Processing math: 0%

Logarithm And Antilogarithm - Class 11 Commerce Applied Mathematics - Extra Questions

Write the characteristic of 1235.3  by using their standard forms:



Simplify:

81×5324



If log10.001=a, then a=



Compute:
(47)2×(43)4



Compute:
(5628)0÷(25)3×1625



Compute:
(2^{-9}\div 2^{-11})^4



Find the characteristic of the logarithm of the number 5395.



(12)^{-2} \times 3^2 is equal to \dfrac{1}{16} .
If true then enter 1 and if false then enter 0



Compute the absolute value of: 
(-5)^4 \times (-5)^6 \div (-5)^{9}



Compute:
(9^0 \times 4^{1})



The value of x,if  \log_{10} x = -2 is k.
then 100x=?



Show that \displaystyle \left ( 2\sqrt{2} \right )^{-2/3}= \frac{1}{2}. can be written as  \displaystyle \log _{2\sqrt{2}} 2= -\frac{2}{3}



\displaystyle \log _{3}\frac{1}{243}= -5. 



Show that \displaystyle 5^{0}= 1 can be written as \displaystyle \log _{25}1= 0



Express \displaystyle \log _{100}0.1= -\frac{1}{2} in exponential form:



\displaystyle 4^{3/2}= 8 



If 3^{-2} is  \cfrac{1}{m}, then the value of m is 



If (-4)^{-2} is \cfrac{1}{m}, then the value of m is 



Find the value of: (3^0 + 4^{-1}) \times 2^2



Evaluate \displaystyle \left ( \frac{5}{8} \right )^{-7} \times \left ( \frac{8}{5} \right )^{-4} is  \frac { 512 }{m }
Value of m is



Evaluate (5^{-1} \times 2^{-1}) \times 6^{-1} is \frac{1}{m}
Value of m is



Evaluate \displaystyle \frac{8^{-1} \times 5^3}{2^{-4}}



Find the value of m for which 5^m \div 5^{-3} = 5^5



Evaluate: -\displaystyle \left \{ \left ( \frac{1}{3} \right )^{-1} - \left ( \frac{1}{4} \right )^{-1} \right \}^{-1}



Find x, if (4^{-1} + 8 ^{-1} ) \times (3^{-1} - 9^{-1}) \div \displaystyle \frac{1}{12} = 5^x



By what number should \displaystyle \left ( \frac{-2}{3} \right )^{-3} be divided so that the quotient may be \displaystyle \left ( \frac{4}{27} \right )^{-2}



Simplify: \left(\cfrac{3}{2} \right)^{0} \times \left(\cfrac{4}{5}\right)^{-2}



Simplify : \displaystyle \frac{25 \times t^{-4}}{5^{-3} \times 10 \times t^{-8}} (t \neq 0)



Simplify: 3^0 +2^{-2}



Simplify \displaystyle \left [ \left ( \frac{2}{3} \right )^{-1} \times \left ( \frac{3}{4} \right )^{-1} \right ]^{-1}



Find the value \displaystyle 27^{\cfrac{1}{3} } \times 16^{\cfrac{-1}{4} }



By what number should \displaystyle \left ( \frac{3}{4} \right )^{-3} be divided so that the quotient becomes 128 ?



Find the value (512)^{\frac{-2}{9}}



For what negative values of x, will x^{18} be equal to x^{20}?



For what positive values of x, will x^{18} be greater than x^{20}?



For what negative values of x, will x^{20} be greater than x^{18}?



If \displaystyle \log_{3}a=4, then find the value of a.



Find the value of x if x^3 = \displaystyle \left ( \frac{6}{5} \right )^{-3} \times \left ( \frac{6}{5} \right )^6.



{ 3 }^{ 3 }\times { 3 }^{ 6 }\times { 3 }^{ 7 }=?



Suppose m and n are distinct integers. Can \cfrac { { 3 }^{ m }\times { 2 }^{ n } }{ { 2 }^{ m }\times { 3 }^{ n } } be an integer? Give reasons.



{ 2 }^{ 5 }\times { 5 }^{ 2 }\times { 2 }^{ 3 }\times 5=?



{ 2 }^{ 5 }\times { 2 }^{ 6 }=2^?



Simplify:
{ 3 }^{ 1 }\times { 3 }^{ 2 }\times { 3 }^{ 3 }\times { 3 }^{ 4 }\times { 3 }^{ 5 }\times { 3 }^{ 6 }



Simplify:
{2}^{2}\times {3}^{3}\times {2}^{4}\times {3}^{5}\times {3}^{6}



Simplify and give reasons:
{ \left[ \left( { 3 }^{ 2 }-{ 2 }^{ 2 } \right) \div \cfrac { 1 }{ 5 }  \right]  }^{ 2 }



Rakesh solved some problems of exponents in the following way. Do you agree with the solutions? If not why? Justify your argument.
{ x }^{ -3 }\times { x }^{ -2 }={ x }^{ -6 }



Find the value of 'n' in the following:
{ \left( \cfrac { 2 }{ 3 }  \right)  }^{ 3 }\times { \left( \cfrac { 2 }{ 3 }  \right)  }^{ 5 }={ \left( \cfrac { 2 }{ 3 }  \right)  }^{ n-2 }\quad



If \log_{2}x = 3, then x = ______



Find the value of 'x' such that
\cfrac{1}{49}\times {7}^{2x}={7}^{8}



Using logarithmic table find the value of the following.
(i) \log { 23.17 }
(ii)  \log { 9.321 }
(iii)  \log { 329.5 }
(iv) \log { 0.001364 }
(v) \log { 0.9876 }
(vi)  \log { 6576 }



Find, by inspection, the characteristics of the logarithms of 21735, 23.8, 350, .035, .2, .87, .875.



Given \log 2 = .3010300, \log 3 = .4771213, \log 7 = .8450980, find the value of \log \sqrt [3]{12}.



Given \log 2 = .3010300, \log 3 = .4771213, \log 7 = .8450980, find the value of \log 14.4.



Given \log2 = {^{.}3010300}, \log3 = {^{.}4771213}, \log7 = {^{.}8450980}, find the value of
 \log 84.



Given \log 2 = .3010300, \log 3 = .4771213, \log 7 = .8450980, find the value of \log 4\dfrac{3}{2}.



Given \log2 = {^{.}3010300}, \log3 = {^{.}4771213}, \log7 = {^{.}8450980}, find the value of
\log {^{.}128}.



Given \log2 = {^{.}3010300}, \log3 = {^{.}4771213}, \log7 = {^{.}8450980}, find the value of
\log 64.



Give the position of the first significant figure in the numbers whose logarithms are
\bar{2} {^{.}7781513}, {^{.}6910815}, \bar{5} {^{.}4871384}.



How many digits are there in the integral part of the numbers whose logarithms are respectively
4{^{.}30103}, 1{^{.}4771213}, 3{^{.}69897}, {^{.}56515}?



Given \log2 = {^{.}3010300}, \log3 = {^{.}4771213}, \log7 = {^{.}8450980}, find the value of
\log {^{.}0125}.



Given \log2 = {^{.}3010300}, \log3 = {^{.}4771213}, \log7 = {^{.}8450980}, find the value of
\log \sqrt[4]{^{.}0105}.



Find the product of 37.203, 3.7203, .037203, 372030, having given that
\log 37.203 = 1.5705780, and \log 1915631 = 6.2823120.



Evaluate : 2^5\times 2^8\div 2^6



Given \log2 = {^{.}3010300}, \log3 = {^{.}4771213}, \log7 = {^{.}8450980}, find the value of
\log \sqrt{\dfrac{35}{27}}.



Solve the following equations.
\displaystyle log_2 \, (4^x \, + \, 4) \, - \, log_2 \, (2{x \, + \, 1} \, - \, 3) \, = \, 0.



Write value of \sqrt [ 3 ]{ 2 } \times \sqrt [ 4 ]{ 2 } \times \sqrt [ 12 ]{ 32 } 



Solve the following equation:
\displaystyle\, 5^{x - 1} = 10^x\cdot 2^{-x}\cdot 5^{x + 1}



Rewrite the following equation in the logarithm from :
5^0 \, = \, 1



Rewrite the following equation in the logarithm from :
(2\sqrt{2})^{-2/3} \, = \, \dfrac{1}{2}.



Rewrite the following equation in the exponential form.
log_{5\sqrt{5}} \, 5 \, = \, \dfrac{2}{3}



Rewrite the following equation in the exponential form.
log_{100} \, 0.1 \, = \, -\dfrac{1}{2}



 Solve x^{\sqrt{x}} \, = \, (\sqrt {x})^x



Find the value of {(23.17)^{{1 \over {5.76}}}} using log table.



Rewrite the following equation in the exponential form.
\log_3 \, \frac{1}{243} \, = \, -5.



Evaluate : {2^{{{\log }_3}5}} - {5^{{{\log }_3}2}}



{ \left[ { \left( \dfrac { 15 }{ 12 }  \right)  }^{ 3 } \right]  }^{ 4 }



If x=243, then find the value of {x^{\frac{1}{5}}} \times {x^{ - \frac{1}{5}}}



Solve: \log (3x + 2) + \log (3x - 2) = \log5



Convert the following to logarithmic form:
5^{2} =25



If X^\cfrac{a}{b} =1, then find the value of 'a'.



Find the value of x for which
{\left( {{3 \over 4}} \right)^6} \times {\left( {{{16} \over 9}} \right)^5} = {\left( {{4 \over 3}} \right)^{x + 2}}



Simplify:
\log_{10}5 + 2\log_{10}4



Find the value of x for which { \left( \dfrac { 5 }{ 3 }  \right)  }^{ -4 }\times { \left( \dfrac { 5 }{ 3 }  \right)  }^{ -5 }={ \left( \dfrac { 5 }{ 3 }  \right)  }^{ 3x }



[(64)^{-2}]^{-3} \div [{(-8)^{2}}^{3}]^{2}



Simplify :
\left[ \left( \dfrac { 1 }{ 2 }  \right) ^{ -3 }+\left( \dfrac { 1 }{ 3 }  \right) ^{ -3 }+\left( \dfrac { 1 }{ 4 }  \right) ^{ -3 } \right]



If \log_{10}4=0.6021 and \log_{10}5=0.6990, then find the value of \log_{10}1600.



Express \log_{10}\sqrt[5]{108} in terms of \log_{10}2 and \log_{10}3.



Using log tables, calculate \frac{{24.18 \times 0.004592}}{{0.09588 \times 3.7619}}



Find the value of x for which \left\{ \left( \dfrac { -2 }{ 7 }  \right) ^{ 2 } \right\} ^{ x } \times \left( \dfrac { -7 }{ 2 }  \right) ^{ 2 } = \dfrac{-8}{343}.



Evaluate {a^6} \div {a^4}



Find x if {4^{2x}} = \dfrac{1}{{32}}



Show that \log_{b^3}a\times \log_{a^3}b\times\log_{a^3}c=\dfrac{1}{27}.



Simplify
{\left( {\frac{{81}}{{16}}} \right)^{\frac{8}{4}}} \times \left[ {{{\left( {\frac{{25}}{4}} \right)}^{ - \frac{3}{2}}} \div {{\left( {\frac{5}{2}} \right)}^{ - 3}}} \right]



Simplify  :  {\left[ {5{{\left( {{8^{\frac{1}{3}}} + {{27}^{\frac{1}{3}}}} \right)}^3}} \right]^{\frac{1}{4}}}



Solve {\left( {\sqrt[3]{{\dfrac{2}{3}}}} \right)^{x - 1}}\, = \dfrac{{27}}{8}



Simplify :
\dfrac{{{8^{3a}} \times {2^5} \times {2^{2a}}}}{{4 \times {2^{11a}} \times {2^{ - 2a}}}}



Find the value of log_7343.



Find the value of { \log }_{ 10 }\dfrac { 76 }{ 3.8 } 



Evaluate:-
{\left( {\frac{2}{7}} \right)^2}\, \times \,{\left( {\frac{7}{2}} \right)^{ - 3}}\, \div \,\,{\left\{ {{{\left( {\frac{7}{5}} \right)}^{ - 2}}} \right\}^{ - 4}}



Solve: (64)^{\dfrac{2}{3}} + 9^{\dfrac{3}{2}}.



{\left( {\frac{4}{5}} \right)^2}\, \times \,{5^4}\, \times \,{\left( {\frac{2}{5}} \right)^{ - 2}}\, \div \,{\left( {\frac{5}{2}} \right)^{ - 3}}



Using laws of exponents, simplify and write the answer in exponential form:
(i) 3^2 \times 3^4 \times 3^8     (ii) \dfrac{6^{15}}{6^{10}}



Solve
\log_{\frac{1}{3}}(x^2 + 8) = -2



Solution of 3^{3x-5}=\frac{1}{9^x} is



If log_2 x=a and log_5y=a, write 100^{2a-1} in terms of x and y.



Determine the value of {3^2} -\{ {\log}3\}^6



Simplify:
\left[(64)^{-3}\times (81)^{-\frac{9}{4}}\right]^{-\frac{1}{9}}



Simplify:
\dfrac{{3 \times {7^2} \times {{11}^8}}}{{21 \times {{11}^3}}}



Simplify: a^3 \times a^3 \times 5a^4.



{5^{x - 3}}\,\,\, \times \,{3^{2x - 8}} = 225



Solve {\left( { - \frac{3}{5}} \right)^{ - 3}}



Simplify \log c\sqrt c



Find the zeroes of the polynomial p\left( x \right) = x - \log _2{16}.



Solve: \dfrac{{{3^5}\times{{10}^5}\times25}}{{{5^7}\times{6^5}}}



Given log_{10}x=2a and log_{10}y=\dfrac{b}{2}. Write 10^a in terms of x.



Given log_{10}x=2a and log_{10}y=\dfrac{b}{2}, write 10^{2b+1} in terms of y.



log\dfrac{75}{16}-2log\dfrac{5}{9}+log\dfrac{32}{243}=log 2.



Find \log _{ 7 }{ 1 }



Express the following in exponential form.
\dfrac{5}{6}\times \dfrac{5}{6}\rightarrow \left(\dfrac{5}{6}\right)^2.



Solve:
\displaystyle {\left\{ {{{\left( {\frac{1}{3}} \right)}^{ - 1}} - {{\left( {\frac{1}{4}} \right)}^{ - 1}}} \right\}^{ - 1}}



Simplify : 4\sqrt{16} - 6\sqrt[3]{343} + 18 \sqrt[5]{243} - \sqrt{196}



value of ln10?



Solve {(3.968)^{\frac{3}{2}}}



Solve : 
\log M = \log {\left( {0.9} \right)^{20}}



If {\left( {2.381} \right)^x} = {\left( {0.2381} \right)^y} = {10^z} , then find the value   of \frac{1}{y} + \frac{1}{z} - \frac{1}{x}



What will be the value of log_2 \ (log_3 \ 81)?



Find the value of   \log_{2}{32}.



log_{\dfrac12}8=?



If log_{10}8=0.90 find the value of : 
(i) log_{10}4
(ii) log\sqrt{32}
(iii) log \ 0.125



Compute the following
7^{\log_{3}5}+5^{\log_{5}7}-5^{\log_{3}7}-7^{\log_{5}3}



Using laws of exponents, simplify and write the answer in exponential form:
(i) {7}^{x}\times {7}^{2}
(ii) {2}^{5}\times {5}^{5}
(iii) {a}^{4}\times {b}^{4}



Using laws of exponents, simplify and write the answer in exponential form:
(i) {3}^{2}\times {3}^{4}\times {3}^{8}
(ii) {6}^{15}\div {6}^{10}
(iii) {a}^{3}\times {a}^{2}



Evaluate the following
\dfrac {\left(\dfrac {12}{13}\right)^{5}\times \left(\dfrac {-1}{3}\right)}{\dfrac {1}{81}\times \left(\dfrac {12}{13}\right)^{3}}



Find the value of 
log5.4



simplify :
{\left( {{3^4}} \right)^3}



Solve: \dfrac{3^2 \times 3^2 \times 2^2}{3^2 \times 6}



Simplify the following  using laws of exponents.
{9^2} \times {9^{18}} \times {9^{10}}



Simplify the following  using laws of exponents.
({3^2}) \times {({3^2})^4}



Apply laws of exponents and simplify.
(3^{0}\times2^{5})+5^{0}



simplify:
\left( {\frac{{{2^{20}}}}{{{2^{15}}}}} \right) \times {2^3}



Simplify the following  using laws of exponents.
{2^{10}} \times {2^4}



Solve :\dfrac{(3^5)^2\times 7^3}{(3^3)^3 \times 7^2}



If \log _{ 10 }{ 2 } =0.3010, then \log _{ 10 }{ 50 } is



Find the value of \log_{\sqrt{3}}81.



Using the log table find the value of 1.234.



Solve \left( 3 ^ { - 7 } \div 3 ^ { - 10 } \right) \times 3 ^ { - 5 }



Find the value of [\{(a^3)^{-3}\}^0]^{100}.



If {\log _{10}}8 = 0.90
find \log 0.125



If {\log _{10}}8 = 0.90; find the value of :
a){\log _{10}}4
b)\log \sqrt {32}
c)\log 0.125



a^{m}.a^{n}=



Find the value of the following.
4^{4}



Solve the exponent

{17^2} \cdot {17^{ - 5}}



By what number should ( - 6 ) ^ { - 2 } be multiplied so that the product would be equal to ( 9 ) - 1 . ?



(-\dfrac{3}{4})^{11}\div [ (-\dfrac{3}{4})^{3}\times (-\dfrac{3}{4}^{6}) ]



Given:\log{2}=0.3010 and \log{3}=0.4771, find the value of \log{12}.



Find the value of y if : (100)^2\times(10)^5=(1000)^y



Find the value of m if :
\left( \dfrac { 2 }{ 9 }  \right)^3 \times \left( \dfrac { 2 }{ 9 }  \right)^{-6} =\left( \dfrac { 2 }{ 9 }  \right)^{2m-1} 



Simplify the following using laws of expressions
(2x)^{4}\div (2x)^{2}



Determine the value of the following
\log_{7}{1}



Express as a power of 3 in 729 and 343.



Find the value of (x^{3}\times x^{7})\div x^{12} for x = (-2).



Find the value x if  {2^4}*{2^5} = {({2^3})^x}



Determine the value of the following
\log_{10}{0.01}



If log_{10}0.001 =x, then find x.



If  x ^ { 2 } + y ^ { 2 } = 47 x y  then show that  \log \left( \dfrac { x + y } { 7 } \right) = \dfrac { 1 } { 2 } ( \log x + \log y ).



Find the value of log_{2\sqrt{3}}1728



Solve : \left( 6 ^ { - 1 } - 8 ^ { - 1 } \right) ^ { - 1 } + \left( 2 ^ { - 1 } - 3 ^ { - 1 } \right) ^ { - 1 }



Solve 
\dfrac { 5.6\times { 10 }^{ 6 } }{ { 3\times 10 }^{ -4 }(1.76\times { 10 }^{ 11 }) }



Find the product: a^{2} \times 2a^{22} \times 4a^{26}.



Solve : \sqrt { \dfrac { 256 a ^ { 4 } b ^ { 4 } } { 625 a ^ { 6 } b ^ { 2 } } } = ?



 Using laws of exponents, simplify and write the answer in exponential form: \left( { 3 }^{ 4 } \right) ^{ 3 }



Find the product :    \left( \dfrac { 1 } { 2 } p ^ { 3 } q ^ { 6 } \right) \left( - \dfrac { 2 } { 3 } p ^ { 4 } q \right) \left( p q ^ { 2 } \right).



If { (0.2) }^{ x }=2 and { \log }_{ 10 }2=0.3010, then what is the value of x



y={ log }_{  10}x then x=



Evaluate \log_2 128+\log _3 243



Evaluate:\log_{\frac{1}{100}}{\dfrac{1}{10000}}



{ \left( \frac { -1 }{ 2 }  \right)  }^{ 2 }=\frac { 1 }{ { 2 }^{ m } }



Evaluate:\log_{49}{343}



Show that \log{\left(\dfrac{243}{343}\right)}=5\log{3}-3\log{7}



Solve:
3^{x+1}=27\times 3^{4}



Solve: \dfrac{25\times t^{-4}}{5^{-3}\times 10\times t^{-8}}



Simplify 
{ 32 }^{ 1 }={ 2 }^{ x }



Simplify \sqrt [3]{4}\times \sqrt [3]{16}



Simplify : \dfrac{2^3 .3^4.  4}{3 .32}



Express each of the following exponential expressions as a rational number. { \left( \dfrac { 2 }{ 3 }  \right)  }^{ \left( -1 \right)  }+{ \left( \dfrac { 3 }{ 2 }  \right)  }^{ \left( -2 \right)  }



For a=27, b=8, m=\dfrac{1}{3} verify (ab)^{m}=a^{m}b^{m}



Write each of the following number in the form k \times { 10 }^{ n } where 1\le k\ 10 and n is an integer. 
(v)\ 0.00729



Solve : { 9 }^{ \dfrac { 5 }{ 2 }  }-3\times { 8 }^{ \circ  }-\left( \dfrac { 1 }{ 81 }  \right) ^{ -\dfrac { 1 }{ 2 }  }



\dfrac { log\sqrt { 8 }  }{ log8 } is equal to. 



Multiply {a^2} with \left( {{a^3} + 3{a^2}b + {b^3} + 3a{b^2}} \right).



The value of p^3 if 13p=69



Find the value of \log 4.5.



Simplify:
{ \left( \dfrac { 1 }{ 2 }  \right)  }^{ 5 }{ -\left( \dfrac { 3 }{ 2 }  \right)  }^{ 3 }



If a = 3 and b = -2 , find the value of : 
(a+b)^{ab}



If a = 3 and b = -2 , find the value of : 
a^{b}+b^{a}



Simplify:
{2}^{3}\times 5



Simplify:
0\times{10}^{2}



Convert the following to logarithmic form:
2^{6} = 64



Convert the following to logarithmic form:
7^{x} = 100



Convert the following to logarithmic form:
(81)^{3/4} = 27



Convert the following to logarithmic form:
9^{0} = 1



Convert the following to logarithmic form:
3^{-2} = 1/9



Convert the following to logarithmic form:
6^{1} = 6



Convert the following to logarithmic form:
10^{-2} = 0.01



Convert the following to logarithmic form:
5^{2} = 25



Convert the following into exponential form:
\log _{8} 4 = 2/3



Evaluate the following:
2\log  5 + \log 8 - 1/2 \log 4  



Convert the following into exponential form:
\log _{10} (0.001) = -3



Evaluate the following:
2 \log 5+ \log3 + 3 \log 2 -1/2 \log 36 - 2 \log 10



Convert the following into exponential form:
\log _{2} 32 = 5



Convert the following into exponential form:
\log _{8} 32 = 5/3



Convert the following into exponential form:
\log _{2} 0.25 = -2



Convert the following into exponential form:
\log _{3} 81 = 4



Convert the following into exponential form:
\log _{a} (1/a) = -1



Convert the following into exponential form:
\log _{3} 1/3 = -1



Given  3 \left ( \log 5 - \log3  \right ) - \left ( \log 5 -2\log  6  \right ) = 2 -\log n, Find n .



Evaluate the following :
\log 2 + 16 \log 16/15 +12 \log 25/24 + 7 \log 81/80



Express each of the following as a single logarithm:
1/2 \log 36 +2 \log 8 - \log 1.5



Express the following as a single logarithm:
2 \log _{10} 5-\log_{10} 2 + 3 \log _{10} 4 + 1



Evaluate the following :
2 \log _{10} 5 + \log_{10}8 -1/2 \log_{10} 4  



Solve for x:
\log x + \log 5=2 \log 3



Express each of the following as a single logarithm:
1/2 \log 25-2 \log 3+1



Express each of the following as a single logarithm:
2 \log 3 - 1/2 \log 16 + \log 12



Prove the following :
\log 4\div  \log_{10} 2= \log_{3} 9



Prove the following :
\log_{10} 25 + \log_{10} 4 = \log_{5} 25



Solve for x:
x = \log 125/ \log 25  



Solve the following equations :
\log  \left ( 3x +2 \right )+ \log\left ( 3x - 2 \right ) = 5 \log 2



Prove the following :
27 ^{\log 2 } = 8^{\log 3}



Solve for x:
 \log_{3}x- \log_{3} 2=1  



If   \log  x /\log 5 = \log  y^{2} /  \log 9/  \log  \left ( 1/3 \right ), find x and y .



Given 2 \log _{10} x+1 = \log _{10} 250, find x



Prove the following :
3 ^{\log 4 } = 4^{\log 3}



Solve for x:
\left ( \log 8/\log 2 \right ) \times \left ( \log 3/\log \sqrt{3} \right ) = 2 \log x



Solve the following equations :
\log_{10}\left ( x +2 \right ) + \log_{10}\left ( x-2 \right ) = \log_{10}3+3 \log_{10}4 



Given 2 \log _{10} x+1 = \log _{10} 250, find
  \log _{10}  2 x



Show that :
1 / \log_{2} 42 + 1 / \log_{3} 42+  1 / \log_{7}  42 = 1  



Find out the value of log(8621).



Solve for x:
\log_{2}x+ \log_{8}x+ \log_{32} x = 23/15



Use logarithm table to find the logarithm of the following numbers:
25795



Using logarithm, find the value of 6.45\times 981.4



Given that \displaystyle \log_a A = x is similar to \displaystyle a^x = A.
If true then write 1 and if false then write 0



If \log 2 = 0.3010 and \log 3 = 0.4771, then the value of \log 3.6 is 0.55a2. where a is 3rd digit of the given value,then a=?



If \displaystyle \log_3 m = x and \displaystyle \log_3 n = y, then \displaystyle 3^{1 - 2y + 3x} can be expressed in terms of m and n as \displaystyle \frac {3m^3}{n^2}.
If true then write 1 and if false then write 0.



If \displaystyle \log_{10} x = 2a and \displaystyle \log_{10} y = \tfrac {b}{2}, then \displaystyle 10^a in terms of x is \displaystyle \sqrt x.

If true then write 1 and if false then write 0.



\displaystyle \log _{2}32= 5  



Evaluate: { \left( 6.32 \right)  }^{ 2 }\times \sqrt [ 4 ]{ 83.94 }
[Hint: Use logarithm tables]



Evaluate: \dfrac { { \left( 17.42 \right)  }^{ \frac { 2 }{ 3 }  }\times 18.42 }{ \sqrt { 126.37 }  }
If the answer is not an whole number then write the whole number just smaller than the answer.
[Hint: Use logarithm tables]



Find the value of 'x' such that
25\times {5}^{x}={5}^{8}



Find the value of \log_{81}3



Simplify:
{ 10 }^{ -1 }\times { 10 }^{ 2 }\times {10}^{-3} \times  { 10 }^{ 4 }\times { 10 }^{ -5 }\times { 10 }^{ 6 }



Simplify (2^{3})^{-2} \times (3^{2})^{2}



Obtain the equivalent logarithmic form of the following.
(i) { 2 }^{ 4 }=16
(ii) { 3 }^{ 5 }=243
(iii) { 10 }^{ -1 }=0.1
(iv) { 8 }^{ -\frac { 2 }{ 3 }  }=\dfrac { 1 }{ 4 }
(v) { 25 }^{ \frac { 1 }{ 2 }  }=5
(vi) { 12 }^{ -2 }=\dfrac { 1 }{ 144 }



Simplify \dfrac {(2^{2})^{3}}{(3^{2})^{2}}



If 2^{p} = 32, find the value of p \ .



Find the value of the following:
\left (\dfrac {3}{8}\right )^{5} \times \left (\dfrac {3}{8}\right )^{4}\div \left (\dfrac {3}{8}\right )^{9}



Find the value of the following:
3^{4} \times 3^{-3}



Change the following from exponential form to logarithmic form.
(i) { 3 }^{ 4 }=81
(ii) { 6 }^{ -4 }=\dfrac { 1 }{ 1296 }
(iii) { \left( \dfrac { 1 }{ 81 }  \right)  }^{ \frac { 3 }{ 4 }  }=\dfrac { 1 }{ 27 }
(iv) { \left( 216 \right)  }^{ \frac { 1 }{ 3 }  }=6
(v) { \left( 13 \right)  }^{ -1 }=\frac { 1 }{ 13 }



Simplify: 2^{5}\times 2^{3}



Find (i) \log { 86.76 }
        (ii) \log { 730.391 }
        (iii) \log { 0.00421526 }



If Kx = |\ln (x)| has 3 solutions find out the limiting values of K for which this is possible.



Given \log_{10} 2 = {^{.}30103}, find \log_{25}200.



Write the characteristic of each of the following
(i) \log { 4576 }
(ii) \log { 24.56 }
(iii) \log { 0.00257 }
(iv) \log { 0.0756 }
(v) \log { 0.2798 }
(vi) \log { 6.453 }



Write the characteristic of the following.
(i) \log { 27.91 }
(ii) \log { 0.02871 }
(iii) \log { 0.000987 }
(iv) \log { 2475 }



Given that \log { 4586 } =3.6615, find
(i) \log { 45.86 }
(ii) \log { 45860 }
(iii) \log { 0.4586 }
(iv) \log { 0.004586 }
(v) \log { 0.04586 }
(vi) \log { 4.586 }



Determine the value of x for which the 6th term in  \left ( 2^{log_2(\sqrt{g^{x-y}+7})}+\frac{1}{2^{\frac{1}{5}log_2(3^{x-1}+1)}} \right ) is 84.



Solve the following equation:
\displaystyle\, \frac{3}{2^{\log x}} = \frac{1}{64}



Solve the following equations.
\displaystyle (6.25)^{2 \, - \, x} = \, \frac{1}{2^{x \, + \, 3}}.



Solve the following equations.
\displaystyle 6.9^{0.5x \, - \, 2} \, + \, 2.3^{x \, - \, 6} \, = \, 56.



Find the value of x if {2^4} \times {2^5} = {\left( {{2^3}} \right)^x}.



Represent the following mixed infinite decimal periodic fractions as common fractions:
\displaystyle\, log_{1/2} (log_3\, cos(\pi /6) - log_3\, sin (\pi /6)) 



simplify: {\left\{ {5\left( {{{16}^{\dfrac{1}{4}}} + {{27}^{\dfrac{1}{3}}}} \right)} \right\}^{\dfrac{1}{4}}}



Solve
\log {10^4}\left( {1 + {1 \over {2x}}} \right)-\log {10^3} = \log 10\left( {\root  \of (0.75x-0.5) + 2} \right)



Solve log_{10} tan1^\circ \, + \, log_{10} tan2^\circ \, + \, ........ \, + \, log_{10} tan89^\circ



Solve the equations:
3^x \, 5^y \, = \, 75  
3^y 5^x \, = \, 45



Prove the following identities : 
If a^2 \, + \, b^2 \, = \, 7ab , prove that \log\dfrac{1}{3}(a \, + \, b) \, = \dfrac{1}{2}[\log a +\log b]



Substituting the values, find n
\cfrac{0.1}{0.2}=\left( \cfrac{10}{80} \right)^{1/n}  or  \left( \cfrac{1}{2} \right)^{1}=\left( \cfrac{1}{2} \right)^{3/n}



Express\quad in\quad logarithmic\quad form:\\ { 5 }^{ 3 }=125



The value of x satisfying the equation {4^{{{\log }_9}^3}} + {9^{{{\log }_2}^4}} = {10^{{{\log }_c}^{83}}} is



If {4^{{{\log }_2}2x}} = 36 , then find x.



Solve the equation \dfrac{3}{2}\log_4(x+2)^2+3=\log_4(4-x)^3+\log_4(6+x)^3.



Find x : 3(2^{x} + 1) -2^{x+2} + 5 =0



Solve : \log_3(\sqrt{x}+|\sqrt{x}-1|)=\log_9(4\sqrt{x}-3+4|\sqrt{x}-1|)



Prove that x^{\log y-\log z}.x^{\log z-\log x}.x^{\log x-\log y}=1.



The simplified value of \sqrt {72}  + \sqrt {800}  - \sqrt {18} is



Prove that:
\log(1+2+3)=\log 1+\log 2+\log 3.



Find the value of {49^{\left( {1 - {{\log }_7}2} \right)}} + {5^{ - {{\log }_5}4}}. 



  Solve:



( \dfrac{2 \times 3.0 \times 10^{-25}}{9.1 \times 10^{-31}})^{}



If \left(\dfrac{21}{19}\right)^4\times \left(\dfrac{19}{7}\right)^4=b^4.Find b



Simplify the following.
{ 3 }^{ 2 }\div { 3 }^{ 4 }



Simplify the following.
{ a }^{ x }\div { a }^{ y }



{\log _{2\sqrt 3 }}1728



If 2^{x+1} = 3^{1-x} then find the value of x.



Simplify the following.
{ x }^{ 3 }\div { x }^{ 7 }



using log tables, calculate {\left[ {\frac{{5.3 \times 2.843}}{{0.80341}}} \right]^{\frac{1}{3}}}
Using Log tables calculate {\frac{{{{\left( {4.63} \right)}^2} \times {{\left( {0.08341} \right)}^{\frac{2}{5}}}}}{{{{\left( {0.006743} \right)}^{\frac{1}{4}}}}}}



Simplify the following. { 3 }^{ 4 }\times { 4 }^{ 4 } 



Simplify the following.
{ 5 }^{ 7 }\div { 5 }^{ 3 }



Simplify: \dfrac{{16 \times {2^{n + 1}} - 4 \times {2^n}}}{{16 \times {2^{n + 2}} - 2 \times {2^{n + 2}}}}



How to find \log of any number?



Solve:
x=(a^{2/3})^3 \div a^{3/2} \times a^{-3} If a=\dfrac{1}{4}. Find x^{-1}



Find x if
a) {2^x} = 22
b) {3^x} = 243



Find out the value of n if { 3 }^{ n }={ 4 }^{ n-1 }



Simplify
{8^{\frac{2}{3}}} - \sqrt 9  \times 10 + \left( {\frac{1}{{144}}} \right)



The value of 2^{\log_{4}{25}} is ____



Solve for x
\displaystyle {(81)^{\frac{3}{4}}} - {\left( {\frac{1}{{32}}} \right)^{\frac{{ - 2}}{5}}}+ x{\left( {\frac{1}{2}} \right)^{ - 1}}{\times 2^0} = 27



Solve for x
{2^{3x + 3}} = {2^{3x + 1}} + 48.



\log_{e}(101) gives \log_{e}10=2.3026



If \log{x}=0 then x=?



\log\dfrac {20}{10}=?



Evaluate:
\dfrac{\left(\dfrac{-3}{5}\right)^3\times \left(\dfrac{9}{25}\right)^2\times \left(\dfrac{-18}{125}\right)^0}{\dfrac{-27}{125}\times \left(\dfrac{-3}{5}\right)}.



Solve: 
\log_{x^2-1}(x+1)<1



\log_{e}(4.04) given \log_{10}4=0.6021,\log_{10}e=0.4343



\log_{e}(9.01) gives \log_{e}3=1.0986



Find the value of:

2(6(\sqrt{3})^{5})(\sqrt{3})+20\times (\sqrt{3})^{3}(\sqrt{2})^{3}+6(\sqrt{3})(\sqrt{2})^{5}



If we multiply m with { \left( \dfrac { 256 }{ 6561 }  \right)  }^{ -\dfrac { 5 }{ 8 }  } we get 1, then m =



The value of \log_{5}\left(\dfrac{1}{625}\right) is



Compute the following
\left(\dfrac {1}{49}\right)^{1+\log_{7}2}+5^{-\log_{1/5}7}



Solve : 2^{3x + 1} + 2^7 = (-4)^4



If \dfrac{{{9^b} \times {3^2} \times {{\left( {{3^{\dfrac{{ - b}}{2}}}} \right)}^{ - 2}} - {{\left( {27} \right)}^b}}}{{{3^{3a}} \times {2^3}}} = \dfrac{1}{{27}}, then prove that a - b = 1.



-9\log_{3}^{(b + 2)} = ?.



Find the value of
\log_{2} { 5^{ \frac{1}{3} } }



Expand \dfrac{5x^2+4x+7}{\left(2x+3\right)^{\frac{3}{2}}}



Solve:
8x^7+x^7+x=?
if x=7



For any base show that 
log (1+2+3)= log 1+ log 2+ log3.
Note that , in general,
log (a+b+c)\neq log a+ log b +log c.



Solve the following:-
\left(\dfrac{2^6 \times 3^4}{6^3}\right)^2\times \left(\dfrac{3^3 \times 2^5}{3 \times 8}\right)^3



log_x\ a\ +- log_{ax}a\ +\ 3log_{a^{2}x}\ a\ =\ 0



Solve and write the answer in one term.
\log 2 + 1.



If \log 2=0.3010,\log 3=0.4771,\log 7=0.8451 and \log 11=1.0414, then find the value of the following :
\log \left(\dfrac {11}{7}\right)^{5}



If log _{2\sqrt 3} 1728=x then find x



Solve:
\log_{3}{\left(\dfrac{1}{27}\right)}=-3



Evaluate  \log _ { 3 } \left( \log _ { 9 } x + \frac { 1 } { 2 } + 9 ^ { x } \right) = 2 x



Solve:
\left(-\dfrac {1}{2}\right)^{3}\times \left(-\dfrac {1}{2}\right)^{4} 



Find the value of 2[(2^{-1}\times 4^{-1})\div 2^{-2}].



If \log 2=0.3010,\log 3=0.4771,\log 7=0.8451 and \log 11=1.0414, then find the value of the following :
\log 36



{(x \div y)^{ - 1}} = {x^{ - 1}} \div {y^{ - 1}} by taking x = \frac{7}{{11}}



If \log 2=0.3010,\log 3=0.4771,\log 7=0.8451 and \log 11=1.0414, then find the value of the following :
\log \dfrac {42}{11}



Solve :- {{{5^6}} \over {{5^3} \times {5^3}}}



If \log 2=0.3010,\log 3=0.4771,\log 7=0.8451 and \log 11=1.0414, then find the value of the following :
\log 5^{1/3}



If \log 2=0.3010,\log 3=0.4771,\log 7=0.8451 and \log 11=1.0414, then find the value of the following :
\log 70



{\log _2}x + \frac{1}{2}{\log _2}(x + 2) = 2



Find the value of  x    if   \displaystyle 14 \times {10^{ - 4}} = \log {{500} \over x}   



4^{3.5} : 2 ^5 is the same as



If \log 2=0.3010,\log 3=0.4771,\log 7=0.8451 and \log 11=1.0414 then find the value of the following
\log \dfrac {121}{120}



{2}^{9}\times{2}^{5}



Find the value of \log 7 using series expansion.



Find the value of \log_2 2^{2^2}.



The value of a for which \log _ { a } ( 1 \times 2 ) - \log _ { a } ( 2 \times 3 ) + \log _ { a } ( 3 \times 4 ) - \log _ { a } ( 4 \times 5 ) + \log _ { a } ( 5 \times 6 ) = \log _ { e } 36 is ...



Simplify the following using laws of exponent 
(\dfrac{3x^2y^2}{axy^4})^2



Simplify the following using laws of exponent 
[7^8 \times 12^8]\div [14^8 \times 6^8]



Using \log{2}=0.3010 and \log{3}=0.4771 and \log{7}=0.8451 find the value of \log{6}^{50}



Find n
\dfrac {9^{n+1}+4^{n+1}}{9^{n}+4^{n}}=6



Simplify and express:
\displaystyle \frac{2^{3}\times 3^{4}\times 4}{3\times 32}



Solve:
2^{5}\times 2^{4}\div 2^{3}



Prove that
\dfrac { 1 }{ { log }_{ ab }(abc) } +\dfrac { 1 }{ { log }_{ bc }(abc) } +\dfrac { 1 }{ { log }_{ ca }(abc) } =2



If { a }^{ 2 }+{ b }^{ 2 }=3ab, show that \log\left( \dfrac { a+b }{ \sqrt { 5 }  }  \right) =\dfrac { 1 }{ 2 } \left( \log a+\log b \right)



32^{1/5} is equal to ___.



solve : \left[ \left\{ \left( \dfrac { - 1 } { 3 } \right) ^ { 2 } \right\} ^ { - 2 } \right] ^ { - 1 }



Find the value of x  if  {25}^{x}\sqrt[x]{{5}^{x-1}}=1



{ \left[ { \left( \dfrac { 5 }{ 7 }  \right)  }^{ 2 } \right]  }^{ 3 }\times { 7 }^{ 6 }\div { \left( { 5 }^{ 3 } \right)  }^{ 2 } is equal to ____.



{ log }_{ 10 }2+{ 16log }_{ 10 }(\frac { 16 }{ 15 } )+{ 12log }_{ 10 }(\frac { 25 }{ 24 } )+{ 7log }_{ 10 }(\frac { 81 }{ 80 } )



Express \log _{ 10 }{ 2 } +1\quad in\quad the\quad from\quad of\quad \log _{ 10 }{ x. } 



Find the value of :
(i) \log_{1/2}{8}
(ii) \log_5{0.008}
(iii) \log_5{3125}
(iv) \log_7{\sqrt[3]{7}}



The value of log\, 0.008........



Simplify: \sqrt [5] {64}



Find the approximate value of 
(i) { log }_{ e }101, given that { log }_{ e }10=2.3026
(ii) { 3 }^{ 2.04 } given that { log }_{ e }3=1.0986.



If a=log_{24}12, b=log_{36}24, c=log_{48}36. Prove that 1+abc=2bc.



\log _33+\log _416



Write {2}^{10}=1024 in logarithmic form.



\log _6216+\log _7343



Find the value of \log_{\sqrt{2}} 16.



Write {3}^{5}=243 in logarithmic form.



Find the value of 
i) { 2 }^{ 6 }
ii) { 9 }^{ 3 }
iii) { 11 }^{ 2 }



Simplify: \dfrac {a^{m}\times a^{n}}{a^{m-n}}



find the value of \dfrac { \log _{ 4 }{ 7 }  }{ \log _{ 4 }{ 5 }  } -\dfrac { \log _{ 9 }{ 5 }  }{ \log _{ 9 }{ 7 }  }



Show that \log{\left(\dfrac{108}{605}\right)}=2\log{2}+3\log{3}-\log{5}-2\log{11}



Write {6}^{3}=216 in logarithmic form.



Find the value of x if \log \sin \sqrt x=0



Evaluate: \log_{4}\log_{3}\log_{2}{x}=0



If \log_{x}\dfrac 18=\dfrac{-3}{2} then x is equal to



If \log_4x=12, then \log_2 \dfrac x4 is equal to



Simplify:{a}^{\frac{\log_{b}{\left(\log_{b}{N}\right)}}{\log_{b}{a}}}



Solve:\log_{e}\log_{5}\left[\sqrt{2x-2}+3\right]=0



Find the value of \log _8512+\log _28



Solve:\log{\left(\log{x}\right)}+\log{\left(\log{{x}^{3}}-2\right)}=0



Solve for x:\,\,\dfrac{\log_{10}{\left(x-3\right)}}{\log_{10}{\left({x}^{2}-21\right)}}=\dfrac{1}{2}



Find {x}^{\log{x}+4}=32 where base of logarithm is 2



NTR says that the degree of (x^5-5)(x^2+3) isDo you agree with him?How?



Simplify: \displaystyle \frac { 2\sqrt { 30 }  }{ \sqrt { 6 }  } -\frac { 3\sqrt { 140 }  }{ \sqrt { 28 }  } +\frac { \sqrt { 275 }  }{ \sqrt{55} }



log 5- log 7 =?



If a^x=b, b^y=a then show that xy=1.



In exponential form 729=3^a, what is the value of a?



The exponential form of 625 is 5^k then value of k is ___.



Write the given expression in exponential form.
4a^3\times 6ab^2\times c^2.



Write the following in exponential form.
(i) log_{10}100=2
(ii) log_{5}25=2
(iii) log_{2}2=1



Simplify:\log_{\frac{1}{3}}{\sqrt[4]{729\sqrt[3]{{9}^{-1}{27}^{\frac{-4}{3}}}}}



The exponential form of 512 is 2^k then value of k is ___.



Solve:{9}^{1+\log{x}}-{3}^{1+\log{x}}-210=0 where base of \log is 3



If \log_{10}{\left({x}^{2}-12x+36\right)}=2



Find the 5th root of .003, having given log 3=.4771213 and log 312936=5.4954243.



Given log 11=1.0413927 and log 13=1.1139434, find the values of
(1) log 1.43, (2) log 133.1, (3) log \sqrt[4]{143}, and (4) log \sqrt[3]{.00169}.



Given log 4=.60206 and log 3=.4771213, find the logarithms of .8, .003, .0108, and (.00018)^{\dfrac{1}{7}}.



Given \log2 = {^{.}3010300}, \log3 = {^{.}4771213}, \log7 = {^{.}8450980}, find the value of
\log \sqrt[3]{12}.



Find the value of (1) 7^{\dfrac{1}{7}}, (2) (84)^{\dfrac{2}{5}}, and (3) (.021)^{\dfrac{1}{5}}, having given
log 2=.30103, log 3=.4771213,
log 7=.8450980, log 132057=5.1207283,
log 588453=5.7697117, and log 461791=5.6644438.



Find the numerical value of the logarithms of 7, 11 and 13; given \mu=\cdot 43429448, \log 2=\cdot 30103000.



Solve 
\dfrac{16\times 10^2\times 64}{2^4\times 4^2}



While studying her family's history. Shikha discovers records of ancestors she has had in the past 12 generations. She started to make a diagram to help her figure this out. The diagram soon become very complex.
Make a graph showing the number of ancestors in each of the 12 generations.
1793218_487ca4a5a23c4162bb37a0c6e0028db4.png



Two machines can be hooked together. When something is sent through this hook up, the output from the first machine becomes the input for the second.
When two machines hooked together do the same work as (\times 10^2) machine does? Is there more than one arrangement of two machines that will work?
1793321_e388b83901924298b6f9bea07b9106d3.png



For the following repeater machines, how many times the base is applied and how much the total stretch is ?
1793333_6770f15e6ebb4fb5b29b8b01cfe2194d.png



Find a single repeater machine that will do the same work as the hook -up.
1793366_20346d2578fc4484a0c1044127b64758.png



Find a single machine that will do the same job as the given hook-up.
A(\times 2^3) machine followed by (\times 2^{-2}) machine.



Find a single machine that will do the same job as the given hook-up.
A(\times 5^{99}) machine followed by (5^{-100}) machine.



Shikha has an order from a golf course designer to put palm trees through a(\times 2^3) machine and then through (\times 3^3) machine. She thinks she can do the job with a single repeater machine. What single repeater machine should she use?
1793385_484466357c784e5eac141a50937beec3.png



Find a single repeater machine that will do the same work as the hook -up.
1793374_d387c31e29754ef78ea503247183edd8.png



For the hook-up, determine whether there is a single repeater machine that will do the same work. If so, describe or draw it.
1793378_e66a8830c82a4194b59f14f6bc186a4a.png



For the hook-up, determine whether there is a single repeater machine that will do the same work. If so, describe or draw it.
1793381_27728f28c9ef463aae803ad700138845.png



Find a single repeater machine that will do the same work as the hook -up.
1793371_62cdf826bbe249559564c98ccf8061ff.png



Find the value of:
(-3)^{2} \times 5^2



The diameter of the Sun is 1.4\times 10^9\ m and the diameter of the Earth is 1.2756\times 10^7\ m. Compare their diameters by division.



Simplify and write in exponential form:
\dfrac{9^8 \times (x^2)^5}{(27)^4 \times (x^3)^2}



Simplify:
\dfrac{7^3 \times 11^4 \times 13^0 }{7^2 \times 11^2}



Find x.
\left( \dfrac 25\right)^{2x+6}\times  \left( \dfrac 25\right)^{3}=\left( \dfrac 25\right)^{x+2}



Simplify:
\dfrac{[(-5)^3]^4 \times 8^2}{4^3 \times (25)^5}



Simplify and write in exponential form:
\dfrac{(-3)^5\times 8^3 \times 2^5}{3^2 \times 4^4}



Simplify:
\dfrac{(-2)^3 \times (3x)^2 \times (-xy^3)}{3x^2y}



The left column of the chart lists the lengths of input chains of gold. Repeater machines are listed across the top. The other entries are the outputs you get when you send the input chain from that row the repeater machine from that column. Copy and complete the chart.
Input LengthRepeater Machine
x\ 2^3
40125
2162

81



Simplify:
\left( \dfrac{4}{13}\right)^{4}\times \left( \dfrac{13}{7}\right)^{2}\times \left( \dfrac{7}{4}\right)^{3}



Evalute
2^3 \times 5^2



Evaluate
2^3 \times 4^2



Simplify and write in exponential form:
\dfrac{3^2 \times 7^8 \times 13^6}{21^2 \times 91^3}



Elaluate
2^2 \times 3^3



Simplify and write in exponential form:
(-3)^6 \times (-5)^6



Simplify and write in exponential form:
\bigg(\dfrac{3}{10}\bigg)^5 \times \bigg(\dfrac{2}{15}\bigg)^5



If (9^n \times 3^5 \times 27^3)(3\times 81^4)=27 , find n.



Evaluate
3^3 \times 5^2



Write the following in logarithmic form:
\frac{1}{81}=3^{c}.



Write the following in logarithmic form:
10=5^{b}.



Elaluate
3^2 \times 4^2



Evaluate
(2 / 3)^3 \times (3/4)^2



Elaluate
(4 \times 3)^3



Evaluate
(3 / 5)^2 \times (-2 / 3)^3



Elaluate
5^3 \times 2^4



Write the following in logarithmic form:
7=2^{x}



Elaluate
(5 \times 4)^2



Evaluate
(-3 / 4)^3 \times (2 / 3)^4



Solve the following:
\log _{10}100000=z



Write the following in exponential form:
\log _{10}100=2



We have \log _{2}32. Show that we get the same result by writing 32=2^{5} and then using power rules. Verify the answer.



Write the following in logarithmic form:
\dfrac{1}{257}=4^{a}



Write the following in exponential form:
\log _{2}2=1



Solve the following:
\log _{2}16=2 \therefore x^{2}=16\Rightarrow x=\pm 4
Is it correct or not?



Solve the following:
\log _{2}32=x



Solve the following:
\log _{5}625=y



Write the following in logarithmic form:
100=10^{z}



Write the following in exponential form:
\log _{5}25=2



Determine the value of the following:
\log _{81}3



Determine the value of the following:
\log _{2}\left ( \frac{1}{16} \right ).



Determine the value of the following:
\log _{2}512.



Determine the value of the following:
\log _{10}0.01.



Find the value of:
\log _{2}32



Determine the value of the following:
\log _{7}1.



Find the value of:
\log _{\dfrac{2}{3}}\dfrac{8}{27}.



Determine the value of the following:
\log _{\frac{2}{3}}\left ( \frac{8}{27} \right ).



Find the value of:
\log _{10}0.001



Determine the value of the following:
\log _{25}5



Express each of the following in logarithmic form:
10^{-3}=0.001



Express each of the following in logarithmic form:
5^{3}=125



Expand the following:
\log \left ( \dfrac{128}{625} \right ).



Evaluate the following in terms of x and y, if it is given that x=\log _{2}3 and y=\log _{2}5.
\log _{2}60.



Evaluate the following in terms of x and y, if it is given that x=\log _{2}3 and y=\log _{2}5.
\log _{2}7.5.



Evaluate the following in terms of x and y, if it is given that x=\log _{2}3 and y=\log _{2}5.
\log _{2}6750.



Evaluate the following in terms of x and y, if it is given that x=\log _{2}3 and y=\log _{2}5.
\log _{2}15.



Determine the value of the following:
2^{2+\log _{2}3}.



Find the logarithm of : 
100 to the base 10



Express the each of following in exponential form:
\log _{a}A = x



Express the each of following in exponential form:
log_{10}0.01=-2



Find the logarithm of : 
0.01 to the base 10



Find the logarithm of :
32 to the base 4



Solve for x : 
\log_{10} x = -2



Express the each of following in exponential form:
\log _{10}1 = 0



Express each of the following in logarithmic form:
3^{-2}=\dfrac{1}{9}



Express the each of following in exponential form:
\log_{8}0.125=-1



Find the logarithm of : 
0.001 to the base 10



Evaluate : 
log_{2}\dfrac{1}{8}



Find x if : 
\log_{9}243=x



Find the logarithm
27 to the base 4 



Evaluate : 
\log_{10}0.01



Find x if : 
\log_{4}32=x-4



Find the logarithm of :
0.125 to the base 2



Find the logarithm
\dfrac{1}{81} to the base 27



Find the logarithm
\dfrac{1}{16} to the base 4



Evaluate : 
log_{5}1



State , true or false :
\log_{2}8=3 and \log _{8}2=\dfrac{1}{3}



If \log_{10}2=a and \log_{10}3=b; Express each of the following in terms of 'a' and 'b'
\log 2.25



Prove that :
2 \log\dfrac{15}{18}-\log\dfrac{25}{162}+\log\dfrac{4}{9}=\log2



Evaluate :
\log_{16}8=x 



State , true or false
\dfrac{\log25}{\log5}=\log x



Evaluate :
\log_{5}125=x 



Solve for x :
\dfrac{\log128}{\log32}=x



If \log_{10}2=a and \log_{10}3=b; Express each of the following in terms of 'a' and 'b'
\log2\dfrac{1}{4}



If \log_{10}2=a and \log_{10}3=b; Express each of the following in terms of 'a' and 'b'
\log 60



Solve for x : 
\dfrac{\log81}{\log27}=x



Evaluate :
log_{0.5}16=X



If \log 2 = 0.3010 and \log 3=0.4771; find the value of :
\log 25



If x = \log 0.6;  y = \log 1.25 and z = \log 3-2 \log 2 , find the values of : 
5^{x+y-z}



If log 2 = 0.3010 and 0.4771; find the value of :
log 1.2



If \log_{10}8=0.90; find the value of :
\log 0.125



If \log_{10}8=0.90; find the value of :
\log\sqrt{32}



If \log 2 = 0.3010 and \log 3=0.4771; find the value of :
\log 3.6



If \log 2 = 0.3010 and \log 3=0.4771; find the value of :
\log 15



Given : 2 \log_{10}x+1=\log_{10}250,
Find:
\log_{10}2x



Find x , if :
\log_{x}625=-4



If x = \log 0.6;  y = \log 1.25 and z = \log 3-2 \log 2 , find the values of : 
x+y-z



Write the following in logarithm form:
10^{4} = 10000



Write the following in logarithm form:
2^{10} = 1024



If \log_{\sqrt{27}}x=2\dfrac{2}{3}, find x.



Write the following in the power form :
\log_{5} 25 = 2



Solve for x 
\log_{x}15\sqrt{5}=2-\log_{x}3\sqrt{5}



Write the following in logarithm form:
4^{3/2} = 8



Solve for x , if 
\log_{x}49-\log_{x}7+\log_{x}\dfrac{1}{343}=2



Evaluate :
\dfrac{\log_{5}8}{\log_{25}16\times \log_{10}10}



Write the following in logarithm form:
10^{-3} = 0.001



Write the following in logarithm form:
5^{-2} =\frac{1}{25}



If \log_{125} P =\frac{1}{6} then find the value of P.



Write the following in the power form :
\log_{10} 0.1 = 1



Prove that:
\log 630 = \log 2 + 2 \log 3 + \log 5 + \log 7.



Write the following in the power form :
log_{3} (\frac{1}{27} ) = -3



Write the following in the power form :
\log_{\sqrt{2}} 4 = 4



If \log_{81} x =\frac{3}{2}, then find the value of x.



If \log_{4} m = 1.5, then find the value of m.



Prove that :
\log_{4} [\log_{2}(\log_{2} (\log_{3} 81))] = 0



Write the following in the power form :
\log_{10} 0.001 = 3



Write the following in the power form :
\log_{3} 729 = 6



Prove that:
\log\frac{9}{14}+\log\frac{35}{24}-\log\frac{15}{16}=0



If \log 2 = 0.3010, \log 3 = 0.4771, \log 7 = 0.8451 and \log 11 = 1.0414, then find the value of the following :
\log\left ( \frac{11}{7} \right )^{5}



If \log 2 = 0.3010, \log 3 = 0.4771, \log 7 = 0.8451 and \log 11 = 1.0414, then find the value of the following :
\log70



If \log 2 = 0.3010, \log 3 = 0.4771, \log 7 = 0.8451 and \log 11 = 1.0414, then find the value of the following :
\log36



Find the value of 3^{2}-\log_{3}^{4}



If \log 2 = 0.3010, \log 3 = 0.4771, \log 7 = 0.8451 and \log 11 = 1.0414, then find the value of the following :
\log\frac{42}{11}



If \log 2 = 0.3010, \log 3 = 0.4771, \log 7 = 0.8451 and \log 11 = 1.0414, then find the value of the following :
\log5^{1/3}



Prove that:
\log 10 + \log 100 + \log 1000 + \log 10000 = 10



If \log 2 = 0.3010, \log 3 = 0.4771, \log 7 = 0.8451 and \log 11 = 1.0414, then find the value of the following :
\log\frac{121}{120}



Prove that:
\log_{5} 3 . \log_{3} 4 . \log_{2} 5 = 2



Find the logarithm of the following numbers by using log table :
2813



Find the characteristic of logarithm of following numbers :
1270



Find the logarithm of the following numbers by using log table :
27.28



Find the logarithm of the following numbers by using log table :
0.678



Find the logarithm of the following numbers by using log table :
400



Give the solution of following questions in one term :
\log 2 + 1



Find the characteristic of logarithm of following numbers :
20.125



Find the logarithm of the following numbers by using log table :
9



Find the characteristic of logarithm of following numbers :
70



Find the value of x in the following :
\log x = 0.452



Find the logarithm of the following numbers by using log table :
0.08403



Find the logarithm of the following numbers by using log table :
0.00003258



Find the logarithm of the following numbers by using log table :
0.000287



Find the value of x in the following :
\log x = \bar{2}.6727



Find the logarithm of the following numbers by using log table :
0.00003208



Find the logarithm of the following numbers by using log table :
0.000125



Find the logarithm of the following numbers by using log table :
1.234



Find the logarithm of the following numbers by using log table :
0.0035



If \frac{\log144}{\log12}=\log x, then find the value of x.



Find the value of \log 0.001.



Prove that:
\log_{3} 4 . \log_{4} 5 . \log_{5} 6 . \log_{6} 7 . \log_{7}\log_{8} 9 = 2



If \log 52.04 = 1.7163, \log 80.65 = 1.9066 and \log 9.753 = 0.9891, then find the value of
\log\frac{52.04*80.65}{9.753}



Prove that:
\log_{10} \tan 1^{0}. \log_{10} \tan 2^{0}. \log_{10} \tan 89^{0} = 0



If \log 7 = 0.8451 and \log 3 = 0.4771, then find \log (21)^{5}.



If \log 2 = 0.3010, then find the value of \log 200.



\log 2 = 0.3010 and \log 3 = 0.4771, then find the value of \log (0.06)^{6}



If \log 32.9= 1.5172, \log 568.1 = 2.7544 and \log 13.28 = 1.1232, then find the value of
\log\frac{(13.28)^{3}}{32.9*568.1}



By using logarithm, find the value of
\frac{520.4*8.065}{97.53}



\log_{10} 3= 0.4771, then find \log_{10} 0.027.



If 5^{-p} = 4^{-q} = 20^r; show that:
\displaystyle \frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 0



\log_x (\log_9 (3^x - 9)) < 1



If \dfrac {241}{4000}=\dfrac {241}{{2}^{m}{5}^{n}}, find m and n values?



Evaluate =\sqrt[100]{10^{10^{10}}}



Simplify the following expressions.
(a)   \displaystyle\, 5^{log \, 5/log \, 25}

(b)    \displaystyle\, log_2 \, log \, 100



Simplify the following expressions.
\displaystyle\, 0.(1 \, + \, 9^{log_3 \, 8})^{log_5 \, 5}



Calculate \displaystyle \log_5 9.8  in terms of a and b, if \log 2 = a and \log 7 = b.



{x^{3{{\log }^3}{{10}^x} - {2 \over 3}\log {{10}^x} = 100\root 3 \of {10} }}



Solve the following equations.
\displaystyle log_3 \, log_4 \, log_2 \, x \, = \, 0.



Solve the following equation.
\displaystyle\, \log^2_{1/2}\, (4x) + \log_2 \left ( \frac{x^2}{8} \right ) = 8



Solve \sqrt{\log_2\ x^{4}}+4\log_4\sqrt{\dfrac{2}{x}}=2



\log _{ x }{ y } =10\log _{ 2 }{ y } =100 then y=



Find approximate value of {\log _e}(4.04)\,\ \ if \ \ \,{\log _{10}}4\, = \,0.6021\,and\,{\log _{10}}e = 0.4343



Solve for x
{({a^{3x + 5}})^2}\times {({a^x})^4} = {a^{8x + 12}}



Prove that :
\dfrac{2^{30} + 2^{29}+ 2^{28} }{2^{31} + 2^{30}- 2^{29}}=\dfrac{7}{10}



Given: 2 \log _ { 10 ^ { x } } + 1 = \log _ { 10 } 250. Find x and \log _ { 10 } 2 x



Find the value of \log { _{ 5 } } 0.008



log 6 + 2 log 5 + log 4 - log 3 - log 2



Solve:
\dfrac{1}{1+a^{n-m}}+\dfrac{1}{1+a^{m-n}}



Express in terms of bases to the power of exponenets
8.9^{2}



Evaluate : \left( \dfrac { 5 } { 3 } \right) ^ { x } \cdot \left( \dfrac { 9 } { 25 } \right) ^ { x ^ { 2 } + 2 x - 11 } = \left( \dfrac { 5 } { 3 } \right) ^ { 9 }



Solve:
(-48p^{4})\div(-9p^{2})



the value \left( \frac { 1 }{ \sqrt { 27 }  }  \right) ^{ 2-\left( { log }_{ 5 }{ 16/2log }_{ 5 }9 \right)  } =



Find the appropriate value of \log_{10} (1016), given \log_{10}e=0.4343



|x-1|^A = (x-1)^7, where A=log_3x^2 -2log_x9.



Given \log2 = {^{.}3010300}, \log3 = {^{.}4771213}, \log7 = {^{.}8450980}, find the value of
\log 14{^{.}4}.



From the tables find the seventh root of .000026751. Making use of the tables, find the approximate values.



Evaluate: \log_{3}{2}\log_{4}{3}\log_{5}{4}...\log_{64}{63}



log_2(4^x-5.2^x+2) > 2.



Find, by inspection the characteristic of the logarithms of 21735, 23 ^{.}8, 350, {^{.}035}, {^{.}2}, {^{.}87}, {^{.}875}.



\log 2 ^ { 3 } + \log 3 + \log 5 =  ?



Which is greater x=\log _{ 3 }{ 5 } \quad or\quad y=\log _{ 17 }{ 25 } ?



Show that :
1/ \log_{8} 36 +  1 / \log_{9} 36+  1 / \log_{18} 36=2  



Given \log2 = {^{.}3010300}, \log3 = {^{.}4771213}, \log7 = {^{.}8450980}, find the value of
\log 4\dfrac{2}{3}.



Find the value of \log 6 + 2 \log 5 + \log 4 \log 3 \log 2.



Class 11 Commerce Applied Mathematics Extra Questions