, 20^{\circ} - \sqrt{3} \cot\, 40^{\circ} 



Prove \displaystyle \frac{1}{4 \, \sin^2 \, \alpha \, \cos^2 \, \alpha} \, - \, \frac{(1 \, - \, \tan^2 \, \alpha)^2}{4 \, \tan^2 \, \alpha} \, = \, 1.



Prove \displaystyle \cot \, \alpha \, - \, \tan \, \alpha \, - \, 2 \, \tan \, 2\alpha \, - \, 4 \, \tan \, 4\alpha \, = 8 \, \cot 8 \, \alpha.



Solve the following equation:
\displaystyle \sin \, x \, - \, \sin \, 2x \,+ \, \sin \, 5x \, + \, \sin \, 8x \, = \, 0.



Solve the following equation:
\displaystyle (2 \, \sin \, x \, - \, \cos \, x) \, (1 \, + \, \cos \, x) \, = \, \sin^2 \, x.



Solve the following equations.
\displaystyle 4\sin^4 \, x \, + \cos^4 \, x=1



Solve the following equation:
\displaystyle \sin^4 \, x \, + \, \cos^4 \, x \, = \, \sin \, x \, \cos \, x.



Solve the following equation:
\displaystyle 2 \, \cos^2 \, x \, + \, 4 \, \cos \, x \, = \, 3 \,\sin^2 \, x



Solve the following equations.
\displaystyle (cos \, 6x \, - \, 1) \, cot \, 3x \, = \, sin \, 3x.



Solve: \displaystyle \sin \, x \, + \, \sin \, 2x \, = \, \cos \, x \, + \, 2 \, \cos^2 \, x.



Solve the following equation:
\displaystyle 2 \, \cos^2 \, x \, - \, 1 \, = \, \sin \, 3x.



Solve the following equations.
\displaystyle 4 \, cos \, x \, - \, 2 \, cos \, 2x \, - \, cos \, 4x \, = \, 1.



Solve the following equations.
\displaystyle 8 \, cos \, x \, cos \, 2x \, cos \, 4x \, = \, \frac{sin \, 6x}{sin \, x}.



Solve the following equation:
\displaystyle \cos \, 4x \, + \, 2 \, \cos^2 \, x \, = \,1.



Solve the following equation:
\displaystyle \sin^6 \, x \, + \, \cos^6 \, x \, = \, \frac{7}{16}.



Solve the following equation:
\displaystyle (1 \, - \, \tan \, x) \, (1 \, + \, \sin \, 2x) \, = \, 1 \, + \, \tan \, x



Solve the following equation:
\displaystyle \sin \, x \, + \, \sin^2 \, x \, + \, \cos^2 \, x \, = \, 0



Solve the following equations.
\displaystyle sin \, \frac{3x}{2} \, cos \, \frac{x}{2} \, = \, \frac{sin \, 2x}{2}.



\dfrac{{1 + \sin 2\theta  + \cos 2\theta }}{{1 + \sin 2\theta  - \cos 2\theta }} =



\dfrac{\tan A}{(1-\cot A)}+\dfrac{\cot A}{(1-\tan A)}=\sec A \cdot \text{cosec} A+1



If \sin \theta-\sqrt{6} \cos \theta=\sqrt{7} \cos \theta. Prove that \cos \theta-\sqrt{6}\sin \theta-\sqrt{7} \sin \theta=1.



If  \cot \theta=\sqrt {7},  find the value of \dfrac {cosec^{2} \theta - \sec^{2}\theta}{cosec^{2} \theta + \sec^{2}\theta}.        [\because \cot \theta=\dfrac{1}{ \tan \theta}]



Prove that : \tan 2x=\dfrac{2\tan x}{1-\tan^2x}



If A+B+C = \pi then prove that, \cos 2A+\cos 2B-\cos 2C=1-4\sin A\sin B\cos C.



\cos \dfrac{\pi}{15}\cos \dfrac{2\pi}{15}\cos \dfrac{3\pi}{15}\cos \dfrac{4\pi}{15}\cos \dfrac{5\pi}{15}\cos \dfrac{6\pi}{15}\cos \dfrac{7\pi}{15}=\dfrac{1}{2^7}



Show that:
\cos^248^{\circ}-\sin^212^{\circ}=\dfrac{\sqrt{5}+1}{8}



The value of \cos^2 \, A  \, + \, \cos^2 \, B \, - \, 2 \, \cos \, A \, \cos \, B \, \cos \, (A \, + \, B) \, -\, \sin^2 \, (A \, + \, B)



Find the  real roots of the equation \cos ^{ 7 }{ x } +\sin ^{ 4 }{ x } =1 in the interval \left( -\pi ,\pi  \right) .



Prove that \sin^2(\dfrac{A}{2})+\sin^2(\dfrac {B}{2})+\sin^2(\dfrac {C}{2})=1-2\sin(\dfrac {A}{2})\sin\dfrac {B}{2})\sin(\dfrac {C}{2}).



In any triangle ABC prove the identities.
\sin^2A+\sin^2B-\sin^2C=2\sin A\sin B\cos C.



If A+B+C =\pi Prove that: \dfrac{\sin 2A+\sin 2B+\sin 2C}{\sin A+\sin B+\sin C}=8\sin \bigg(\dfrac{A}{2}\bigg)\sin \bigg(\dfrac{B}{2}\bigg)\sin \bigg(\dfrac{C}{2}\bigg).



In any triangle ABC prove that the identities.
\dfrac{\sin 2A+\sin 2B+\sin 2C}{\cos A+\cos B+\cos C-1}=8\cos(A/2)\cos (B/2)\cos (C/2).



If A+B+C=2k, then prove that \cos^2k+\cos^2(k-A)+\cos^2(k-B)+\cos^2(k-C)=2+2\cos A\cos B\cos C.



Prove that: \sin^2A+\sin^2B+\sin^2C=2+2\cos A\cos B\cos C.



Express \sin 3A+\sin 3B+\sin 3C as the product of three trigonometrical ratios where A, B, C are the angles of a triangle. If the given expression be zero, then at least one angle of the triangle is 60^o



If A+B+C=\pi, prove that (\sin A+\sin B+\sin C)(-\sin A+\sin B+\sin C)(\sin A-\sin B+\sin C)(\sin A+\sin B-\sin C) \\ =4\sin^2A\sin^2B\sin^2C.



Prove that: \sin^2(\dfrac {A}{2})+\sin^2(\dfrac {B}{2})-\sin^2(\dfrac {C}{2})=1-2\cos(\dfrac {A}{2})\cos(\dfrac {B}{2})\sin(\dfrac{C}{2}).



Prove that: \cos^2A+\cos^2B+\cos^2C=1-2\cos A\cos B\cos C.



Solve 2\sin^2x+\sqrt{3}\cos x+1=0.



Find m if \sin { A } \sin { \left( { 60 }^{ o }-A \right)  } \sin { \left( { 60 }^{ o }+A \right)  } =\cfrac { 1 }{ m} \sin { 3A } \quad



If x+y+z=xyz, prove that \dfrac{x+y}{1-xy}+\dfrac{y+z}{1-yz}+\dfrac{z+x}{1-zx}=\dfrac{x+y}{1-xy}\cdot \dfrac{y+z}{1-yz}\cdot \dfrac{z+x}{1-zx}.



If x+y+z=xyz, then prove that.
For any three angles A, B, C, \tan(B-C)+\tan(C-A)+\tan(A-B)=\tan(B-C)\tan(C-A)\tan(A-B).



Solve: 5\cos 2\theta +2\cos^2\left(\dfrac{1}{2}\theta \right)+1=0, -\pi < \theta < \pi.



Solve 4 \cos \theta - 3 \sec \theta = 2 \tan \theta.



If x+y+z=xyz, prove that \dfrac{3x-x^3}{1-3x^2}+\dfrac{3y-y^3}{1-3y^2}+\dfrac{3z-z^3}{1-3z^2}=\dfrac{3x-x^3}{1-3x^2}\cdot \dfrac{3y-y^3}{1-3y^2}\cdot \dfrac{3z-z^3}{1-3z^2}.



The number of values of \theta satisfying \sin \theta +\sin 3\theta +\sin 5\theta =0; 0\leq \theta \leq \dfrac{1}{2}\pi is



Solve r\sin \theta =\sqrt{3}, r+4\sin \theta =2(\sqrt{3}+1), 0\leq \theta \leq 2\pi.



The smallest +ve x satisfying the equation log_{cos x}\sin x+\log_{\sin x}\cos x=2 is \pi /4.



Solve \sin \theta +\sin 2\theta +\sin 3\theta +\sin 4\theta =0.



Solve 3\tan^2\theta -2\sin \theta =0.



Solve \cot \theta -\tan \theta =\sec \theta.



Solve \cos^{40}\theta +\sin^{58}\theta =1.



Solve sec 4\theta -sec 2\theta =2.



Solve \dfrac{\sqrt{3}}{2}\sin x-\cos x=cos^2x.



Solve \tan 3\theta +\tan \theta =2\tan 2\theta.



Prove that:
\dfrac{1}{1 \, + \, \sin \, \theta} \, + \, \dfrac{1}{1 \, - \, \sin \, \theta} \, = \, 2 \, \sec^2 \, \theta



Prove that :
\dfrac{\tan \, \theta \, + \, \sin \, \theta}{\tan \, \theta \, - \, \sin \, \theta} \, = \, \dfrac{\sec \, \theta \, + \, 1}{\sec \, \theta \, - \, 1}



 {\sin ^2}n\theta  - {\sin ^2}(n - 1)\theta  = {\sin ^2}\theta , where n is constant and n \ne 0,1



Solve the equation \sin x+\cos x=\sin 2x-1.



Prove that :
\dfrac{tan \, \theta \, - \, cot \, \theta}{sin \, \theta \, cos \, \theta} \, = \, sec^2 \, \theta \, - \, cosec^2 \, \theta \, = \, tan^2 \, \theta \, - \, cot^2 \, \theta



Prove that :
\dfrac{(1 \, + \, cot \, A \, + \, tan \, A)(sin \, a \, - \, cos \, A)}{sec^3 \, A \, - \, cosec^3 \, A} \, = \, sin^2 \, A \, cos^2 \, A



Prove that:
\dfrac{\sin \, \theta}{1 \, + \, \cos \, \theta} \, + \, \dfrac{1 \, + \, \cos \, \theta}{\sin \, \theta} \, = \, 2 \, \text{cosec} \, \theta



Prove the following statements.
\cos^{6} A + \sin^{6}A = 1 - 3\sin^{2} A + \cos^{2} A.



Find the number of values of \theta satisfying the equation \sin 3\theta  = 4\sin \theta .\sin 2\theta .\sin 4\theta in 0 \le \theta  \le 2\pi



Prove that :
\dfrac{\cos \, \theta}{1 \, - \, \sin \, \theta} \, + \, \dfrac{\cos \, \theta}{1 \, + \, \sin \, \theta} \, = \, 2 \, \sec \, \theta



If \tan \theta + \sin \theta = m and \tan \theta - \sin \theta = n , show that 

m^2-n^2 = 4 \sqrt{ mn}



Solve (sec^2 \theta - 1)(1 - cosec^2 \theta) = -1



Find the integrals of the function :
\dfrac{\sin^{2} x}{1+\cos x}



Prove that \dfrac{\sin\theta - \cos \theta +1}{\sin \theta + \cos\theta -1}=\dfrac{1}{\sec\theta - \tan \theta}, using the identity \sec^2 \theta= 1+ \tan^2\theta.



Find the value of \sin \frac{\pi}{14}\sin\frac{3\pi}{14}\sin\frac{5\pi}{4}\sin\frac{7\pi}{14}\sin \frac{9\pi}{14} \sin\frac{11\pi}{14} \sin \frac{13\pi}{14}=\frac{1}{m}.Find m



Find the value of \dfrac{\cos A - \sin A+1}{\cos A + \sin A-1}- (\text{cosec} A + \cot A)



If \tan \theta+\dfrac {1}{\tan \theta}=2, find the value of \cot^{2}\theta+\dfrac {1}{\cot^{2}\theta}.



If \cos x+\sin x=\dfrac {1}{2}, Find the \tan x.



Prove the following identity:
\sin ^8 x - \cos^8x = (\sin^2x - \cos^2x) (1 - 2 \, \sin^2 x \cos^2 x)



Prove that: \dfrac{{1 - {\mathop{\rm sinAcosA}\nolimits} }}{{\cos A\left( {\sec A - \text{cosec}A} \right)}}.\dfrac{{{{\sin }^2}A - {{\cos }^2}A}}{{{{\sin }^3}A + {{\cos }^3}A}} = \sin A



If \sin {x} + \sin {y} + \sin {z} =3. Find the value of \cos {x} + \cos {y} + \cos {z} .



how to find all possible values of 2cos2x=cos02cos⁡2x=cos⁡0.



Prove \dfrac{1}{\sec x -\tan x} -\dfrac{1}{\cos x} =\dfrac{1}{\cos x}-\dfrac{1}{\sec x+\tan x}



 prove that \dfrac{{\sec \theta }}{{\sec \theta  + \tan \theta }}={{\sec \theta  - \tan \theta }}



Find \left( {\cos \,A + \sec A} \right){^2} + {\left( {\sin A + \text{cosec} A} \right)^2} - {\tan ^2}A - {\cot ^2}A.



Find m if \displaystyle \sqrt {\frac{{1 - \sin \theta }}{{1 + \sin \theta }}}  + \sqrt {\frac{{1 + \sin \theta }}{{1 - \sin \theta }}}  = \frac{{ - m}}{{\cos \theta }},\frac{\pi }{2} < \theta  < \pi .



If \tan \left( {A + B} \right) = x and {\rm{tan}}\left( {A - B} \right){\rm{ =  y}} find the value of \tan 2A and \tan 2B



Prove that: \dfrac{1}{\text{cosec}A- \cot A}-\dfrac{1}{\sin A}=\dfrac{1}{\sin A}-\dfrac{1}{\text{cosec}A+\cot A}.



If \cos \left(\frac{3\pi}{4}+x\right)- \cos \left(\frac{3\pi}{4}-x\right)= -\sqrt m \sin x.Find m



Prove that \dfrac { 1 }{ \sec { A } -\tan { A }  } -\dfrac { 1 }{ \cos { A }  } =\dfrac { 1 }{ \cos { A }  } =\dfrac { 1 }{ \sec { A } +\tan { A }  }.



If A is not an integeral multiple of \pi, find k such that \cos \, A . \cos \, 2A . \cos \, 4A . \cos \, 8A = \dfrac{\sin 16 A}{k \sin A}.



If \sec\phi+\tan\phi=x, prove that \sin\phi=\dfrac{x^2-1}{x^2+1}.



Prove \dfrac{{{{\tan }^3}\theta }}{{1 + {{\tan }^2}\theta }} + \dfrac{{{{\cot }^3}\theta }}{{1 + {{\cot }^2}\theta }} = \dfrac{{1 - 2{{\sin }^2}\theta {{\cos }^2}\theta }}{{\sin \theta \cos \theta }}



If 7\ \text{cosec}\alpha-3\ \cos\alpha=7, prove that 7\ \cot\alpha- 3\ \text{cosec}\ \alpha=3.



If \cos^22x - \cos^26x = \sin mx \sin8x. Find m



Prove the following statement.
\sqrt {\dfrac {1 - \sin A}{1 + \sin A}} = \sec A - \tan A.



Show that
(\sec \theta-\tan \theta)^{2}=\dfrac{1-\sin \theta}{1+\sin \theta}



If 3 \cot A= 4 check whether \dfrac{1-\tan^2A}{1+\tan^2A}=\cos^2A - \sin^2A or not



If\tan A + \cot A = m \text{cosec}2A.Find m



Solve for \alpha
\dfrac{\text{cosec}^2 \theta}{\text{cosec} \theta - 1} - \dfrac{\text{cosec}^2 \, \theta}{\text{cosec} \theta + 1} = \alpha \sec^2\theta



Prove \left( {1 + \,{{\tan }^2}\,\theta } \right)\,{\sin ^2}\,\theta \, = \,{\tan ^2}\,\theta



given \cot \theta=1Find \dfrac {(1+\sin \theta) (1-\sin \theta)}{ (1+\cos \theta) (1-\cos \theta)}



Convert 3 radian into degree measure.



If tan\beta =2 sin\alpha sin\gamma cosec(\alpha+\gamma), then cot\alpha, cot\beta cost\gamma are in 



Solve \cot ^{ 2 }{ x } -\tan ^{ 2 }{ x } =4\cot { 2x } \cosec { 2x } 



Show that cos 2A= cos^4A - sin^4A



Solve 4\cos ^{ 2 }{ x } +6\sin ^{ 2 }{ x } =5.



Prove that: \sin^2\left(\dfrac{\pi}{8}+\dfrac{A}{2}\right)-\sin^2\left(\dfrac{\pi}{8}-\dfrac{A}{2}\right)=\dfrac{1}{\sqrt{2}}\sin A
Find the general solution of the equation.



Prove \cfrac { Sin2A }{ SinA } -\cfrac { Cos2A }{ CosA } =SecA



\cos\theta -\sin\theta= \sqrt2\sin\theta show that \cos\theta+ \sin\theta= \sqrt2\cos\theta



4\cos\theta -3\sec \theta =2\tan \theta.



simplify \dfrac { \sin { 2A }  }{ 1+\cos { 2A }  } =\tan { A } 



Given \sin \phi = \dfrac{15}{17}, find the value of : \dfrac{3 - 4 \, \sin^2 \phi}{4 \, \cos^2 \phi - 3}



\sin { \cfrac { \theta  }{ 2 }  } \sin { \cfrac { 7\theta  }{ 2 }  } +\sin { \cfrac { 3\theta  }{ 2 }  } \sin { \cfrac { 11\theta  }{ 2 }  } =\sin { 2\theta  } \sin { 5\theta  }



\sin \theta +\cos \theta =1 find \theta where \theta \epsilon(\dfrac{-\pi}{2}, \dfrac{\pi}{2})



Show that \dfrac{cosa+sina}{cosa-sina}=tan2a + sec 2a



Prove:\tan 3A-\tan 2A-\tan A=\tan A\tan 2A\tan 3A.



Prove:\tan 20^o+\tan 25^o+\tan 20^o\tan 25^o=1.



Prove : \sqrt{\dfrac{1 + \sin A}{1 - \sin A }} =  \sec A + \tan A



Find m if the following equation holds true \dfrac{1 + \cot^2 \theta}{1 + \tan^2 \theta} = \left(\dfrac{1 + \cot \, \theta}{1 + \tan \, \theta} \right)^m



Prove that: \sec ^{ 2 }{ \theta  } +\csc ^{ 2 }{ \theta  } =\sec ^{ 2 }{ \theta  } \csc ^{ 2 }{ \theta  }



Prove that
\sec ^{ 2 }{ \theta  } -\cfrac { \sin ^{ 2 }{ \theta  } -2\sin { 4\theta  }  }{ 2\cos { 4\theta  } -\cos ^{ 2 }{ \theta  }  } =1



Prove that: \frac{1- cos2\theta + sin2\theta}{1+ cos2\theta+ sin 2\theta}=tan\theta



Prove\quad that\quad \dfrac { \sin { \theta  } -\cos { \theta  } +1 }{ \sin { \theta  } +\cos { \theta -1 }  } =\dfrac { 1 }{ \sec { \theta  } -\tan { \theta  }  }



Solve \cfrac { 1+\sin { A }  }{ \cos { A }  } +\cfrac { \cos { A }  }{ 1+\sin { A }  } =2\sec { A }



Prove \dfrac{\cos \, A - \sin \, A + 1}{\cos \, A + \sin \, A - 1} = \text{csc} \, A + \cot \, A, using the identity \text{csc}^2 A = 1 + \cot^2 A



If x+y+z=xyz, prove that  \cfrac { 2x }{ 1-{ x }^{ 2 } } +\cfrac { 2y }{ 1-{ y }^{ 2 } } +\cfrac { 2z }{ 1-{ z }^{ 2 } } =\cfrac { 2x }{ 1-{ x }^{ 2 } } \cfrac { 2y }{ 1-{ y }^{ 2 } } \cfrac { 2z }{ 1-{ z }^{ 2 } }



If x=a+b\omega +c{ \omega  }^{ 2 },y=a\omega +b{ \omega  }^{ 2 }+c and z=a{ \omega  }^{ 2 }+b+c{ \omega  } then find the value of \cfrac { { x }^{ 2 } }{ yz } +\cfrac { { y }^{ 2 } }{ zx } +\cfrac { { z }^{ 2 } }{ xy }



If A+B+C=\pi , then \  secA \ (cosB \ cosC-sinB \ sinC)  is  equal  to__________



Prove \sin(60^0+\theta ) - \sin (60^0-\theta) = \sin\theta.



Prove \dfrac{\sin(A-B)}{\sin A \sin B}+\dfrac{\sin(B-C)}{\sin B \sin C}+ \dfrac{\sin(C - A)}{\sin C \sin A}= 0



Find the value of \sin{2\theta} if \sin{\theta}=\cfrac{-3}{5} and \pi< \theta< 3\cfrac{\pi}{2}



The value of sin (37^0) \times cos (53^0) =



Prove by using vectors that \sin{(\alpha+\beta)}=\sin{\alpha}\cos{\beta}+\cos{\alpha}\sin{\beta}



Solve : \cos^6 A - \sin^6 A = \cos \, 2 \, A \left (1 - \dfrac{1}{4} \sin^2 \, 2 \, A\right)



tan3A - tan 2A - tan A = tan3A tan2AtanA.



Prove that  \dfrac{{{{\sin }^2}A - {{\sin }^2}B}}{{\sin A\cos A - \sin B\cos B}} = \tan \left( {A + B} \right)



If m = \dfrac{\sin \, A}{\sin \,B} , n = \dfrac{\cos \, A}{\cos \, B}, then prove that (m^2 - n^2) \sin^2 B = 1 - n^2



Prove that : 4 - 4 \sin^2 \left (\dfrac{x + y}{2}\right) = (\sin x - \sin y )^2 + (\cos x + \cos y)^2



The number of real solutions of \dfrac { \pi} {2} + \cos^{-1} ( \cos x) = | \tan x | , 0 \le x \le 2 \pi is ________.



Find principal and general solution of the equation, \cot x =-\sqrt{3}.



Prove that , \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{\sec \theta - \tan \theta}}



Find the principal solutions of the following equation
\sin{x}=-\dfrac{1}{2}



If cosec\theta +\cot\theta =p, then prove that \cos\theta =\dfrac{p^2-1}{p^2+1}.



Find all solution of the equation.
\sin x+\sin \dfrac{\pi}{8}\sqrt{(1-\cos x)^2+\sin^2x}=0 in \left[\dfrac{5\pi}{2}, \dfrac{7\pi}{2}\right].



Prove the following identity :
\frac{1}{sin{\theta}+cos{\theta}}+\frac{1}{sin{\theta}-cos{\theta}}=\frac{2sin{\theta}}{1-2cos^2{\theta}}



If m = \left( {\cos \theta  - \sin \theta } \right)  and n = \left( {\cos \theta  + \sin \theta } \right) then show that \sqrt {{m \over n}}  + \sqrt {{n \over m}}  = {2 \over {\sqrt {1 - {{\tan }^2}\theta } }}



Evaluate :  
\cos (40^o + \theta) - \sin(50^o - \theta) + \cos 240^o + \cos 250^o \sin 240^o + \sin 250^o=?



If {\tan ^{ - 1}}\alpha  + {\tan ^{ - 1}}\beta  = \dfrac{\pi }{4}, then twice write the value of \alpha  + \beta  + \alpha \beta .



Find the principal solutions of the following equation
\tan{x}=-1



If \sqrt{3} \sin \, \theta = \cos \, \theta , find the value of \dfrac{\sin \theta \, \, \tan \theta ( 1 + \cos \, \theta)}{\sin \theta + \cos \theta}



Find the principal solutions of the following equation
\sqrt{3}\csc{x}+2=0



Find the principal solutions of the following equation
\tan{x}=-\sqrt{3}



If \cos \theta - \sin \theta = 1, show that \cos \theta + \sin \theta = 1



Find the principal solution of the following equation:
\sin{x}=\frac { \sqrt { 3 }  }{ 2 }



Find the principal solution of the following equation:
\cos{x}=\frac{1}{2}



Evaluate
\cos^{4}\theta+\sin^{4}\theta=1-2\cos^{2}\theta.\sin^{2}\theta



If \cot \theta + \tan \theta = x and \sec \theta - \cos \theta = y , then prove that x^2 y \left(\dfrac{2}{3}\right) xy^2 \left(\dfrac{2}{3}\right) = 1



Evaluate: \frac{{{{\cos }^2}\left( {{{45}^ \circ } + \theta } \right) + {{\cos }^2}\left( {{{45}^ \circ } - \theta } \right)}}{{\tan \left( {{{60}^ \circ } + \theta } \right)\tan \left( {{{30}^ \circ } - \theta } \right)}} + \cos ec\left( {{{75}^ \circ } + \theta } \right) - \sec \left( {{{15}^ \circ } - \theta } \right)



\dfrac{{\cos \,{{135}^ \circ } - \cos \,{{120}^ \circ }}}{{\cos \,{{135}^ \circ } + \cos \,{{120}^ \circ }}} = (3 - 2\sqrt 2 )



solve  2|\sin x| \geqslant |\,\,x\varepsilon \,[0,4\pi ]



if \sin \theta  =  - \dfrac{4}{5},\,\pi  < \theta  < \dfrac{{3\pi }}{2}, then find  
\sin 2\theta
\cos 2\theta \,
\tan 2\theta \,



Find value of 
\sin^2A{\,\,}\cot^2A +\cos^2A{\,\,}\tan^2{\,\,}A



If \cos \theta + \sin \theta = \sqrt{2} \cos \theta, then prove that \cos \theta - \sin \theta = \sqrt{2} \sin \theta



Prove that \sec^{4}\theta-\sec^{2}\theta=\tan^{4}\theta+\tan^{2}\theta



Solve the trigonometric equation
\dfrac{(\cot\ A-1+\text{cosec}\ A)^{2}}{(\cot\ A)^{2}-(1-\text{cosec}\ A)^{2}}



Solve:- \dfrac{{x\sin x}}{{1 + \cos x}}=0



Find the principal solution of \cos x =  - \frac{1}{2}



The number of solution of the equation, \sin ^ { 4 } x - \cos ^ { 2 } x \cdot \sin x + 2 \sin ^ { 2 } x + \sin x = 0,0 \leq x \leq 3 \pi is ..



Solve: \dfrac{cos7A}{secA}-\dfrac{sin7A}{cosec A}=cos 8A



Find the principal solutions of \cot{x}=-\sqrt{3}



The value of 6\left( {{{\sin }^6}\theta  + {{\cos }^6}\theta } \right) - 9\left( {{{\sin }^4}\theta  + {{\cos }^4}\theta } \right) + 4 is 



Solve:  \tan 2 x-\tan 3x=0



Prove that \displaystyle \dfrac { \tan \theta } { 1 - \cot \theta } + \dfrac { \cot \theta } { 1 - \tan \theta } = 1 + \sec \theta \>cosec \theta



If \cos \theta > 0, \tan \theta+ \sin \theta=m and \tan \theta -\sin \theta =n, then show that m^{2}-n^{2}=4\sqrt{mn}.



The set of angles between 0& 2\pi satisfying the equation 4{\cos ^2}\theta  - 2\sqrt 2 \cos \theta  - 1 = 0
 is



Solve for x and y:
{ x }^{ 2 }+ 2x \sin { xy } + 1= 0



If \sum_{i=1}^{n}cos \Theta _{i}=n, then the value of \sum_{i=1}^{n}sin\Theta _{i}



Find the value of sec\theta-tan\theta if 
sec\theta+tan\theta=5 ,



\cos 2 \hat { x } + a \sin x = 2 a - 7 has a solution for what values of a?



Show that \dfrac { 1 }{ \text{cosec}\theta -\cot\theta  } -\dfrac { 1 }{ \sin\theta  } =\dfrac { 1 }{ \sin\theta  } -\dfrac { 1 }{ \text{cosec}\theta +\cot\theta  }



Prove the given statement :
 \cos^{4} A - \sin^{4} A + 1 = 2\cos^{2} A



Simplify:-
{\left( {\text{cos ec}\theta  - \cot \theta } \right)^2}



Prove:
\cot ^{ 2 }{ A\left( \dfrac { \sec { A-1 }  }{ 1+\sin { A }  }  \right)  } +\sec ^{ 2 }{ A\left( \dfrac { \sin { A-1 }  }{ 1+\sec { A }  }  \right)  } =0



Find the principle solution of the equation .
\sin x=-\dfrac{1}{2}



Prove that:
2 + \tan ^ { 2 } \theta + \dfrac { 1 } { \tan ^ { 2 } \theta } = \dfrac { 1 } { \sin ^ { 2 } \theta - \sin ^ { 4 } \theta }



If m\cos^2A+n\sin^2A=p, then \cot^2A=



\dfrac { { cos }^{ 2 }{ 20 }^{ \circ  }+{ cos }^{ 2 }{ 70 }^{ \circ  } }{ { sin }^{ 2 }{ 31 }^{ \circ + }+{ sin }^{ 2 }{ 59 }^{ \circ  } } +{ sin }^{ 2 }{ 64 }^{ \circ  }+cos{ 64 }^{ \circ  }sin{ 26 }^{ \circ  }



Prove the identity: \dfrac{{{\text{sinA}}}}{{{\text{1 + cosA}}}} = {\text{coscA}} - {\text{cotA}}.



If '\theta' is the parameter, then the family of lines represented by 
(2 cos \theta + 3 sin\theta) X + (3 cos \theta - 5 sin \theta)
y - (5cos\theta - 7 sin\theta) = 0 are concurrent at the point



Prove that \cot \theta  - \tan \theta  = \dfrac{{2{{\cos }^2}\theta  - 1}}{{\sin \theta \cos \theta }}



Prove that: \dfrac { \tan\theta +\sec\theta -1 }{ \tan\theta -\sec\theta -1 } =\sec\theta +\tan\theta \\



Prove : \dfrac {\cos^{3}\theta-\sin^{3}\theta}{\cos \theta-\sin \theta}+\dfrac {\cos^{3}\theta+\sin^{3}\theta}{\cos \theta+\sin \theta}=2



Prove that \cot \theta  - \tan \theta  = \dfrac{{\left( {2{{\cos }^2}\theta  - 1} \right)}}{{\left( {\sin \theta. \cos\theta } \right)}}



If cos\left( \alpha  \right) =\dfrac { 1 }{ 2 } then \alpha=?



Given that tan( \theta_1+ \theta_2)= \dfrac{tan \theta_1+ tan \theta_2}{1- tan \theta_1tan \theta_2} . Find ( \theta_1+ \theta_2) when tan \theta_1= \dfrac 12  tan \theta_2=\dfrac 13 .



Evaluate:  \tan ^ { 2 } \dfrac { \pi } { 16 } + \tan ^ { 2 } \dfrac { 2 \pi } { 16 } + \tan ^ { 2 } \dfrac { 3 \pi } { 16 } + \ldots \ldots + \tan ^ { 2 } \dfrac { 7 \pi } { 16 }



If cosA=\dfrac{\sqrt{3}}{2}, find the value of cotA+ tanA



Prove that \sin^6\theta  + {\cos ^6}\theta  + 3\sin^2\theta \cos^2\theta  = 1



Solve
\dfrac {\sin^{2}\theta}{\cos^{2}\theta}-\dfrac {\sin^{2}\theta}{1}=\tan^{2}\theta \cdot \sin^{2}\theta



If \sin\left( x-20 \right) ^{ \circ  }\cos\left( 3x-10 \right) ^{ \circ  }=0, Then find the value of x.



If A-B=\dfrac{\pi}{4}, then (1+\tan{A})(1-\tan{B})=



If \cot \theta =\dfrac {7}{8}, evaluate:
\dfrac {(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}.



If  {\tan ^{ - 1}}\sqrt 3  + {\cot ^{ - 1}}x = \frac{\pi }{2} then find the value of x.



Solve:
(\sin \theta+\cos \theta)(\tan \theta+\cot \theta)=\csc \theta+\cot \theta



Prove that \displaystyle \frac{{\sin \theta  - \cos \theta  + 1}}{{\sin \theta  + \cos \theta  - 1}} = \frac{1}{{\sec \theta  - \tan \theta }}, using the identity {\sec ^2} = 1 + {\tan ^2}\theta .



Prove that, { cos20 }^{ \circ  }{ cos }40^{ \circ  }{ cos60 }^{ \circ  }{cos80^o}=\dfrac { 1 }{ 16 }



Prove that, { sin20 }^{ \circ  }{ sin }40^{ \circ  }{ sin80 }^{ \circ  }=\dfrac { \sqrt { 3 }  }{ 8 }



Prove ;
\dfrac{\tan A}{(1+\tan^{2}A)^{2}}+\dfrac{\cot{A}}{(1+\cot^{2}A)^{2}}=\sin A \cos A



\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}} = - \left( {\cos 2x + \cos x} \right)



Prove that :   \dfrac { \left( 1 + \tan ^ { 2 } A \right) \cot A } { \csc ^ { 2 } A } = \tan A.



If x=a\sin\theta+b\cos\theta and y=a\cos\theta-b\sin\theta, then prove that {x}^{2}+{y}^{2}={a}^{2}+{b}^{2}



Evaluate the following.
2\tan^{2} 45^{o}+\cos^{2} 30^{o}



Evaluate the following.
\dfrac {\sec ^{2}60^{o}-\tan ^{2}60^{o}}{\sin ^{2}30^{o}+\cos ^{2}30^{o}}



If sin (A+B) = 1 and sin (A-B) = \frac { 1 }{ \sqrt { 3 }  } , find the value of tan A + tan B.



Prove that : \left( {\cos ecA - \sin A} \right)\left( {\sec A - \cos A} \right) = \dfrac{1}{{\tan A + \cot A}}



Prove that: \sec^{6}x-\tan^{6}x=1+3\sec^{2}x\times \tan^{2}x



\dfrac{\cos A+\sin A}{\cos A-\sin A}=0 find A



Solve the equation (\cos x-\sin x)(2\tan x+2)=0



Prove that:
\dfrac{\sec A-\tan A}{\sec A+\tan A}=\left(\dfrac{\cos A}{1+\sin A}\right)^2.



Find the principal solution: 2+\sqrt { 3 } sec{x}-4cosx=2\sqrt { 3 }



Prove the following:
\dfrac{(\tan\theta+\sec\theta-1)}{\tan\theta-\sec\theta+1)}=\dfrac{1+\sin\theta}{\cos\theta}.



Prove that : \left( {\sin \theta  + \cos \theta } \right)\left( {\tan \theta  + \cot \theta } \right) = \sec \theta  + \text{cosec}\theta



If (a\sin A)=b\cos A and a\sin^{3}A+b\cos^{3}A=\sin A\cos A, then prove a^{2}+b^{2}=1



If \sec \theta  + \tan \theta  = p, then find  the value \text{cosec} \theta .



If a line makes angles   \alpha, \beta, \gamma  with positive direction co-ordinate axes then prove that   \sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2 



Prove that 2{\sec ^2}\theta  - {\sec ^4}\theta  - 2\cos e{c^2}\theta  + \cos e{c^4}\theta  = {\cot ^4}\theta  - {\tan ^4}\theta



Prove that \text{cosec}^6\theta  = {\cot ^6}\theta  + 3{\cot ^2}\theta .\text{cosec}^2\theta  + 1



Prove that \displaystyle \frac{{\sin \theta }}{{1 - \cos \theta }} + \frac{{\tan \theta }}{{1 + \cos \theta }} = \cot \theta  + \sec \theta .\text{cosec}\theta



Evaluate :
\dfrac { cosA-sinA+1 }{ cosA+sinA-1 } =cosecA+cotA.



\sin (A+B)=\dfrac{\surd{3}}{2} and \cos (A-B)=\dfrac{\surd{3}}{2}, where (A+B) and (A-B) are acute angles. Find the values of A and B A,B <90^{0}



Prove that \dfrac{{\sin \theta  - 2\,{{\sin }^3}\theta }}{{2\,{{\cos }^3}\theta  - \cos \,\theta }} = \tan \theta



Find the values of \theta,( in degrees) if \sin (\theta +24)=\cos \theta, where (\theta+24)^{0} is an acute angle .



Prove \displaystyle \frac{{\tan \theta }}{{1 - \cot \theta }} + \frac{{\cot \theta }}{{1 - \tan \theta }} = 1 + cosec \theta. \sec \theta



If \sec \theta  - \tan \theta  = x, then show that \sec \theta  + \tan \theta  = \dfrac{1}{x} and hence find the values of \cos \theta and \sin \theta.



Prove \displaystyle \frac{{1 + \cos A}}{{\sin A}} + \frac{{\sin A}}{{1 + \cos A}} = 2\text{cosec} \ A



Evaluate : \dfrac { \cos x } { ( 1 + \sin x ) ^ { 2 } ( 2 + \sin x ) }



Prove that \displaystyle \frac{{{\mathop{\rm tanA}\nolimits} }}{{1 + \sec A}} - \frac{{\tan A}}{{1 - \sec A}} = 2\text{cosec}A



Prove that \displaystyle \frac{{\tan \theta  - \cot \theta }}{{\sin \theta \cos \theta }} = {\tan ^2}\theta  - {\cot ^2}\theta



Solve:\left(\cos{x}-\sin{x}\right)\left(2\tan{x}+\dfrac{1}{\cos{x}}\right)+2=0



Prove that \dfrac { \cos A+ \sin A-1 }{ \cos A-\sin A+1 } =\dfrac { 1 }{ \text{cosec}A+\cot A } , using the identity { \text{cosec }}^{ 2 }A-{ \cot }^{ 2 }A=1.



Prove \left (\dfrac{1 + \tan^2 A}{1 + \cot^2 A}\right) = \left (\dfrac{1 - \tan A}{1 - \cot A}\right)^2



If \cos \left( {2{{\tan }^{ - 1}}x} \right) = \dfrac{1}{2},\;then\;the\;value\;of\;x\;is\;........



Prove that : \dfrac{{1 + \cos A + \sin A}}{{1 + \cos A - \sin A}} = \dfrac{{1 + {\mathop{\rm sinA}\nolimits} }}{{\cos A}}



Find the value of \theta ,( in degrees ) if, \dfrac{{\cos \theta }}{{1 - \sin \theta }} + \dfrac{{\cos \theta }}{{1 + \sin \theta }} = 4;\,\,\theta  \le 90^\circ



Prove that : \dfrac{{\text{cosec}\theta  - 1}}{{\text{cosec}\theta  + 1}} = \dfrac{{{{\cos }^2}\theta }}{{{{\left( {1 + \sin \theta } \right)}^2}}}



If { sin }^{ 2 }\theta +5{ cos }^{ 2 }\theta =4, then find \theta and hence prove that sec\theta +cosec\theta =2+\dfrac { 2 }{ \sqrt { 3 }  }



Prove the following identities :
(i) ( \sin \theta + \csc \theta ) ^ { 2 } = \sin ^ { 2 } \theta + \csc ^ { 2 } \theta + 2                                              
(ii) \cos ^ { 4 } \theta - \sin ^ { 4 } \theta = 1 - 2 \sin ^ { 2 } \theta



Find the principal solution of \sqrt 3 \sec x + 2 = 0



Find the magnitude, in radians and degrees, of the interior angle of
(1) a regular pentagon,
(2) a regular heptagon,
(3) a regular octagon,
(4) a regular duodecagon,
and (5) a regular polygon of 17 sides.



If  \tan \theta + \sin \theta = m  and  \tan \theta - \sin \theta = n ,  then
(i) m ^ { 2 } - n ^ { 2 } = 4 m n
(ii) m ^ { 2 } + n ^ { 2 } = 4 m n
(iii) m ^ { 2 } - n ^ { 2 } = m ^ { 2 } + n ^ { 2 }
(iv) m ^ { 2 } - n ^ { 2 } = 4 \sqrt { m n }



Prove that \dfrac{\tan A}{1+ \sec A}-\dfrac{\tan A}{1 -\sec A}=2\text{cosec}A



Prove that : sec^{4}\Theta (1-sin^{4}\Theta )-2tan^{2}\Theta =1



Solve the equation sinx+cosx=1



\frac{sinA-cosA+1}{sinA+cosA-1}=\frac{1}{secA-tanA}



Fin an acute angle  \Theta   , when 
\frac{cos\Theta -sin\Theta }{cos\Theta +sin\Theta }=\frac{1-{\sqrt{3}}}{1+\sqrt{3}}.



Find the degree measure of {\dfrac{2\pi}{15}}^{c}



Solve, by factorising, the equation 2\cos \theta\sin\theta-2\cos\theta-\sin\theta+1=0 for 0\le\theta\le \pi



Find the principal solution of the following equation:
co\sec { x } =2



Solve the following equation:
2^{\sin^{2}x}+2^{\cos ^{2}x}=2\sqrt 2



Find the principal solution of the following equation:
\sqrt { 3 } co\sec { x } +2=0



Find the principal solution of the following equation:
\sqrt { 2 } \cos { x } +1=0



Find the principal solution of the following equation:
\sin { x } =\cfrac { -1 }{ 2 }



If \tan x=\dfrac {b}{a}, then find the value of \sqrt {\dfrac {a+b}{a-b}}+ \sqrt {\dfrac {a-b}{a+b}}



Prove that :
\cos 2\alpha \cos 2\beta +\sin^2 (\alpha -\beta)-\sin^2 (\alpha +\beta)=\cos 2(\alpha +\beta)



Express in terms of a right angle the angles
60^{\circ}.
75^{\circ} 15'.
63^{\circ} 17'25''.
130^{\circ} 30'.
210^{\circ} 30'30''.
370^{\circ} 20'48''.



Mark the position of the revolving line when it has traced out the following angles:
\dfrac {4}{3} right angle.
3\dfrac {1}{2} right angles.
13\dfrac {1}{3} right angles.
120^{\circ}
315^{\circ}
745^{\circ}
1185^{\circ}
150^{g}
420^{g}
875^{g}.



Express in grades, minutes, and seconds the angles
30^{\circ}
81^{\circ}
138^{\circ} 30'
35^{\circ} 47'15''
235^{\circ} 12'36''
475^{\circ} 13'48''.



Find two regular polygons such that the number of their sides may be as 3 to 2 and the number of degrees in an angle of the first to the number of grades in an angle of the second as 5 to 3.



The number of degrees in one acute angle of a right-angled triangle is equal to the number of grades in the other; express both the angles in degrees.



The circular measure of two angles of a triangle are respectively \dfrac {1}{2} and \dfrac {1}{3}; what is the number of degrees in the third angle?



How many degrees, minutes and seconds are respectively passed over in 11\dfrac {1}{9} minutes by the hour and minute hands of a watch?



Given L\cot 71^o27'=9.5257779 and L\cot 71^o28'=9.5253589, find the value of L\cot 71^o27'47'', and solve the equation L\cot\theta =9.5254782.



With the help of the same page solve the equations
(1) L\tan\theta =10.1959261,
(2) L cosec\theta =10.0738125,
(3) L\cos \theta =9.9259283, and
(4) L\sin\theta =9.9241352.



One angle of a triangle is \dfrac {2}{3}x grades and another is \dfrac {3}{2}x degrees, whilst the third is \dfrac {\pi x}{75} radians; express them all in degrees.



Prove that the number of Sexagesimal minutes in any angle is to the number of Centesimal minutes in the same angle as 27 : 50.



Find the times (1) between four and five o'clock when the angle between the minute-hand and the hour-hand is 78^{\circ}, (2) between seven and eight o'clock when this angle is 54^{\circ}.



Find in degrees, minutes, and seconds the angle whose sine is .6, given that \log 6=7781513, L\sin 36^o52'=9.7781186, and L\sin 36^o53'=9.7782870.



Eliminate \theta from the equations
\tan (\theta - \alpha) + \tan (\theta - \beta) = x,
and \cot (\theta - \alpha) + \cot (\theta - \beta) = y.



If b=14, c=11, and A=60^o, find B and C, given that
log 2=.30103, log 3=.4771213,
L\tan 11^o44'=9.3174299,
and L\tan 11^o45'=9.3180640.



 Eliminate x  from the equations,  \sin (a+x)=2 b  and  \sin (a-x)=2 c .



If b=90, c=70, and A=72^o48'30'', find B and C, given log 2=.30103, L\cot 36^o24'15''=10.1323111,
L\tan 9^o37'=9.2290071,
and L\tan 9^o38'=9.2297735.



The two sides of a triangle are 540 and 420 yards long respectively and include an angle of 52^o6'. Find the remaining angles, given that
log 2=.30103, L\tan 26^o3'=9.6891430,
L\tan 14^o20'=9.4074189, and L\tan 14^o21'=9.4079453.



Find the general solution of the equation cos 4x = cos 2x



Find the general solution of the equation \cos 3x + \cos x\cos 2x = 0.



Find the general solution of cosec  x = -2



Find the principal and general solutions of the question tan x = \sqrt{3}.



Find the principal and general solutions of the equation cot x = -\sqrt{3}



If \sec \theta =x+\dfrac{1}{4x'}, prove that \sec \theta +\tan \theta =2x or \dfrac{1}{2x}.



Find the general solution of the equation sin x + sin 3x + sin 5x = 0



If x\sin^3 \theta +y \cos^3 \theta =\sin \theta \cos \theta and \sin \theta =y \cos \theta , prove x^2 +y^2 =1.



If \tan \theta +\sin \theta =m and \tan \theta -\sin \theta =n, show that (m^2 -n^2)=4\sqrt {mn}.



Find an acute angle \theta, when \dfrac{\cos \theta -\sin \theta }{\cos \theta +\sin \theta }=\dfrac{1-\sqrt 3}{1+\sqrt 3}



Define a degree measure.



Define principal solutions of trigonometric equations.



Find the principal solution of the following equations
\sin x=\dfrac{\sqrt{3}}{2}



Find the principal solution of the following equations
\tan x=-\dfrac{1}{\sqrt{3}}



Find the principal solutions of the following equation:
cot \theta= 0



Find the principal solutions of the following equation:
\sqrt{3} cosec \theta +2=0



Find he principal values of the following 
\cot^{-1} (\sqrt{3})



If \sin { \theta  } =\cfrac{m}{\sqrt { m^{ 2 }+{ n }^{ 2 } } }, prove that m\sin { \theta  } +n\cos { \theta  } =\sqrt { m^{ 2 }+{ n }^{ 2 } }



Find the principal solution of the following equations
\tan x=\sqrt{3}



98 Find he principal values of the following 
\cos^{2} \left ( -\dfrac{1}{\sqrt{2}} \right )



Solve: \cos x=\dfrac{1}{2}



Convert \dfrac{3 \pi}{5} radian into sexagesimal system.



Find the principal solution of the following equations
\sec x=2



Express the following angles in sexagesimal system.
\dfrac{5 \pi}{6}



Express the following angles in sexagesimal system.
\dfrac{2 \pi}{5}



Express the following angles in sexagesimal system.
\dfrac{\pi}{2}



Find the principal solution of the following equations
\csc x=-2



Express the following angles in sexagesimal system.
\dfrac{ \pi}{15}



Express the following angles in degree, minutes and seconds.
\dfrac{3 \pi}{7} radians



Express the following angles in degree, minutes and seconds.
\dfrac{\pi}{8} radians



The equations have at least one root on the interval



A root of the equation is given by (0 < \theta < \pi)



The number of distinct solutions of the equation \dfrac {5}{4} \cos^22x+\cos^4x+\sin^4x+\cos^6x+\sin^6x=2 in the interval [0, 2\pi] is _________



If \displaystyle\frac{\tan\theta}{1-\cos\theta}+\frac{\cot\theta}{1-\tan\theta}=m+\sec \theta \text{cosec} \theta.Find m



State whether the following are true or false. Justify your answer.
(i) \displaystyle \sin { \left( A+B \right) =\sin { A } +\sin { B }  } 
(ii) The value of \displaystyle \sin { \theta  }  increases as \displaystyle \theta increases.
(iii) The value of \displaystyle \cos { \theta  }  increases as \displaystyle increases.
(iv) \displaystyle \sin { \theta  } =\cos { \theta  }  for all values of \displaystyle \theta .
(v) \displaystyle \cot { A }  is not defined for \displaystyle A={ 0 }^{ \circ  }.



Prove the following identities.
\displaystyle\, \frac{(1 \, + \, cos \, x)(1 \, + \, cos \, 2x)}{(1 \, + \, sin \, x)(1 \, - \, cos \, 2x)} \, = \, \frac{1 \, - sin \, x}{1 \, - \, cos \, x}



Solve the following equations.
\displaystyle cos \, 3x \, tan \, 5x \, = \, sin \, 7x.



If in \triangle ABC, a \cos B \cos C + b \cos C \cos A+ c \cos A\cos B= \frac{m\triangle}{R}.Find m



Prove the following identities 
\displaystyle\, \frac{sin \, 2\alpha }{1 \, + \, cos \, 2\alpha} \cdot \frac{cos \, \alpha }{1 \, + \, cos \, \alpha} \, = \, tan\frac{\alpha }{2}.



Find a if 4 \cos \dfrac{2\pi}{7} \cos \dfrac{\pi}{7} -1 = a \cos \dfrac{ a\pi}{7}



If \displaystyle cosec \frac{\pi}{32} + cosec \frac{\pi}{16} +cosec \frac{\pi}{8} + cosec \frac{\pi}{4} + cosec \frac{\pi}{2} = cot \frac{\pi}{k}. Find k.



If m^2 \cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi }{15} \cos \frac{14\pi}{15} = n^2, then find the value of \frac{m^2 - n^2}{n^2}.



Find m if \sin 12^0 \sin 18^0 \sin 42^0 \sin 48^0 \sin 72^0 \sin 78^0=\dfrac{\cos18^0}{2m}.



Prove \dfrac{\tan x}{1-\cot x}+\dfrac{\cot x}{1- \tan x}=1+ \tan x + \cot x



Prove \dfrac{{{{\tan }^3}\theta }}{{1 + {{\tan }^2}\theta }} + \,\dfrac{{{{\cot }^3}\theta }}{{1 + {{\cot }^2}\theta }} = \dfrac{{1 - 2{{\sin }^2}\theta {{\cos }^2}\theta }}{{\sin \theta \cos \theta }}



 If \cos^3\frac{\pi}{9}+ \sin^3\frac{\pi}{18} = \dfrac{m}{4} \left( \cos\frac{\pi}{9}+ \sin\frac{\pi}{18}\right).Find m



Find the solution of
(i) 2 \cos ^ { 2 } \theta + 4 \sin \theta \cos \theta + 1 = 0
(ii)   { \sec } x + \tan x = 2 



Prove
\dfrac { tan\theta  }{ sec\theta -1 } =\dfrac { tan\theta +sec\theta +1 }{ tan\theta +sec\theta -1 }



If \prod _ { r = 4 } ^ { 8 } \cos \left( \dfrac { \theta } { 2 ^ { r } } \right) = \dfrac { \sin \left( \dfrac { \theta } { 2 ^ { n _ { 1 } } } \right) } { ( 2 ) ^ { n _ { 2 } } \sin \left( \dfrac { \theta } { 2 ^ { n _ { 3 } } } \right) } , then the value of n _ { 1 } + n _ { 3 } - n _ { 2 } is



Find the value of \theta for the equation. 
2 sin 2\theta= \sqrt 3



If 2 sin\left( \theta +\dfrac { \pi  }{ 3 }  \right) =\cos\left( \theta -\dfrac { \pi  }{ 6 }  \right) , prove that \tan \theta +\sqrt { 3 } =0



Prove that
2\sec^{2}\theta -\sec^{4}\theta -2\csc^{2}\theta +\csc^{4}\theta =\cot^{4}\theta -\tan^{4}\theta



Solve 2{ cos }^{ 2 }\theta +3sin\theta =0



Evaluate: \displaystyle \lim _{ { x\rightarrow 0 } } \dfrac { \{ \sin  (\alpha +\beta )x+\sin  (\alpha -\beta )x+\sin  2\alpha x\}  }{ \cos ^{ { 2 } } \beta x-\cos ^{ { 2 } } \alpha x } 



Prove that \frac{{\sin x - \sin 3x}}{{{{\sin }^2}x - {{\cos }^2}x}} = 2\sin x



In \Delta ABC, prove that:
asin (B-C)=bsin B-csin C



For what value of acute angle \dfrac{cos\Theta }{1-sin\Theta }+\dfrac{cos\Theta }{1+sin\Theta }=4  is true ? 



Find the principal solution of the following equation:
\sec { x } =\cfrac { 2 }{ \sqrt { 3 }  }



If a=21, b=11, and C=34^o42'30'', find A and B, given log 2=.30103,
and L\tan 72^o38'45''=10.50515.



If \cos { \theta  } =\cfrac { q }{ \sqrt { p^{ 2 }+{ q }^{ 2 } }  } , prove that { \left( \cfrac { \sqrt { p^{ 2 }+{ q }^{ 2 } }  }{ p } +\cfrac { q }{ p }  \right)  }^{ 2 }=\cfrac { \sqrt { p^{ 2 }+{ q }^{ 2 } } +q }{ \sqrt { p^{ 2 }+{ q }^{ 2 } } -q }



Express in grades, minutes, and seconds the angles,
\dfrac {53\pi^{}}{100} radians
\dfrac {7\pi^{}}{6} radians
10\pi^{} radians



Class 11 Engineering Maths Extra Questions