By what number should $$\displaystyle \left ( \frac{-2}{3} \right )^{-3}$$ be divided so that the quotient may be $$\displaystyle \left ( \frac{4}{27} \right )^{-2}$$
Suppose $$m$$ and $$n$$ are distinct integers. Can $$\cfrac { { 3 }^{ m }\times { 2 }^{ n } }{ { 2 }^{ m }\times { 3 }^{ n } } $$ be an integer? Give reasons.
Rakesh solved some problems of exponents in the following way. Do you agree with the solutions? If not why? Justify your argument. $${ x }^{ -3 }\times { x }^{ -2 }={ x }^{ -6 }$$
Find the value of '$$n$$' in the following: $${ \left( \cfrac { 2 }{ 3 } \right) }^{ 3 }\times { \left( \cfrac { 2 }{ 3 } \right) }^{ 5 }={ \left( \cfrac { 2 }{ 3 } \right) }^{ n-2 }\quad $$
If $$\log_{2}x = 3$$, then $$x =$$ ______
Find the value of '$$x$$' such that $$\cfrac{1}{49}\times {7}^{2x}={7}^{8}$$
Using logarithmic table find the value of the following. (i) $$\log { 23.17 }$$ (ii) $$ \log { 9.321 }$$ (iii) $$ \log { 329.5 } $$ (iv) $$\log { 0.001364 } $$ (v) $$\log { 0.9876 }$$ (vi) $$ \log { 6576 } $$
Find, by inspection, the characteristics of the logarithms of $$21735, 23.8, 350, .035, .2, .87, .875$$.
Given $$\log 2 = .3010300, \log 3 = .4771213, \log 7 = .8450980$$, find the value of $$\log \sqrt [3]{12}$$.
Given $$\log 2 = .3010300, \log 3 = .4771213, \log 7 = .8450980$$, find the value of $$\log 14.4$$.
Given $$\log2 = {^{.}3010300}, \log3 = {^{.}4771213}, \log7 = {^{.}8450980},$$ find the value of $$\log 84$$.
Given $$\log 2 = .3010300, \log 3 = .4771213, \log 7 = .8450980$$, find the value of $$\log 4\dfrac{3}{2}$$.
Given $$\log2 = {^{.}3010300}, \log3 = {^{.}4771213}, \log7 = {^{.}8450980},$$ find the value of $$\log {^{.}128}.$$
Given $$\log2 = {^{.}3010300}, \log3 = {^{.}4771213}, \log7 = {^{.}8450980},$$ find the value of $$\log 64$$.
Give the position of the first significant figure in the numbers whose logarithms are $$\bar{2} {^{.}7781513}, {^{.}6910815}, \bar{5} {^{.}4871384}.$$
How many digits are there in the integral part of the numbers whose logarithms are respectively $$4{^{.}30103}, 1{^{.}4771213}, 3{^{.}69897}, {^{.}56515}?$$
Given $$\log2 = {^{.}3010300}, \log3 = {^{.}4771213}, \log7 = {^{.}8450980},$$ find the value of $$\log {^{.}0125}.$$
Given $$\log2 = {^{.}3010300}, \log3 = {^{.}4771213}, \log7 = {^{.}8450980},$$ find the value of $$\log \sqrt[4]{^{.}0105}.$$
Find the product of $$37.203, 3.7203, .037203, 372030$$, having given that $$\log 37.203 = 1.5705780$$, and $$\log 1915631 = 6.2823120$$.
Evaluate : $$2^5\times 2^8\div 2^6$$
Given $$\log2 = {^{.}3010300}, \log3 = {^{.}4771213}, \log7 = {^{.}8450980},$$ find the value of $$\log \sqrt{\dfrac{35}{27}}.$$
Solve : $$\log M = \log {\left( {0.9} \right)^{20}}$$
If $${\left( {2.381} \right)^x} = {\left( {0.2381} \right)^y} = {10^z}$$ , then find the value of $$\frac{1}{y} + \frac{1}{z} - \frac{1}{x}$$
What will be the value of $$log_2 \ (log_3 \ 81)$$?
Find the value of $$\log_{2}{32}$$.
$$log_{\dfrac12}8=?$$
If $$log_{10}8=0.90$$ find the value of : (i) $$log_{10}4$$ (ii) $$log\sqrt{32}$$ (iii) $$log \ 0.125$$
Compute the following $$7^{\log_{3}5}+5^{\log_{5}7}-5^{\log_{3}7}-7^{\log_{5}3}$$
Using laws of exponents, simplify and write the answer in exponential form: (i) $${7}^{x}\times {7}^{2}$$ (ii) $${2}^{5}\times {5}^{5}$$ (iii) $${a}^{4}\times {b}^{4}$$
Using laws of exponents, simplify and write the answer in exponential form: (i) $${3}^{2}\times {3}^{4}\times {3}^{8}$$ (ii) $${6}^{15}\div {6}^{10}$$ (iii) $${a}^{3}\times {a}^{2}$$
Evaluate the following $$\dfrac {\left(\dfrac {12}{13}\right)^{5}\times \left(\dfrac {-1}{3}\right)}{\dfrac {1}{81}\times \left(\dfrac {12}{13}\right)^{3}}$$
Solve the following equations : $$ \log_{10}\left ( x +2 \right ) + \log_{10}\left ( x-2 \right ) = \log_{10}3+3 \log_{10}4$$
Given $$ 2 \log _{10} x+1 = \log _{10} 250,$$ find $$ \log _{10} 2 x $$
Show that : $$ 1 / \log_{2} 42 + 1 / \log_{3} 42+ 1 / \log_{7} 42 = 1 $$
Find out the value of $$log(8621).$$
Solve for x: $$ \log_{2}x+ \log_{8}x+ \log_{32} x = 23/15 $$
Use logarithm table to find the logarithm of the following numbers: $$25795$$
Using logarithm, find the value of $$6.45\times 981.4$$
Given that $$\displaystyle \log_a A = x$$ is similar to $$\displaystyle a^x = A$$. If true then write 1 and if false then write 0
If $$\log 2 = 0.3010$$ and $$\log 3 = 0.4771$$, then the value of $$\log 3.6$$ is $$0.55a2$$. where a is 3rd digit of the given value,then $$a=?$$
If $$\displaystyle \log_3 m = x$$ and $$\displaystyle \log_3 n = y$$, then $$\displaystyle 3^{1 - 2y + 3x}$$ can be expressed in terms of $$m$$ and $$n$$ as $$\displaystyle \frac {3m^3}{n^2}$$.
If true then write 1 and if false then write 0.
If $$\displaystyle \log_{10} x = 2a$$ and $$\displaystyle \log_{10} y = \tfrac {b}{2}$$, then $$\displaystyle 10^a$$ in terms of $$x$$ is $$\displaystyle \sqrt x$$.