Solve \lim _{ x\rightarrow 0 }{ \dfrac { \cos { x } -\cot { x } }{ x } }
Apply the lmitsto given expression \displaystyle\lim_{x\rightarrow 0}\left(\left((x+1)(x+2)(x+3)(x+4)\right)^{\dfrac{1}{4}}-x\right).
Solve: \displaystyle \lim_{ n\rightarrow\infty}\dfrac{\Sigma n^2 \, \Sigma n^3}{\Sigma n^6} =? If your answer is in the form \dfrac{p}{q} ,then find |p-q|.
The value of \mathrm{f}(0) such \displaystyle \mathrm{f}(\mathrm{x})=\frac{1-\cos^{2}\mathrm{x}+\sin^{2}\mathrm{x}}{\sqrt{\mathrm{x}^{2}+1}-1}(\mathrm{x}\neq 0) is continuous at \mathrm{x}=0 is
If f(x) =\displaystyle \frac{a\sin x -bx +cx^2+ x^3}{2x^2 \ell n(1+ x)- 2x^3+ x^4}, when x\neq 0 and f(x) is continuous at x = 0, find value of 200\times f(0)
\displaystyle \Delta (x)=\begin{vmatrix} \tan x & \tan (x+h) & \tan (x+2h) \\ \tan (x+2h) & \tan x & \tan (x+h) \\ \tan (x+h) & \tan (x+2h) & \tan x \end{vmatrix} Find the value of \displaystyle \lim_{h\rightarrow 0}\frac{\sqrt{3}\Delta (\pi /3)}{h^{2}}
Match the entries in Column I with entries in Column II
Evaluate the following limits : \displaystyle \lim_{x\to 0}\left(\dfrac {3^{2+x}-9}{x}\right)
Find absolute maximum and minimum values of a function f given by f(x)=12x^{4/3}-6x^{1/3}, x\in [-1, 1].
Evaluate the following limits : \displaystyle \lim_{x\to 0}\left(\dfrac {e^{2+x}-e^2}{x}\right)
Evaluate the following limits : \displaystyle \lim_{x\to 0}\left(\dfrac {e^{4x}-1}{x}\right)
Suppose F ( x ) \left\{ \begin{array} { c l } { a + b x , } & { x _ { c 1 } } \\ { 4 , } & { x = 1 } \\ { b - a x , } & { x > 1 } \end{array} \right. and \lim f ( x ) \cdot f ( x ) What are the possible values of a and b?
Class 11 Commerce Applied Mathematics Extra Questions