Processing math: 53%

Limits And Continuity     - Class 11 Commerce Applied Mathematics - Extra Questions

Evaluate the given limit: limx0xsecx



limx0|x|x=1



Show that limx0+|x|x=1



f(x)=x1|x1|2
Find both right and left hand limit of limit is exist at x=1



limx(1+2x1+3x)x



limx0e2x1sin3x=



If 
f(x)=tanxxπ, then
limxπf(x)=?



limx(1+1x)2x



Ltx0x1+x1



Evaluate limx0logx+log1+xxx



limx049x+x23



limx0log(3+x)log(3x)x



Solve:
limx03sin2x2sinx23x2



limxa(x+12x+1)x2=



limx3x2x6x33x2+x3



The value of xlimxsinπ4xcosπ4x



Evaluate limx2x532x38



limx1nx1mx1 ( m and n integers) is equal to 



Evaluate: limx2x5+32x3+8



limxax7a7xa



Evaluate: limx0(1+x)61(1+x)51



Evaluate limx2tanπxx+2 



Prove that limx0(ex1x)=1 



Evaluate limx0xtan4x1cos4x 



The value of limh0e2h1h 



ltxex21ex2+1=



limxπ/33tanxtan3xcos(x+π6) is equal to



 The value limxtan13tan6x2tan5x3tan4xtan2x4tanx+3 is



Prove that the derivative of an odd function is always an even function.



Evaluate the Given limit: limx0sinaxsinbx,a,b0



Evaluate the given limit: limx0cos2x1cosx1



Find the value of limxπ2tan2xxπ2



Evaluate the given limit: limx0ax+xcosxbsinx



limxaxcosaacosxxa



Find: limnnr=1=116r2+8r3.



Calculate the following limits.
limx0sin3x2x.



Find the following limit.
limx0cos(x/2)sin(x/2)cosx.



Solve limx2(x532x38)



Solve limx0cosxcotxx



Apply the lmitsto given expression limx0(((x+1)(x+2)(x+3)(x+4))14x).



Solve:  limn Σn2Σn3Σn6=? If your answer is in the form pq ,then find |pq|.



limx0xtan2x2xtanx(1cos2x)2 equals?



Evaluate: limx3[1x3+9x27x3]



The value of limx(xsin(3x))



If limx0sinx4x.



Evaluate limx1x151x101



Solve: limx2atanxasinxtanxsinx,a>0



Evaluate:limx0((x+1)23(x1)23)



Solve limxπ4f(x)f(π4)xπ4, where f(x)=sin2x



Evaluate the limit
limxπ6cot2x3cosecx2



Evaluate: 
limx01+sinx1sinxx



Evaluate:
limx01+x1log(1+x)



Prove that
L=limn(1+4n)3n = 12



Evaluate: limx1(ln(1+x)ln2)(3.4x13x)[(7+x)13(1+3x)12]sin(x1)



Evaluate limxπ/21+cos2x(π2x)2.



limxπ2(secxtanx)



Solve:
 limx2x532x24.



If limxa2xx2+3a2x+a2a=2 (where aR+) then a is equal to



Solve
limx1(1x)2



limx0cosxπx



limx2x7128x532



Prove that every rational function is a continuous. 



limxcosx+sin2xx+1       



Evaluate limx2+x212x+4.



\displaystyle \lim _{ x\rightarrow 0 } \dfrac{x^{3}+3x^{2}-9x-2}{x^{3}-x-6}



\underset { x\rightarrow 0 }{ lim } \frac { sin(2+x)-sin(2-x) }{ x } 



Evaluate
\underset { h\rightarrow 0 }{ lim } \dfrac { \left( a+h \right) ^{ 2 }sin(a+h)-{ a }^{ 2 }sina }{ h }



Solve:
\lim_{x\rightarrow 0}\cfrac{(1-\cos 3x)}{x\sin 2x}



Evaluate:\displaystyle {\lim}_{x\rightarrow 0}{\dfrac{{\sin}^{2}{2x}}{{\sin}^{2}{4x}}}



Evaluate \displaystyle\lim_{x\to 3} \left(\dfrac{x^4-81}{2x^2-5x-3}\right)



Evaluate:\displaystyle \lim_{x\rightarrow 0}\cos x \cot 2x



Using the \in -\delta definition prove that \underset { x\rightarrow 3 }{ lim } \left( { x }^{ 2 }+2x-8 \right) =7



Using the \in -\delta definition prove that \underset { x\rightarrow -2 }{ lim } \left( 3x+8 \right) =2



Evaluate : \underset { h\rightarrow 0 }{ lim } \dfrac { { log }_{ a }(x+h)-{ log }_{ a }x }{ h } 



Find \displaystyle\lim_{x\rightarrow 1^+}\dfrac{1}{x-1}.



Find \displaystyle\lim_{x\rightarrow 2}[x].



Find \displaystyle\lim_{x\rightarrow 1}[x].



Show that \displaystyle\lim_{x\rightarrow 0}\dfrac{1}{x} does not exist.



If \displaystyle\lim_{x\rightarrow 0^+}\dfrac{2}{x^{1/5}}=a then \dfrac1a is equal to____.



If \displaystyle\lim_{x\rightarrow 0^+}\dfrac{1}{3x}=a then \dfrac {1} a is equal to____.



If \displaystyle\lim_{x\rightarrow -8^+}\dfrac{2x}{x+8}=a then \dfrac1a is equal to____.



Show that \displaystyle\lim_{x\rightarrow 0}\dfrac{x}{|x|} does not exist.



Solve: \displaystyle\lim_{h\rightarrow 0}\dfrac{\sqrt{x+h}-\sqrt{x}}{h}, x\neq 0.



Find \displaystyle\lim_{x\rightarrow \tfrac{5}{2}}[x].



Show that \displaystyle\lim_{x\rightarrow 2^-}\dfrac{x}{[x]}\neq \displaystyle\lim_{x\rightarrow 2^+}\dfrac{x}{[x]}.



Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 1}\dfrac{x^2+1}{x+1}.



State Yes or No.
\displaystyle\lim_{x\rightarrow 3^+}\dfrac{x}{[x]} is equal to \displaystyle\lim_{x\rightarrow 3^-}\dfrac{x}{[x]}.



Find \displaystyle\lim_{x\rightarrow -5/2}[x].



Evaluate the following limit.
\displaystyle\lim_{n\rightarrow 4}\left(n^2\sqrt n\right).



Evaluate the following limits.
\displaystyle\lim_{n\rightarrow 2}\sqrt {x+2}\sqrt x



Evaluate the following limits :
\displaystyle \lim_{x\to 2}\left(\dfrac {3^x +3^{3-x}-12}{3^{3-x}-3^{x/2}}\right)



Evaluate the following limits :
\displaystyle \lim_{x\to 0}\left(\dfrac {a^x - b^x}{x}\right)



Evaluate the following limits :
\displaystyle \lim_{x\to 0}\left(\dfrac {a^x -a^{-x}}{x}\right)



Evaluate the following limits :
\displaystyle \lim_{x\to 0}\left(\dfrac {e^x -x-1}{x}\right)



Evaluate the following limits :
\displaystyle \lim_{x\to 0}\left(\dfrac {e^{bx}-e^{ax}}{x}\right), 0 < a < b



Evaluate the following limits :
\displaystyle \lim_{x\to 4}\left(\dfrac {e^x -e^4}{x-4}\right)



Evaluate the following limits :
\displaystyle \lim_{x\to 0}\left(\dfrac {e^{3x}-e^{2x}}{x}\right)



Evaluate lim_{ n \to \infty} n ^{-n^2}\left\{( n + 2^{o})(n + 2^{-1})(n + 2^{-2})....(n + 2^{-n + 1})\right\}^n



Evaluate the following limits :
\displaystyle \lim_{x\to 0}\left(\dfrac {2^x -1}{x}\right)



Find the limits of 
\dfrac{ 1 -x + \log x}{1 - \sqrt{2x - x^2}} , when x = 1 .



\displaystyle \lim _{x \rightarrow 0}\left(\dfrac{1+5 x^{2}}{1+3 x^{2}}\right)^{1 / x^{2}}=   ___________



The value of \displaystyle \lim _{x \rightarrow \infty} \dfrac{\log _{e}\left(\log _{e} x\right)}{e^{\sqrt{x}}}  is



Let \displaystyle \lim_{T\infty} \dfrac{1}{T} \displaystyle \int_{0}^{T} (sinx + sin ax)^2dx=L ,then



\displaystyle \lim_{x \to -\infty} \left[\dfrac{x^4 \sin \left(\dfrac{1}{x}\right)+x^2}{\left(1+|x|^3\right)}\right]=_____________



Evaluate \displaystyle \lim_{x\rightarrow \infty} 2^{x} \sin \left (\dfrac {a}{2^{x}}\right ).



Evaluate \displaystyle \lim_{x\rightarrow 1}\dfrac {e^{x} - e^{-x}}{e^{x} + e^{-x}}.



\displaystyle \lim_{x\rightarrow 0}\dfrac {ae^{x} - b\cos x + ce^{-x}}{x\sin x} = 2, then find the value of a, b and c.



\lim_{x \rightarrow a} \frac{\sqrt[m]{x}-\sqrt[m]{a}}{x-a}



The value of \mathrm{f}(0) such \displaystyle \mathrm{f}(\mathrm{x})=\frac{1-\cos^{2}\mathrm{x}+\sin^{2}\mathrm{x}}{\sqrt{\mathrm{x}^{2}+1}-1}(\mathrm{x}\neq 0) is continuous at \mathrm{x}=0 is



If f(x) =\displaystyle \frac{a\sin x -bx +cx^2+ x^3}{2x^2 \ell n(1+ x)- 2x^3+ x^4}, when x\neq 0 and f(x) is continuous at x = 0, find value of 200\times f(0)



\displaystyle \Delta (x)=\begin{vmatrix} \tan x & \tan (x+h) & \tan (x+2h) \\ \tan (x+2h) & \tan x & \tan (x+h) \\ \tan (x+h) & \tan (x+2h) & \tan x \end{vmatrix}
Find the value of \displaystyle \lim_{h\rightarrow 0}\frac{\sqrt{3}\Delta (\pi /3)}{h^{2}}



Match the entries in Column I with entries in Column II



Calculate the following limits.
\displaystyle \lim_{n \, \rightarrow \, \infty} \, \frac{5^{n \, + \, 1} \, + \, 3^n \, - \, 2^{2n}}{5^n \, + \, 2^n \, + \, 3^{n \, + \, 2}}, \, n \, \epsilon \, N.



Calculate the following limits.
\displaystyle \lim_{x \, \rightarrow \, 0} \, \frac{\cos \, 4x \, - \, cos \, 6x}{\sin^2 \, 5x}.



Solve:
\lim_{x\rightarrow 0}\dfrac{x\sqrt{y^2-(y-x)^2}}{\left \{ \sqrt{(8xy-4x^2)}+\sqrt{8xy} \right \}^3}



evaluate
\underset { x\rightarrow 0 }{ lim } \dfrac { x\tan x }{ \left( 1-\cos x \right)  } 



Evaluate:\lim_{x\rightarrow 0}\dfrac{e^{3x}-e^{2x}}{e^{4x}-e^{3x}}



Evaluate the following limits :
\displaystyle \lim_{x\to 0}\left(\dfrac {3^{2+x}-9}{x}\right)



Find absolute maximum and minimum values of a function f given by f(x)=12x^{4/3}-6x^{1/3}, x\in [-1, 1].



Evaluate the following limits :
\displaystyle \lim_{x\to 0}\left(\dfrac {e^{2+x}-e^2}{x}\right)



Evaluate the following limits :
\displaystyle \lim_{x\to 0}\left(\dfrac {e^{4x}-1}{x}\right)



Suppose F ( x ) \left\{ \begin{array} { c l } { a + b x , } & { x _ { c 1 } } \\ { 4 , } & { x = 1 } \\ { b - a x , } & { x > 1 } \end{array} \right. and \lim f ( x ) \cdot f ( x ) What are the possible values of a and b?



Class 11 Commerce Applied Mathematics Extra Questions