Number Theory - Class 11 Commerce Applied Mathematics - Extra Questions
If $$Z_{1}$$ and $$Z_{2}$$ are two complex numbers and $$c> 0,$$ then prove that $$\left | z_{1}+z_{2} \right |^{2}\leq \left ( 1+c \right )\left | z_{1} \right |^{2}+\left ( 1+c^{-1} \right )\left | z_{2} \right |^{2}$$
Let $$z_{1}$$ and $$z_{2}$$ be complex numbers such that $$z_{1}\neq z_{2}$$ and $$\left | z_{1} \right |=\left | z_{2} \right |.$$ If $$z_{1}$$ has positive real part and $$z_{2}$$ has negative imaginary part, then show that $$\displaystyle \frac{z_{1}+z_{2}}{z_{1}-z_{2}}$$ is purely imaginary.
State whether the given statement is true or false $$\overline{(z^{-1})} \, = \, (\bar{z})^{-1}$$
Express $$\dfrac{{5 + i\sqrt 2 }}{{2i}}$$ in the form of $$x + iy$$.
If $$\dfrac{{{{\left( {1 + i} \right)}^2}}}{{2 - i}} = x - iy,$$ then find the value of $$x + y$$.
Find the real and imaginary parts of the complex number z=$$\dfrac{3i^{20}-i^{19}}{2i-1}$$
If $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^3} - {\left( {\frac{{1 - i}}{{1 + i}}} \right)^3} = x + iy$$, then find $$(x,\,y)$$,
For the complex number$$\sqrt { 37 } + \sqrt { - 19 }$$.
Real part is $$\sqrt 37$$ and imaginary is $$\sqrt 19$$
Enter 1 if true or 0 for false
What are twin-primes ?
Express the following in the form of a = ib, a,b$$\epsilon$$R $$i = \sqrt{-1}$$. State the values of a and b. $$(1 + 2i)(-2 + i)$$
If ABC are angles of a triangle such that x = cis A, y = cis B, z = cis C, then find value of xyz
Give three pairs of prime numbers whose difference is $$2$$. [Remark: Two prime numbers whose difference is $$2$$ are called twin primes].
If $$z \neq 0$$ is a complex number,then prove that $$Re(z) = 0 \Longrightarrow Im(z^2)=0$$.
If $$(a + ib) (c + id) (e + if)(g +ih) = A + iB$$, then prove that $$(a^2 + b^2) (c^2 + d^2)(e^2 + f^2)(g^2 + h^2) = A^2 + B^2$$.
If $$z = x + iy$$ and $$w = \dfrac{(1 - iz)}{(z - i)}$$ and $$\left|w\right| = 1$$, then prove that $$z$$ is purely real.
If $$(x+iy)^3=u+iv$$, then prove that $$\displaystyle \frac{u}{x}+\frac{v}{y} =4(x^2 - y^2)$$.
If $$z_1$$ and $$z_2$$ are complex numbers and $$u = \sqrt{z_1z_2}$$, then prove that $$\left|z_1\right| + \left|z_2\right| = \left|\displaystyle \frac{z_1 + z_2}{2}+u\right| + \left|\displaystyle \frac{z_1 + z_2}{2}-u\right|$$.
If $$ \left|z_1 + z_2\right| = \left|z_1\right| + \left|z_2\right|$$, then show that $$arg(z_1) = arg(z_2)$$.
If $$\left|z_1 - z_2\right| = \left|z_1\right| + \left|z_2\right|$$, then prove that $$arg(z_1) - arg (z_2) = \pi$$ . I
Find the minimum value of $$\left | 1+z \right |+\left | 1-z \right |.$$
$$2^{i}=e^{i(lnx)}$$.
Compute the modulus of complex number $$z=\sqrt5-2i$$
Express $$\cfrac{2+i}{(1+i)(1-2i)}$$ in the form of $$a+ib$$. Find its modulus and argument.
Find the real and imaginary parts of the complex number $$\dfrac {a + ib}{a - ib}$$
Find the number of integral solution of $$(1-i)^x=2^x$$.
If $$z$$ and $$\alpha$$ complex numbers such that $$|z| = |\alpha| = r, r > 0$$ and $$\omega = \dfrac {z - \overline {\alpha}}{r^{2} + z\overline {\alpha}}$$, find $$Re(\omega)$$.
If the ratio $$\left (\dfrac {1 - z}{1 + z}\right )$$ is purely imaginary, then find value of $$|z|$$.
If $$a=\cfrac { 1+i }{ \sqrt { 2 } } $$, find the value of $${ a }^{ 6 }+{ a }^{ 4 }+{ a }^{ 2 }+1$$
If $$\left| { z }_{ 1 } \right| =2,\left| { z }_{ 2 } \right| =3,\left| { z }_{ 3 } \right| =4$$ and $$\left| 2{ z }_{ 1 }+3{ z }_{ 2 }+4{ z }_{ 3 } \right| =10$$, then absolute value $$8{ z }_{ 2 }{ z }_{ 3 }+27{ z }_{ 3 }{ z }_{ 1 }+64{ z }_{ 1 }{ z }_{ 2 }$$ must be equal to-
Find the points of the plane which satisfy the following equations. $$\displaystyle \left | \, \frac{z \, - \, 2}{z \, + \, 3} \, \right | \, = \, 1.$$
Find the points of the plane which satisfy the following equations. $$\displaystyle \left | \, \frac{z \, + \, i}{z \, - \, 3i} \, \right | \, = \, 1.$$
Simplify the following : $$\dfrac{(1 \, - \, i)^3}{1 \, - \, i^3}$$
Express the following in the form A + iB : $$\dfrac{1}{1 \, - \, \cos \theta \, + \, 2i \, \sin \theta}$$
Put the following in the form A + iB : $$\dfrac{(a \, + \, ib)^2}{(a \, - \, ib)} \, - \, \dfrac{(a \, - \, ib)^2}{(a \, + \, ib)}$$
If $$Z_r \, = \, \left ( \cos\dfrac{r\pi }{10} \, + \, i \, \sin \dfrac{r\pi }{10}\right ).$$ Then, find the value of $$Z_1 \cdot Z_2 \cdot Z_3 \cdot Z_4 $$
If $$i{ z }^{ 3 }+{ z }^{ 2 }-z+i=0$$, then show that $$\left| z \right| =1$$.
Find all the values of $$z$$ which satisfy the equation exp$$\left| \dfrac { { \left| z \right| }^{ 2 }-\left| z \right| +4 }{ { \left| z \right| }^{ 2 }+1 } \log2 \right| ={ \log }_{ \sqrt { 2 } }\left| 3\sqrt { 15 } +11i \right| $$
Find the modulus and argument of the complex number: $$\dfrac{1}{1+i}$$
For any two complex number $$z_1$$ and $$z_2$$ prove that $$Re(z_1z_2)= Rez_1Rez_2-I mz_1Imz_1$$
let $$z_1$$ and $$z_2$$ be two complex number such that $$|1-{z_1}z_2|^2-|z_1-z_2|^2=k\left(1-|z_1|^2\right)\left(1-|z_2|^2\right)$$ find the value of $$k$$
If $$\left( {a + ib} \right) = \frac{{1 + i}}{{1 - i}}$$ , then prove that $$\left( {{a^2} + {b^2}} \right) = 1$$
How solve and what is its meaning $$z_{1}=2+3i$$ $$z_{2}=3+4i$$ $$\left|z_{1}+z_{2}\right|=?$$
Let $$\dfrac{1}{a+ib}=c+id$$ for non-zero $$a,b$$, then find $$c,d$$.
Find the modulus and the arguments of each of the complex numbers is $$z=-\sqrt{3}+i$$
Find real values of $$\theta $$ for which$$\left( {\dfrac{{4 + 3i\;\sin \theta }}{{1 - 2i\;\sin \theta }}} \right)$$ is purely real.