Logarithm And Antilogarithm - Class 11 Commerce Applied Mathematics - Extra Questions

Write the characteristic of 1235.3  by using their standard forms:



Simplify:

$$\dfrac{8^{-1} \times 5 ^{3}}{2^{-4}}$$



If $$\displaystyle \log_{10} .001 = a$$, then $$-a$$=



Compute:
$$(4^7)^2\times (4^{-3})^4$$



Compute:
$$(\dfrac{56}{28})^0 \div (\dfrac{2}{5})^3 \times \dfrac{16}{25} $$



Compute:
$$(2^{-9}\div 2^{-11})^4 $$



Find the characteristic of the logarithm of the number $$5395.$$



$$(12)^{-2} \times 3^2 $$ is equal to $$\dfrac{1}{16} $$.
If true then enter $$1$$ and if false then enter $$0$$



Compute the absolute value of: 
$$(-5)^4 \times (-5)^6 \div (-5)^{9} $$



Compute:
$$(9^0 \times 4^{1}) $$



The value of x,if  $$\log_{10} x = -2$$ is $$k$$.
then $$100x$$=?



Show that $$\displaystyle \left ( 2\sqrt{2} \right )^{-2/3}= \frac{1}{2}.$$ can be written as  $$\displaystyle \log _{2\sqrt{2}} 2= -\frac{2}{3}$$



$$\displaystyle \log _{3}\frac{1}{243}= -5.$$ 



Show that $$\displaystyle 5^{0}= 1$$ can be written as $$\displaystyle \log _{25}1= 0$$



Express $$\displaystyle \log _{100}0.1= -\frac{1}{2}$$ in exponential form:



$$\displaystyle 4^{3/2}= 8$$ 



If $$3^{-2}$$ is  $$\cfrac{1}{m}$$, then the value of $$m$$ is 



If $$(-4)^{-2}$$ is $$\cfrac{1}{m}$$, then the value of $$m$$ is 



Find the value of: $$(3^0 + 4^{-1}) \times 2^2$$



Evaluate $$\displaystyle \left ( \frac{5}{8} \right )^{-7} \times \left ( \frac{8}{5} \right )^{-4}$$ is $$ \frac { 512 }{m } $$
Value of $$m$$ is



Evaluate $$(5^{-1} \times 2^{-1}) \times 6^{-1}$$ is $$\frac{1}{m}$$
Value of $$m$$ is



Evaluate $$\displaystyle \frac{8^{-1} \times 5^3}{2^{-4}}$$



Find the value of $$m$$ for which $$5^m \div 5^{-3} = 5^5$$



Evaluate: $$-\displaystyle \left \{ \left ( \frac{1}{3} \right )^{-1} - \left ( \frac{1}{4} \right )^{-1} \right \}^{-1}$$



Find $$x$$, if $$(4^{-1} + 8 ^{-1} ) \times (3^{-1} - 9^{-1}) \div \displaystyle \frac{1}{12} = 5^x$$



By what number should $$\displaystyle \left ( \frac{-2}{3} \right )^{-3}$$ be divided so that the quotient may be $$\displaystyle \left ( \frac{4}{27} \right )^{-2}$$



Simplify: $$\left(\cfrac{3}{2} \right)^{0} \times \left(\cfrac{4}{5}\right)^{-2}$$



Simplify : $$\displaystyle \frac{25 \times t^{-4}}{5^{-3} \times 10 \times t^{-8}} (t \neq 0)$$



Simplify: $$3^0 +2^{-2}$$



Simplify $$\displaystyle \left [ \left ( \frac{2}{3} \right )^{-1} \times \left ( \frac{3}{4} \right )^{-1} \right ]^{-1}$$



Find the value $$\displaystyle 27^{\cfrac{1}{3} } \times 16^{\cfrac{-1}{4} }$$



By what number should $$\displaystyle \left ( \frac{3}{4} \right )^{-3}$$ be divided so that the quotient becomes $$128$$ ?



Find the value $$(512)^{\frac{-2}{9}} $$



For what negative values of $$x$$, will $$x^{18}$$ be equal to $$x^{20}$$?



For what positive values of $$x$$, will $$x^{18}$$ be greater than $$x^{20}$$?



For what negative values of $$x$$, will $$x^{20}$$ be greater than $$x^{18}$$?



If $$\displaystyle \log_{3}a=4$$, then find the value of $$a$$.



Find the value of x if $$x^3 = \displaystyle \left ( \frac{6}{5} \right )^{-3} \times \left ( \frac{6}{5} \right )^6.$$



$${ 3 }^{ 3 }\times { 3 }^{ 6 }\times { 3 }^{ 7 }=$$?



Suppose $$m$$ and $$n$$ are distinct integers. Can $$\cfrac { { 3 }^{ m }\times { 2 }^{ n } }{ { 2 }^{ m }\times { 3 }^{ n } } $$ be an integer? Give reasons.



$${ 2 }^{ 5 }\times { 5 }^{ 2 }\times { 2 }^{ 3 }\times 5=$$?



$$ { 2 }^{ 5 }\times { 2 }^{ 6 }=2^?$$



Simplify:
$${ 3 }^{ 1 }\times { 3 }^{ 2 }\times { 3 }^{ 3 }\times { 3 }^{ 4 }\times { 3 }^{ 5 }\times { 3 }^{ 6 }$$



Simplify:
$${2}^{2}\times {3}^{3}\times {2}^{4}\times {3}^{5}\times {3}^{6}$$



Simplify and give reasons:
$${ \left[ \left( { 3 }^{ 2 }-{ 2 }^{ 2 } \right) \div \cfrac { 1 }{ 5 }  \right]  }^{ 2 }$$



Rakesh solved some problems of exponents in the following way. Do you agree with the solutions? If not why? Justify your argument.
$${ x }^{ -3 }\times { x }^{ -2 }={ x }^{ -6 }$$



Find the value of '$$n$$' in the following:
$${ \left( \cfrac { 2 }{ 3 }  \right)  }^{ 3 }\times { \left( \cfrac { 2 }{ 3 }  \right)  }^{ 5 }={ \left( \cfrac { 2 }{ 3 }  \right)  }^{ n-2 }\quad $$



If $$\log_{2}x = 3$$, then $$x =$$ ______



Find the value of '$$x$$' such that
$$\cfrac{1}{49}\times {7}^{2x}={7}^{8}$$



Using logarithmic table find the value of the following.
(i) $$\log { 23.17 }$$
(ii) $$ \log { 9.321 }$$
(iii) $$ \log { 329.5 } $$
(iv) $$\log { 0.001364 } $$
(v) $$\log { 0.9876 }$$
(vi) $$ \log { 6576 } $$



Find, by inspection, the characteristics of the logarithms of $$21735, 23.8, 350, .035, .2, .87, .875$$.



Given $$\log 2 = .3010300, \log 3 = .4771213, \log 7 = .8450980$$, find the value of $$\log \sqrt [3]{12}$$.



Given $$\log 2 = .3010300, \log 3 = .4771213, \log 7 = .8450980$$, find the value of $$\log 14.4$$.



Given $$\log2 = {^{.}3010300}, \log3 = {^{.}4771213}, \log7 = {^{.}8450980},$$ find the value of
 $$\log 84$$.



Given $$\log 2 = .3010300, \log 3 = .4771213, \log 7 = .8450980$$, find the value of $$\log 4\dfrac{3}{2}$$.



Given $$\log2 = {^{.}3010300}, \log3 = {^{.}4771213}, \log7 = {^{.}8450980},$$ find the value of
$$\log {^{.}128}.$$



Given $$\log2 = {^{.}3010300}, \log3 = {^{.}4771213}, \log7 = {^{.}8450980},$$ find the value of
$$\log 64$$.



Give the position of the first significant figure in the numbers whose logarithms are
$$\bar{2} {^{.}7781513}, {^{.}6910815}, \bar{5} {^{.}4871384}.$$



How many digits are there in the integral part of the numbers whose logarithms are respectively
$$4{^{.}30103}, 1{^{.}4771213}, 3{^{.}69897}, {^{.}56515}?$$



Given $$\log2 = {^{.}3010300}, \log3 = {^{.}4771213}, \log7 = {^{.}8450980},$$ find the value of
$$\log {^{.}0125}.$$



Given $$\log2 = {^{.}3010300}, \log3 = {^{.}4771213}, \log7 = {^{.}8450980},$$ find the value of
$$\log \sqrt[4]{^{.}0105}.$$



Find the product of $$37.203, 3.7203, .037203, 372030$$, having given that
$$\log 37.203 = 1.5705780$$, and $$\log 1915631 = 6.2823120$$.



Evaluate : $$2^5\times 2^8\div 2^6$$



Given $$\log2 = {^{.}3010300}, \log3 = {^{.}4771213}, \log7 = {^{.}8450980},$$ find the value of
$$\log \sqrt{\dfrac{35}{27}}.$$



Solve the following equations.
$$\displaystyle log_2 \, (4^x \, + \, 4) \, - \, log_2 \, (2{x \, + \, 1} \, - \, 3) \, = \, 0.$$



Write value of $$\sqrt [ 3 ]{ 2 } \times \sqrt [ 4 ]{ 2 } \times \sqrt [ 12 ]{ 32 } $$



Solve the following equation:
$$\displaystyle\, 5^{x - 1} = 10^x\cdot 2^{-x}\cdot 5^{x + 1}$$



Rewrite the following equation in the logarithm from :
$$5^0 \, = \, 1$$



Rewrite the following equation in the logarithm from :
$$(2\sqrt{2})^{-2/3} \, = \, \dfrac{1}{2}.$$



Rewrite the following equation in the exponential form.
$$log_{5\sqrt{5}} \, 5 \, = \, \dfrac{2}{3}$$



Rewrite the following equation in the exponential form.
$$log_{100} \, 0.1 \, = \, -\dfrac{1}{2}$$



 Solve $$x^{\sqrt{x}} \, = \, (\sqrt {x})^x$$



Find the value of $${(23.17)^{{1 \over {5.76}}}}$$ using log table.



Rewrite the following equation in the exponential form.
$$\log_3 \, \frac{1}{243} \, = \, -5.$$



Evaluate : $${2^{{{\log }_3}5}} - {5^{{{\log }_3}2}}$$



$${ \left[ { \left( \dfrac { 15 }{ 12 }  \right)  }^{ 3 } \right]  }^{ 4 }$$



If $$x=243$$, then find the value of $${x^{\frac{1}{5}}} \times {x^{ - \frac{1}{5}}}$$



Solve: $$\log (3x + 2) + \log (3x - 2) = \log5$$



Convert the following to logarithmic form:
$$5^{2} =25$$



If $$X^\cfrac{a}{b} =1, $$ then find the value of $$'a'$$.



Find the value of x for which
$${\left( {{3 \over 4}} \right)^6} \times {\left( {{{16} \over 9}} \right)^5} = {\left( {{4 \over 3}} \right)^{x + 2}}$$



Simplify:
$$\log_{10}5 + 2\log_{10}4$$



Find the value of $$x$$ for which $${ \left( \dfrac { 5 }{ 3 }  \right)  }^{ -4 }\times { \left( \dfrac { 5 }{ 3 }  \right)  }^{ -5 }={ \left( \dfrac { 5 }{ 3 }  \right)  }^{ 3x }$$



$$[(64)^{-2}]^{-3} \div [{(-8)^{2}}^{3}]^{2}$$



Simplify :
$$\left[ \left( \dfrac { 1 }{ 2 }  \right) ^{ -3 }+\left( \dfrac { 1 }{ 3 }  \right) ^{ -3 }+\left( \dfrac { 1 }{ 4 }  \right) ^{ -3 } \right]$$



If $$\log_{10}4=0.6021$$ and $$\log_{10}5=0.6990$$, then find the value of $$\log_{10}1600$$.



Express $$\log_{10}\sqrt[5]{108}$$ in terms of $$\log_{10}2$$ and $$\log_{10}3$$.



Using log tables, calculate $$\frac{{24.18 \times 0.004592}}{{0.09588 \times 3.7619}}$$



Find the value of $$x$$ for which $$\left\{ \left( \dfrac { -2 }{ 7 }  \right) ^{ 2 } \right\} ^{ x } \times \left( \dfrac { -7 }{ 2 }  \right) ^{ 2 } = \dfrac{-8}{343}$$.



Evaluate $${a^6} \div {a^4}$$



Find $$x$$ if $${4^{2x}} = \dfrac{1}{{32}}$$



Show that $$\log_{b^3}a\times \log_{a^3}b\times\log_{a^3}c=\dfrac{1}{27}$$.



Simplify
$${\left( {\frac{{81}}{{16}}} \right)^{\frac{8}{4}}} \times \left[ {{{\left( {\frac{{25}}{4}} \right)}^{ - \frac{3}{2}}} \div {{\left( {\frac{5}{2}} \right)}^{ - 3}}} \right]$$



Simplify  :  $${\left[ {5{{\left( {{8^{\frac{1}{3}}} + {{27}^{\frac{1}{3}}}} \right)}^3}} \right]^{\frac{1}{4}}}$$



Solve $${\left( {\sqrt[3]{{\dfrac{2}{3}}}} \right)^{x - 1}}\, = \dfrac{{27}}{8}$$



Simplify :
$$\dfrac{{{8^{3a}} \times {2^5} \times {2^{2a}}}}{{4 \times {2^{11a}} \times {2^{ - 2a}}}}$$



Find the value of $$log_7343$$.



Find the value of $${ \log }_{ 10 }\dfrac { 76 }{ 3.8 } $$



Evaluate:-
$${\left( {\frac{2}{7}} \right)^2}\, \times \,{\left( {\frac{7}{2}} \right)^{ - 3}}\, \div \,\,{\left\{ {{{\left( {\frac{7}{5}} \right)}^{ - 2}}} \right\}^{ - 4}}$$



Solve: $$(64)^{\dfrac{2}{3}} + 9^{\dfrac{3}{2}}$$.



$${\left( {\frac{4}{5}} \right)^2}\, \times \,{5^4}\, \times \,{\left( {\frac{2}{5}} \right)^{ - 2}}\, \div \,{\left( {\frac{5}{2}} \right)^{ - 3}}$$



Using laws of exponents, simplify and write the answer in exponential form:
(i) $$3^2 \times 3^4 \times 3^8$$     (ii) $$\dfrac{6^{15}}{6^{10}}$$



Solve
$$\log_{\frac{1}{3}}(x^2 + 8) = -2$$



Solution of $$3^{3x-5}=\frac{1}{9^x}$$ is



If $$log_2 x=a$$ and $$log_5y=a$$, write $$100^{2a-1}$$ in terms of x and y.



Determine the value of $${3^2} -\{ {\log}3\}^6$$



Simplify:
$$\left[(64)^{-3}\times (81)^{-\frac{9}{4}}\right]^{-\frac{1}{9}}$$



Simplify:
$$\dfrac{{3 \times {7^2} \times {{11}^8}}}{{21 \times {{11}^3}}}$$



Simplify: $$a^3 \times a^3 \times 5a^4$$.



$${5^{x - 3}}\,\,\, \times \,{3^{2x - 8}} = 225$$



Solve $${\left( { - \frac{3}{5}} \right)^{ - 3}}$$



Simplify $$\log c\sqrt c $$



Find the zeroes of the polynomial $$p\left( x \right) = x - \log _2{16}$$.



Solve: $$\dfrac{{{3^5}\times{{10}^5}\times25}}{{{5^7}\times{6^5}}}$$



Given $$log_{10}x=2a$$ and $$log_{10}y=\dfrac{b}{2}$$. Write $$10^a$$ in terms of x.



Given $$log_{10}x=2a$$ and $$log_{10}y=\dfrac{b}{2}$$, write $$10^{2b+1}$$ in terms of y.



$$log\dfrac{75}{16}-2log\dfrac{5}{9}+log\dfrac{32}{243}=log 2$$.



Find $$\log _{ 7 }{ 1 } $$



Express the following in exponential form.
$$\dfrac{5}{6}\times \dfrac{5}{6}\rightarrow \left(\dfrac{5}{6}\right)^2$$.



Solve:
$$\displaystyle {\left\{ {{{\left( {\frac{1}{3}} \right)}^{ - 1}} - {{\left( {\frac{1}{4}} \right)}^{ - 1}}} \right\}^{ - 1}}$$



Simplify : $$4\sqrt{16} - 6\sqrt[3]{343} + 18 \sqrt[5]{243} - \sqrt{196}$$



value of ln10?



Solve $${(3.968)^{\frac{3}{2}}}$$



Solve : 
$$\log M = \log {\left( {0.9} \right)^{20}}$$



If $${\left( {2.381} \right)^x} = {\left( {0.2381} \right)^y} = {10^z}$$ , then find the value   of $$\frac{1}{y} + \frac{1}{z} - \frac{1}{x}$$



What will be the value of $$log_2 \ (log_3 \ 81)$$?



Find the value of   $$\log_{2}{32}$$.



$$log_{\dfrac12}8=?$$



If $$log_{10}8=0.90$$ find the value of : 
(i) $$log_{10}4$$
(ii) $$log\sqrt{32}$$
(iii) $$log \ 0.125$$



Compute the following
$$7^{\log_{3}5}+5^{\log_{5}7}-5^{\log_{3}7}-7^{\log_{5}3}$$



Using laws of exponents, simplify and write the answer in exponential form:
(i) $${7}^{x}\times {7}^{2}$$
(ii) $${2}^{5}\times {5}^{5}$$
(iii) $${a}^{4}\times {b}^{4}$$



Using laws of exponents, simplify and write the answer in exponential form:
(i) $${3}^{2}\times {3}^{4}\times {3}^{8}$$
(ii) $${6}^{15}\div {6}^{10}$$
(iii) $${a}^{3}\times {a}^{2}$$



Evaluate the following
$$\dfrac {\left(\dfrac {12}{13}\right)^{5}\times \left(\dfrac {-1}{3}\right)}{\dfrac {1}{81}\times \left(\dfrac {12}{13}\right)^{3}}$$



Find the value of 
$$log5.4$$



simplify :
$${\left( {{3^4}} \right)^3}$$



Solve: $$\dfrac{3^2 \times 3^2 \times 2^2}{3^2 \times 6}$$



Simplify the following  using laws of exponents.
$${9^2} \times {9^{18}} \times {9^{10}}$$



Simplify the following  using laws of exponents.
$$({3^2}) \times {({3^2})^4}$$



Apply laws of exponents and simplify.
$$(3^{0}\times2^{5})+5^{0}$$



simplify:
$$\left( {\frac{{{2^{20}}}}{{{2^{15}}}}} \right) \times {2^3}$$



Simplify the following  using laws of exponents.
$${2^{10}} \times {2^4}$$



Solve :$$\dfrac{(3^5)^2\times 7^3}{(3^3)^3 \times 7^2}$$



If $$\log _{ 10 }{ 2 } =0.3010$$, then $$\log _{ 10 }{ 50 } $$ is



Find the value of $$\log_{\sqrt{3}}81$$.



Using the log table find the value of $$1.234$$.



Solve $$\left( 3 ^ { - 7 } \div 3 ^ { - 10 } \right) \times 3 ^ { - 5 }$$



Find the value of $$[\{(a^3)^{-3}\}^0]^{100}$$.



If $${\log _{10}}8 = 0.90$$
find $$\log 0.125$$



If $${\log _{10}}8 = 0.90;$$ find the value of :
a)$${\log _{10}}4$$
b)$$\log \sqrt {32} $$
c)$$\log 0.125$$



$$a^{m}.a^{n}=$$



Find the value of the following.
$$4^{4}$$



Solve the exponent

$${17^2} \cdot {17^{ - 5}}$$



By what number should $$( - 6 ) ^ { - 2 }$$ be multiplied so that the product would be equal to $$( 9 ) - 1 .$$ ?



$$(-\dfrac{3}{4})^{11}\div [ (-\dfrac{3}{4})^{3}\times (-\dfrac{3}{4}^{6}) ] $$



Given:$$\log{2}=0.3010$$ and $$\log{3}=0.4771$$, find the value of $$\log{12}$$.



Find the value of y if : $$(100)^2\times(10)^5=(1000)^y$$



Find the value of $$m$$ if :
$$\left( \dfrac { 2 }{ 9 }  \right)^3 \times \left( \dfrac { 2 }{ 9 }  \right)^{-6} =\left( \dfrac { 2 }{ 9 }  \right)^{2m-1}$$ 



Simplify the following using laws of expressions
$$(2x)^{4}\div (2x)^{2}$$



Determine the value of the following
$$\log_{7}{1}$$



Express as a power of $$3$$ in $$729$$ and $$343$$.



Find the value of $$(x^{3}\times x^{7})\div x^{12}$$ for x = (-2).



Find the value $$x$$ if  $${2^4}*{2^5} = {({2^3})^x}$$



Determine the value of the following
$$\log_{10}{0.01}$$



If $$log_{10}0.001 =x$$, then find $$x$$.



If  $$x ^ { 2 } + y ^ { 2 } = 47 x y$$  then show that  $$\log \left( \dfrac { x + y } { 7 } \right) = \dfrac { 1 } { 2 } ( \log x + \log y ).$$



Find the value of $$log_{2\sqrt{3}}1728$$



Solve : $$\left( 6 ^ { - 1 } - 8 ^ { - 1 } \right) ^ { - 1 } + \left( 2 ^ { - 1 } - 3 ^ { - 1 } \right) ^ { - 1 }$$



Solve 
$$\dfrac { 5.6\times { 10 }^{ 6 } }{ { 3\times 10 }^{ -4 }(1.76\times { 10 }^{ 11 }) } $$



Find the product: $$a^{2} \times 2a^{22} \times 4a^{26}$$.



Solve : $$\sqrt { \dfrac { 256 a ^ { 4 } b ^ { 4 } } { 625 a ^ { 6 } b ^ { 2 } } } = ?$$



 Using laws of exponents, simplify and write the answer in exponential form: $$\left( { 3 }^{ 4 } \right) ^{ 3 }$$



Find the product :    $$\left( \dfrac { 1 } { 2 } p ^ { 3 } q ^ { 6 } \right) \left( - \dfrac { 2 } { 3 } p ^ { 4 } q \right) \left( p q ^ { 2 } \right).$$



If $${ (0.2) }^{ x }=2$$ and $${ \log }_{ 10 }2=0.3010$$, then what is the value of $$x$$



$$y={ log }_{  10}x$$ then $$x=$$



Evaluate $$\log_2 128+\log _3 243$$



Evaluate:\log_{\frac{1}{100}}{\dfrac{1}{10000}}



$${ \left( \frac { -1 }{ 2 }  \right)  }^{ 2 }=\frac { 1 }{ { 2 }^{ m } } $$



Evaluate:$$\log_{49}{343}$$



Show that $$\log{\left(\dfrac{243}{343}\right)}=5\log{3}-3\log{7}$$



Solve:
$$3^{x+1}=27\times 3^{4}$$



Solve: $$\dfrac{25\times t^{-4}}{5^{-3}\times 10\times t^{-8}}$$



Simplify 
$${ 32 }^{ 1 }={ 2 }^{ x }$$



Simplify $$\sqrt [3]{4}\times \sqrt [3]{16}$$



Simplify : $$\dfrac{2^3 .3^4.  4}{3 .32}$$



Express each of the following exponential expressions as a rational number. $${ \left( \dfrac { 2 }{ 3 }  \right)  }^{ \left( -1 \right)  }+{ \left( \dfrac { 3 }{ 2 }  \right)  }^{ \left( -2 \right)  }$$



For $$a=27, b=8, m=\dfrac{1}{3}$$ verify $$(ab)^{m}=a^{m}b^{m}$$



Write each of the following number in the form $$k \times { 10 }^{ n }$$ where $$1\le k\ 10$$ and n is an integer. 
$$(v)\ 0.00729$$



Solve : $${ 9 }^{ \dfrac { 5 }{ 2 }  }-3\times { 8 }^{ \circ  }-\left( \dfrac { 1 }{ 81 }  \right) ^{ -\dfrac { 1 }{ 2 }  }$$



$$\dfrac { log\sqrt { 8 }  }{ log8 } $$ is equal to. 



Multiply $${a^2}$$ with $$\left( {{a^3} + 3{a^2}b + {b^3} + 3a{b^2}} \right)$$.



The value of $$p^3$$ if $$13p=69$$



Find the value of $$\log 4.5$$.



Simplify:
$${ \left( \dfrac { 1 }{ 2 }  \right)  }^{ 5 }{ -\left( \dfrac { 3 }{ 2 }  \right)  }^{ 3 }$$



If $$ a = 3 $$ and $$ b = -2 $$, find the value of : 
$$ (a+b)^{ab} $$



If $$ a = 3 $$ and $$ b = -2 $$, find the value of : 
$$a^{b}+b^{a} $$



Simplify:
$${2}^{3}\times 5$$



Simplify:
$$0\times{10}^{2}$$



Convert the following to logarithmic form:
$$2^{6} = 64$$



Convert the following to logarithmic form:
$$7^{x} = 100$$



Convert the following to logarithmic form:
$$(81)^{3/4} = 27$$



Convert the following to logarithmic form:
$$9^{0} = 1$$



Convert the following to logarithmic form:
$$3^{-2} = 1/9$$



Convert the following to logarithmic form:
$$6^{1} = 6$$



Convert the following to logarithmic form:
$$10^{-2} = 0.01$$



Convert the following to logarithmic form:
$$5^{2} = 25$$



Convert the following into exponential form:
$$\log _{8} 4 = 2/3$$



Evaluate the following:
$$2\log  5 + \log 8 - 1/2 \log 4 $$ 



Convert the following into exponential form:
$$\log _{10} (0.001) = -3$$



Evaluate the following:
$$ 2 \log 5+ \log3 + 3 \log 2 -1/2 \log 36 - 2 \log 10 $$



Convert the following into exponential form:
$$\log _{2} 32 = 5$$



Convert the following into exponential form:
$$\log _{8} 32 = 5/3$$



Convert the following into exponential form:
$$\log _{2} 0.25 = -2$$



Convert the following into exponential form:
$$\log _{3} 81 = 4$$



Convert the following into exponential form:
$$\log _{a} (1/a) = -1$$



Convert the following into exponential form:
$$\log _{3} 1/3 = -1$$



Given $$ 3 \left ( \log 5 - \log3  \right ) - \left ( \log 5 -2\log  6  \right ) = 2 -\log n, $$ Find n .



Evaluate the following :
$$ \log 2 + 16 \log 16/15 +12 \log 25/24 + 7 \log 81/80 $$



Express each of the following as a single logarithm:
$$1/2 \log 36 +2 \log 8 - \log 1.5 $$



Express the following as a single logarithm:
$$ 2 \log _{10} 5-\log_{10} 2 + 3 \log _{10} 4 + 1$$



Evaluate the following :
$$ 2 \log _{10} 5 + \log_{10}8 -1/2 \log_{10} 4 $$ 



Solve for $$x:$$
$$ \log x + \log 5=2 \log 3 $$



Express each of the following as a single logarithm:
$$ 1/2 \log 25-2 \log 3+1 $$



Express each of the following as a single logarithm:
$$ 2 \log 3 - 1/2 \log 16 + \log 12 $$



Prove the following :
$$ \log 4\div  \log_{10} 2= \log_{3} 9 $$



Prove the following :
$$ \log_{10} 25 + \log_{10} 4 = \log_{5} 25 $$



Solve for $$x$$:
$$ x = \log 125/ \log 25 $$ 



Solve the following equations :
$$ \log  \left ( 3x +2 \right )+ \log\left ( 3x - 2 \right ) = 5 \log 2 $$



Prove the following :
$$ 27 ^{\log 2 } = 8^{\log 3} $$



Solve for x:
$$ \log_{3}x- \log_{3} 2=1 $$ 



If $$  \log  x /\log 5 = \log  y^{2} /  \log 9/  \log  \left ( 1/3 \right ), $$ find $$x$$ and $$y$$ .



Given $$ 2 \log _{10} x+1 = \log _{10} 250,$$ find $$x$$



Prove the following :
$$ 3 ^{\log 4 } = 4^{\log 3} $$



Solve for $$x:$$
$$ \left ( \log 8/\log 2 \right ) \times \left ( \log 3/\log \sqrt{3} \right ) = 2 \log x $$



Solve the following equations :
$$ \log_{10}\left ( x +2 \right ) + \log_{10}\left ( x-2 \right ) = \log_{10}3+3 \log_{10}4$$ 



Given $$ 2 \log _{10} x+1 = \log _{10} 250,$$ find
 $$ \log _{10}  2 x $$



Show that :
$$ 1 / \log_{2} 42 + 1 / \log_{3} 42+  1 / \log_{7}  42 = 1 $$ 



Find out the value of $$log(8621).$$



Solve for x:
$$ \log_{2}x+ \log_{8}x+ \log_{32} x = 23/15 $$



Use logarithm table to find the logarithm of the following numbers:
$$25795$$



Using logarithm, find the value of $$6.45\times 981.4$$



Given that $$\displaystyle \log_a A = x$$ is similar to $$\displaystyle a^x = A$$.
If true then write 1 and if false then write 0



If $$\log 2 = 0.3010$$ and $$\log 3 = 0.4771$$, then the value of $$\log 3.6$$ is $$0.55a2$$. where a is 3rd digit of the given value,then $$a=?$$



If $$\displaystyle \log_3 m = x$$ and $$\displaystyle \log_3 n = y$$, then $$\displaystyle 3^{1 - 2y + 3x}$$ can be expressed in terms of $$m$$ and $$n$$ as $$\displaystyle \frac {3m^3}{n^2}$$.
If true then write 1 and if false then write 0.



If $$\displaystyle \log_{10} x = 2a$$ and $$\displaystyle \log_{10} y = \tfrac {b}{2}$$, then $$\displaystyle 10^a$$ in terms of $$x$$ is $$\displaystyle \sqrt x$$.

If true then write 1 and if false then write 0.



$$\displaystyle \log _{2}32= 5$$  



Evaluate: $${ \left( 6.32 \right)  }^{ 2 }\times \sqrt [ 4 ]{ 83.94 } $$
[Hint: Use logarithm tables]



Evaluate: $$\dfrac { { \left( 17.42 \right)  }^{ \frac { 2 }{ 3 }  }\times 18.42 }{ \sqrt { 126.37 }  } $$
If the answer is not an whole number then write the whole number just smaller than the answer.
[Hint: Use logarithm tables]



Find the value of '$$x$$' such that
$$25\times {5}^{x}={5}^{8}$$



Find the value of $$\log_{81}3$$



Simplify:
$${ 10 }^{ -1 }\times { 10 }^{ 2 }\times {10}^{-3} \times  { 10 }^{ 4 }\times { 10 }^{ -5 }\times { 10 }^{ 6 }$$



Simplify $$(2^{3})^{-2} \times (3^{2})^{2}$$



Obtain the equivalent logarithmic form of the following.
(i) $${ 2 }^{ 4 }=16$$
(ii) $${ 3 }^{ 5 }=243$$
(iii) $${ 10 }^{ -1 }=0.1$$
(iv) $${ 8 }^{ -\frac { 2 }{ 3 }  }=\dfrac { 1 }{ 4 }$$
(v) $${ 25 }^{ \frac { 1 }{ 2 }  }=5$$
(vi) $${ 12 }^{ -2 }=\dfrac { 1 }{ 144 } $$



Simplify $$\dfrac {(2^{2})^{3}}{(3^{2})^{2}}$$



If $$2^{p} = 32$$, find the value of $$p \ .$$



Find the value of the following:
$$\left (\dfrac {3}{8}\right )^{5} \times \left (\dfrac {3}{8}\right )^{4}\div \left (\dfrac {3}{8}\right )^{9}$$



Find the value of the following:
$$3^{4} \times 3^{-3}$$



Change the following from exponential form to logarithmic form.
(i) $${ 3 }^{ 4 }=81$$
(ii) $${ 6 }^{ -4 }=\dfrac { 1 }{ 1296 } $$
(iii) $${ \left( \dfrac { 1 }{ 81 }  \right)  }^{ \frac { 3 }{ 4 }  }=\dfrac { 1 }{ 27 } $$
(iv) $${ \left( 216 \right)  }^{ \frac { 1 }{ 3 }  }=6$$
(v) $${ \left( 13 \right)  }^{ -1 }=\frac { 1 }{ 13 } $$



Simplify: $$2^{5}\times 2^{3}$$



Find (i) $$\log { 86.76 }$$
        (ii) $$\log { 730.391 }$$
        (iii) $$\log { 0.00421526 } $$



If $$Kx = |\ln (x)|$$ has $$3$$ solutions find out the limiting values of $$K$$ for which this is possible.