The gaseous reaction $${A_2} \to {\rm{ }}2A$$ is first order in $$A_2$$. After $$12.3$$ minutes $$65\%$$ of $$A_2$$ remains undecompensed. How long will it take to decompose $$90\%$$ of $$A_2$$? What is the half life of the reaction?
Observation No. | Time (in minute) | $$P_x$$ (in mm of Hg) |
1 | 0 | 800 |
2 | 100 | 400 |
3 | 200 | 200 |
Time (min) | 0 | 20 | 40 | 60 |
Total pressure (mm Hg) | 400 | 500 | 587.6 | 664 |
$$t (sec)$$ | $$P$$(mm of $$Hg$$) |
$$0$$ | $$35.0$$ |
$$360$$ | $$54.0$$ |
$$720$$ | $$63.0$$ |
Experiment | $$Time/s^{-1}$$ | Total pressure/ atm |
$$1$$ | $$0$$ | $$0.5$$ |
$$2$$ | $$100$$ | $$0.6$$ |
$$t(s)$$ | $$0$$ | $$900$$ | $$1800$$ |
$$[A]$$ | $$50.8$$ | $$19.7$$ | $$8.62$$ |
$$[A]$$, mol $$L^{-1}$$ | $$[B]$$, mol $$L^{-1}$$ | Initial rate, mol $$L^{-1}s^{-1}$$ at | Initial rate, mole $$L^{-1}s^{-1}$$, at |
$$300$$K | $$320$$K | ||
$$2.5\times 10^{-4}$$ | $$3.0\times 10^{-5}$$ | $$5.0\times 10^{-4}$$ | $$2.0\times 10^{-3}$$ |
$$5.0\times 10^{-4}$$ | $$6.0\times 10^{-5}$$ | $$4.0\times 10^{-3}$$ | - |
$$1.0\times 10^{-3}$$ | $$6.0\times 10^{-5}$$ | $$1.6\times 10^{-2}$$ | - |