Solve $$\lim _{ x\rightarrow 0 }{ \dfrac { \cos { x } -\cot { x } }{ x } }$$
Apply the lmitsto given expression $$\displaystyle\lim_{x\rightarrow 0}\left(\left((x+1)(x+2)(x+3)(x+4)\right)^{\dfrac{1}{4}}-x\right)$$.
Solve: $$\displaystyle \lim_{ n\rightarrow\infty}$$ $$\dfrac{\Sigma n^2 \, \Sigma n^3}{\Sigma n^6} =$$? If your answer is in the form $$\dfrac{p}{q}$$ ,then find $$|p-q|$$.
The value of $$\mathrm{f}(0)$$ such $$\displaystyle \mathrm{f}(\mathrm{x})=\frac{1-\cos^{2}\mathrm{x}+\sin^{2}\mathrm{x}}{\sqrt{\mathrm{x}^{2}+1}-1}(\mathrm{x}\neq 0)$$ is continuous at $$\mathrm{x}=0$$ is
If $$f(x) =\displaystyle \frac{a\sin x -bx +cx^2+ x^3}{2x^2 \ell n(1+ x)- 2x^3+ x^4}$$, when $$x\neq 0$$ and $$f(x)$$ is continuous at $$x = 0$$, find value of $$200\times f(0)$$
$$\displaystyle \Delta (x)=\begin{vmatrix} \tan x & \tan (x+h) & \tan (x+2h) \\ \tan (x+2h) & \tan x & \tan (x+h) \\ \tan (x+h) & \tan (x+2h) & \tan x \end{vmatrix}$$ Find the value of $$\displaystyle \lim_{h\rightarrow 0}\frac{\sqrt{3}\Delta (\pi /3)}{h^{2}}$$
Match the entries in Column I with entries in Column II
Evaluate the following limits : $$\displaystyle \lim_{x\to 0}\left(\dfrac {3^{2+x}-9}{x}\right)$$
Find absolute maximum and minimum values of a function f given by $$f(x)=12x^{4/3}-6x^{1/3}, x\in [-1, 1]$$.
Evaluate the following limits : $$\displaystyle \lim_{x\to 0}\left(\dfrac {e^{2+x}-e^2}{x}\right)$$
Evaluate the following limits : $$\displaystyle \lim_{x\to 0}\left(\dfrac {e^{4x}-1}{x}\right)$$
Suppose $$F ( x ) \left\{ \begin{array} { c l } { a + b x , } & { x _ { c 1 } } \\ { 4 , } & { x = 1 } \\ { b - a x , } & { x > 1 } \end{array} \right.$$ and $$\lim f ( x ) \cdot f ( x )$$ What are the possible values of a and b?
Class 11 Commerce Applied Mathematics Extra Questions